Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Видео:Физика 10 класс (Урок№18 - Основное уравнение МКТ.)Скачать

Физика 10 класс (Урок№18 - Основное уравнение МКТ.)

Основное уравнение молекулярно-кинетической теории (МКТ) с выводом

В статье рассмотрена модель идеального газа, приведено основное уравнение молекулярно-кинетической теории и его вывод.

Чтобы объяснить свойства материи в газообразном состоянии, в физике применяется модель идеального газа. Идеальный газ — разреженный, состоящий из одного типа атомов газ, частицы которого не взаимодействуют между собой. Помимо основных положений МКТ эта модель предполагает, что:

  • молекулы имеют пренебрежимо малый объем в сравнении с объемом емкости
  • при сближении частиц друг с другом и с границами емкости имеют место силы отталкивания

Видео:Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.

Основное уравнение молекулярно-кинетической теории

Физический смысл основного уравнения МКТ заключается в том, что давление идеального газа — это совокупность всех ударов молекул о стенки сосуда. Это уравнение можно выразить через концентрацию частиц, их среднюю скорость и массу одной частицы:

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

p – давление молекул газа на границы емкости,

m0 – масса одной молекулы,

n — концентрация молекул, число частиц N в единице объема V;

v 2 — средне квадратичная скорость молекул.

Видео:Урок 147. Задачи на основное уравнение МКТ идеального газаСкачать

Урок 147. Задачи на основное уравнение МКТ идеального газа

Вывод основного уравнения МКТ

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Частицы идеального газа при соударениях с границами емкости ведут себя как упругие тела. Такое взаимодействие описывается согласно законам механики. При соприкосновении частицы с границей емкости проекция vx скоростного вектора на ось ОХ, проходящую под прямым углом к границе сосуда, меняет свой знак на противоположный, но сохраняется неизменной по модулю:

Поэтому после соударения частицы с границей емкости проекция импульса молекулы на ось ОХ меняется с mv1x = –mvx на mv2x = mvx.

Изменение импульса молекулы ΔP равняется удвоенному произведению массы молекулы на ее скорость:

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Поскольку в каждом из шести основных направлений декартовой системы координат (вверх, вниз, вперед, назад, вправо, влево) движется одна шестая часть частиц N/6. Тогда число частиц, которые сталкиваются с каждой стенкой за время Δt равно:

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

S – площадь этой стенки

n — концентрация частиц

Давление p равно отношению силы F к площади S, на которую действует эта сила:

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Суммарная сила, с которой частицы давят на стенку равна отношению произведения числа этих частиц N и изменения импульса ΔP ко времени, в течение которого происходит давление:

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Исходя из вышенаписанного получаем:

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Если заменить среднее значение кинетической энергии поступательного движения молекул — E:

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

и подставить эту формулу в основное уравнение МКТ, получим давление идеального газа:

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Давление идеального газа равняется двум третям средней кинетической энергии поступательного движения молекул на единицу объема. При решении задач реальный газ можно считать идеальным газом, если он одноатомный и можно пренебречь взаимодействием между частицами.

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Понравилась статья, расскажите о ней друзьям:

Видео:Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Найти концентрацию газа при нормальных условиях. Постоянная Больцмана k = 1,38·10 -23 Дж/К.

Дано:

Решение:

Связь давления и концентрации

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Концентрация газа при нормальных условиях Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Ответ: Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Видео:Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | ИнфоурокСкачать

Идеальный газ в молекулярно-кинетической теории | Физика 10 класс #28 | Инфоурок

Идеальный газ. Формула концентрации молекул газа. Пример задачи

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

В физике текучих субстанций большое внимание уделяется изучению газов, которое осуществляют при помощи использования модели идеального газа. В этой области было открыто много законов. В приведенной ниже статье изучим формулу концентрации молекул газа (идеального) и покажем, как ее следует применять при решении практической проблемы.

Видео:Все формулы молекулярной физики, МКТ 10 класс, + преобразования и шпаргалкиСкачать

Все формулы молекулярной физики,  МКТ 10 класс,  + преобразования и шпаргалки

Идеальный газ

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Что же это такое? Прежде чем записать формулу концентрации молекул газа, расскажем, что собой представляет модель идеального газа. В соответствии с кинетической теорией текучих субстанций, в таких веществах молекулы и атомы движутся хаотически по прямым траекториям. Расстояния между ними намного больше, чем их собственные линейные размеры, поэтому последними пренебрегают при выполнении вычислений. Кроме того, считают, что взаимодействий между молекулами не существует, поскольку их кинетическая энергия слишком велика по сравнению со слабыми потенциальными взаимодействиями.

Любые реальные газы, которые находятся при низких давлениях и достаточно высоких абсолютных температурах, по своему поведению приближаются к описанной модели. Тем не менее существуют текучие субстанции, у которых помимо ван-дер-ваальсовых взаимодействий между частицами действуют взаимодействия более сильного характера. Примером является водяной пар, у которого молекулы друг с другом связаны водородными (полярными) связями. Для описания поведения таких субстанций нельзя использовать модель идеального газа.

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Видео:Секретный вывод основного уравнения МКТСкачать

Секретный вывод основного уравнения МКТ

Универсальное уравнение

Модель идеального газа удобна при выполнении практических расчетов тем, что уравнение состояния вещества, полученное на ее основе, связывает три термодинамических параметра: температуру T, объем системы V и абсолютное давление P. Это уравнение записано ниже:

Где R — постоянная, равная 8,314 Дж/(моль*К), n — количество вещества.

Современная молекулярно-кинетическая теория газов позволяет путем несложных рассуждений и математических выкладок получить теоретически это уравнение. Впервые же оно было записано в результате анализа многочисленных экспериментов, которые в течение двух веков выполняли европейские ученые, начиная от Роберта Бойля (вторая половина XVII века) и заканчивая Амедео Авогадро (начало XIX века).

Считается, что уравнение состояния идеального газа первым получил Эмиль Клапейрон, а к современной форме его привел русский химик Дмитрий Менделеев, поэтому его часто называют законом Клапейрона-Менделеева.

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Видео:Урок 146. Основное уравнение МКТ идеального газа - 2Скачать

Урок 146. Основное уравнение МКТ идеального газа - 2

Понятие о концентрации молекул: виды концентраций

Когда изучают текучие субстанции, то знать концентрации компонентов, которые их образуют, является важным при решении многих практических задач. Например, от этого показателя и размеров молекул зависит общая площадь поверхности активного вещества, а значит, его реакционная способность. Другой пример, концентрация некоторых веществ в воздухе определяет допустимые их пределы для нормального протекания жизненно необходимых процессов в организме человека.

В случае газов, как правило, пользуются тремя следующими концентрациями:

  • Атомная. Она определяется, как процентное содержание количества атомов или молекул компонента по отношению к объему всей системы.
  • Массовая. Показывает отношение массы компонента к объему газа.
  • Молярная. Она равна отношению количества вещества изучаемого компонента к объему системы.

Заметим, что все виды концентраций вычисляются по отношению к объему системы. Справедливость этих величин действительна, поскольку каждый компонент системы полностью заполняет ее объем.

Среди всех типов концентраций наиболее удобной на практике является молярная. Ниже в статье приведем формулу именно для нее.

Видео:Решение задач на основное уравнение МКТ идеального газа | Физика 10 класс #29 | ИнфоурокСкачать

Решение задач на основное уравнение МКТ идеального газа | Физика 10 класс #29 | Инфоурок

Формула концентрации молекул газа

В соответствии с приведенным в предыдущем пункте определением, молярная концентрация i-го компонента системы cn(i) вычисляется так:

Предположим, что мы имеем однокомпонентный (чистый) газ. Это может быть кислород, азот, гелий и так далее. В этом случае можно применить формулу Клапейрона-Менделеева и выразить из нее молярную концентрацию молекул. Имеем:

cn = n / V = P / (R * T).

Из записанной формулы концентрации молекул газа легко получить атомную (молекулярную) концентрацию. Покажем, как это делается:

Здесь NA и kB — число Авогадро и постоянная Больцмана. Соответственно, N — число молекул в системе. Поскольку величина kB имеет маленькое значение (1,38 * 10 -23 ), то cN принимает огромные значения, что неудобно для ее практического использования.

Видео:Идеальный газ. Основное уравнение МКТСкачать

Идеальный газ. Основное уравнение МКТ

Пример задачи

В результате изобарного нагрева закрытой системы с идеальным газом его температура увеличилась на 100 К и стала равной 400 К. Как изменится концентрация молекул газа, если давление в системе составляет 1,5 атмосферы.

Вычислите концентрацию молекул газа n выразив ее из основного уравнения мкт

Поскольку давление в процессе нагрева не изменилось, а температура была равна 300 К согласно условию задачи, то молярная концентрацию молекул до нагрева системы составляла:

cn1 = 1,5 * 101 325 / (8,314 * 300) = 60,9 моль/м 3 .

Число молекул в системе не изменилось при нагреве, так как система является закрытой. После нагрева газа его концентрация составила:

cn2 = 1,5 * 101 325 / (8,314 * 400) = 45,7 моль/м 3 .

Изменение концентрации составило:

Отрицательный знак говорит, что концентрация уменьшилась, что является очевидным, поскольку увеличился объем системы после нагрева, а число частиц в ней осталось прежним.

📽️ Видео

Физика 10 Идеальный газ Основное уравнение МКТ идеального газа Решение задачСкачать

Физика 10 Идеальный газ  Основное уравнение МКТ идеального газа  Решение задач

Молярная концентрация. 10 класс.Скачать

Молярная концентрация. 10 класс.

Физика. МКТ: Основное уравнение МКТ. Центр онлайн-обучения «Фоксфорд»Скачать

Физика.  МКТ: Основное уравнение МКТ. Центр онлайн-обучения «Фоксфорд»

Молекулярно-кинетическая теория. МКТ за 30 минут | ЕГЭ Физика | Николай НьютонСкачать

Молекулярно-кинетическая теория. МКТ за 30 минут | ЕГЭ Физика | Николай Ньютон

Рассмотрение темы: "Основное уравнение МКТ"Скачать

Рассмотрение темы: "Основное уравнение МКТ"

Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Основное уравнение МКТ | ФизикаСкачать

Основное уравнение МКТ | Физика

Вывод основного уравнения МКТ (самая убойная тема школы)Скачать

Вывод основного уравнения МКТ (самая убойная тема школы)

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. Практическая часть.10 классСкачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. Практическая часть.10 класс
Поделиться или сохранить к себе: