Три вида неполных квадратных уравнений напишите

Неполные квадратные уравнения

Неполное квадратное уравнение – это уравнение вида

в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:

ax 2 + bx = 0,если c = 0;
ax 2 + c = 0,если b = 0;
ax 2 = 0,если b = 0 и c = 0.

Видео:АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | ВидеоурокСкачать

АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | Видеоурок

Решение неполных квадратных уравнений

Чтобы решить уравнение вида ax 2 + bx = 0 , надо разложить левую часть уравнения на множители, вынеся x за скобки:

Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:

Чтобы ax + b было равно нулю, нужно, чтобы

x = —b.
a

Следовательно, уравнение ax 2 + bx = 0 имеет два корня:

x1 = 0 и x2 = —b.
a

Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.

Пример 1. Решите уравнение:

a 2 — 12a = 0
a(a — 12) = 0
a1 = 0a — 12 = 0
a2 = 12

Пример 2. Решите уравнение:

7x 2 = x
7x 2 — x = 0
x(7x — 1) = 0
x1 = 07x — 1 = 0
7x = 1
x2 =1
7

Чтобы решить уравнение вида ax 2 + c = 0 , надо перенести свободный член уравнения c в правую часть:

ax 2 = —c, следовательно, x 2 = —c.
a

В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.

Если данное неполное уравнение будет иметь вид x 2 — c = 0 , то сначала опять переносим свободный член в правую часть и получаем:

В этом случае уравнение будет иметь два противоположных корня:

Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами.

Пример 1. Решите уравнение:

24 = 2y 2
24 — 2y 2 = 0
-2y 2 = -24
y 2 = 12
y1 = +√ 12y2 = -√ 12

Пример 2. Решите уравнение:

b 2 — 16 = 0
b 2 = 16
b1 = 4b2 = -4

Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения.

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Неполные квадратные уравнения

Три вида неполных квадратных уравнений напишите

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать

МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?

Основные понятия

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

Неполные квадратные уравнения бывают трех видов:

  • Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.

Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Решение неполных квадратных уравнений

Как мы уже знаем, есть три формулы неполных квадратных уравнений:

  • ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax² + c = 0, при b = 0;
  • ax² + bx = 0, при c = 0.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:Квадратное уравнение. 8 класс.Скачать

Квадратное уравнение. 8 класс.

Как решить уравнение ax² = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

Три вида неполных квадратных уравнений напишите

Пример 1. Решить −5x² = 0.

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!

Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Как решить уравнение ax² + с = 0

Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

  • перенесем c в правую часть: ax² = — c,
  • разделим обе части на a: x² = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

  • не имеет корней при — c/а 0.

Пример 1. Найти решение уравнения 9x² + 4 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 9:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 9x² + 4 = 0 не имеет корней.

    Пример 2. Решить -x² + 9 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на -1:

    Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.

    Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Как решить уравнение ax² + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

    Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 2x² — 32x = 0

      Вынести х за скобки

  • Это уравнение равносильно х = 0 и 2x — 32 = 0.
  • Решить линейное уравнение:

  • Значит корни исходного уравнения — 0 и 16.
  • Ответ: х = 0 и х = 16.

    Пример 2. Решить уравнение 3x² — 12x = 0

    Разложить левую часть уравнения на множители и найти корни:

    Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

    Неполные квадратные уравнения

    Три вида неполных квадратных уравнений напишите Три вида неполных квадратных уравнений напишите

    Средняя оценка: 4.6

    Всего получено оценок: 117.

    Средняя оценка: 4.6

    Всего получено оценок: 117.

    Неполные квадратные уравнения решаются очень быстро. Главное знать, как решается каждый отдельный подвид неполного уравнения, а их всего 3, имеет свой, давно известный путь решения. Достаточно попробовать решить по одному уравнению из каждого вида, и вы будете свободно ориентироваться в этой теме.

    Три вида неполных квадратных уравнений напишите

    Видео:Неполные квадратные уравнения.Урок 3.Скачать

    Неполные  квадратные уравнения.Урок 3.

    Неполные квадратные уравнения

    Неполные квадратные уравнения – это квадратные уравнения, у которых коэффициент b или коэффициент с равен нулю. Возможно три варианта неполных уравнений:

    • Коэффициент b=0
    • Коэффициент с=0
    • Коэффициенты b=0 и с=0

    Рассмотрим каждый из вариантов и решим несколько примеров.

    Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Виды неполных квадратных уравнений

    Каждый подвид уравнения решается быстро и просто. Главное владеть навыком преобразования выражения, а именно переносом чисел из одной части тождества в другую и выносом общего множителя за скобку.

    Первый случай

    Если коэффициент b=0. Тогда формула неполного квадратного уравнения принимает вид:

    В таком случае, решение принимает следующий вид:

    $$x_2= -sqrt$$- обратите внимание, что под корнем может оказаться как положительное, так и отрицательное число. Знак минуса в данном случае просто указывает на противоположность. В случае, если под корнем в результате получится отрицательное число, то действительных корней уравнение не имеет.

    $$7x^2-28=0 $$– перенесем -28 в правую часть уравнения с противоположным знаком.

    $x^2=28 $$ – разделим обе части уравнения на 7.

    Вот и все решение.

    Второй случай

    Во втором случае нулю равен будет коэффициент с. Тогда уравнение примет вид:

    В этом случае, решение будет выглядеть немного иначе:

    $$ax^2+bx=0$$ – вынесем общий множитель за скобку (общий множитель у них – х)

    $$x(ax+b)=0$$ – произведение равно нулю, если один из множителей равен нулю.

    Решим небольшой пример.

    Этот способ иногда используется и при решении полных квадратных уравнений. Если уравнение можно свернуть по любой из формул сокращенного умножения, то потом каждую из скобок-множителей можно приравнять к нулю и решить уравнение гораздо быстрее, чем через дискриминант.

    Третий случай

    Третий случай самый простой, когда b и с равны нулю. В этом случае, оба корня всегда равны 0.

    Обратите внимание на то, что в любом случае, для корней квадратного уравнения необходима проверка. Каждый из получившихся корней нужно подставить в исходное уравнение и подсчитать результат.

    Для неполных уравнений это особенно важно, потому что все считают их легкими и не акцентируют внимание на подсчетах. Это может привести к разного рода ошибкам. Чаще всего, ученики путают знаки. Вместо + получается – и наоборот. Помните, что знаки это очень важны и за ними нужно следить при переносе и делении чисел. Проверить себя можно, подставив значения в приведенные в статье формулы.

    Иногда коэффициент а может быть отрицательным. В этом случае, вам придется делить на отрицательное число. А значит – все знаки уравнения поменяются на противоположные. Будьте внимательны в этих скользких моментах.

    Три вида неполных квадратных уравнений напишите

    Видео:Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)Скачать

    Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)

    Что мы узнали?

    Мы дали определение неполного квадратного уравнения. Разобрали виды неполных квадратных уравнений и пути их решения, привели примеры для каждого из них. Поговорили о скользких моментах, на которых часто случаются ошибки.

    🔍 Видео

    Как ⁉ решать неполные 🟨 Квадратные уравнения ВИДЫ 📋 приведенные, неприведённые, полные, неполные 🟨Скачать

    Как ⁉ решать неполные 🟨 Квадратные уравнения ВИДЫ 📋 приведенные, неприведённые, полные, неполные 🟨

    Как решать квадратные уравнения без дискриминантаСкачать

    Как решать квадратные уравнения без дискриминанта

    Неполные квадратные уравненияСкачать

    Неполные квадратные уравнения

    РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19 алгебра 8 классСкачать

    РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19  алгебра 8 класс

    Алгоритм решения неполных квадратных уравненийСкачать

    Алгоритм решения неполных квадратных уравнений

    Квадратные уравнения решение неполных квадратных уравнений – 8 класс алгебраСкачать

    Квадратные уравнения решение неполных квадратных уравнений – 8 класс алгебра

    🧮 Виды неполных квадратных уравнений! #SHORTSСкачать

    🧮 Виды неполных квадратных уравнений! #SHORTS

    Все виды неполных квадратных уравнений.Скачать

    Все виды неполных квадратных уравнений.

    Как решить НЕПОЛНОЕ КВАДРАТНОЕ УРАВНЕНИЕ. Часть 3. Уравнение вида ax^2=0Скачать

    Как решить НЕПОЛНОЕ КВАДРАТНОЕ УРАВНЕНИЕ.  Часть 3.  Уравнение вида ax^2=0
    Поделиться или сохранить к себе: