Решение уравнений с двумя модулями

Уравнения с двумя модулями

До сих пор мы изучали лишь самые простые уравнения — там был один модуль и что-то ещё. Это «что-то ещё» мы отправляли в другую часть неравенства, подальше от модуля, чтобы в итоге всё свелось к уравнению вида |f(x)|=g(x)

Но детский сад закончился — пора рассмотреть что-нибудь посерьёзнее. Начнём с уравнений вот такого типа:

Это уравнение вида «модуль равен модулю». Принципиально важным моментом является отсутствие других слагаемых и множителей: только один модуль слева, ещё один модуль справа — и ничего более.

Кто-нибудь сейчас подумает, что такие уравнения решаются сложнее, чем то, что мы изучали до сих пор. А вот и нет: эти уравнения решаются даже проще. Вот формула:

Всё! Мы просто приравниваем подмодульные выражения, ставя перед одним из них знак «плюс-минус». А затем решаем полученные два уравнения — и корни готовы! Никаких дополнительных ограничений, никаких неравенств и т.д. Всё очень просто.

Давайте попробуем решать вот такую задачу:

Элементарно, Ватсон! Раскрываем модули:

Рассмотрим отдельно каждый случай:

В первом уравнении корней нет. Потому что когда это 3=−7

? При каких значениях x? «Какой ещё нафиг x? Ты обкурился? Там вообще нет x» — скажете вы. И будете правы. Мы получили равенство, не зависящее от переменной x

, и при этом само равенство — неверное. Потому и нет корней.:)

Со вторым уравнением всё чуть интереснее, но тоже очень и очень просто:

Как видим, всё решилось буквально в пару строчек — другого от линейного уравнения мы и не ожидали.:)

В итоге окончательный ответ: x=1

Ну как? Сложно? Конечно, нет. Попробуем что-нибудь ещё:

. Поэтому сразу переписываем его, раскрывая знак модуля:

Возможно, кто-то сейчас спросит: «Эй, что за бред? Почему «плюс-минус» стоит у правого выражения, а не у левого?» Спокойно, сейчас всё объясню. Действительно, по-хорошему мы должны были переписать наше уравнение следующим образом:

Затем нужно раскрыть скобки, перенести все слагаемые в одну сторону от знака равенства (поскольку уравнение, очевидно, в обоих случаях будет квадратным), ну и дальше отыскать корни. Но согласитесь: когда «плюс-минус» стоит перед тремя слагаемыми (особенно когда одно из этих слагаемых — квадратное выражение), это как-то более сложно выглядит, нежели ситуация, когда «плюс-минус» стоит лишь перед двумя слагаемыми.

Но ведь ничто не мешает нам переписать исходное уравнение следующим образом:

Что произошло? Да ничего особенного: просто поменяли левую и правую часть местами. Мелочь, которая в итоге немного упростит нам жизнь.:)

В общем, решаем это уравнение, рассматривая варианты с плюсом и с минусом:

Первое уравнение имеет корни x=3

. Второе вообще является точным квадратом:

Поэтому у него единственный корень: x=1

. Но этот корень мы уже получали ранее. Таким образом, в итоговый ответ пойдут лишь два числа:

Миссия выполнена! Можно взять с полки и скушать пирожок. Там их 2, ваш средний.:)

Важное замечание. Наличие одинаковых корней при разных вариантах раскрытия модуля означает, что исходные многочлены раскладываются на множители, и среди этих множителей обязательно будет общий. Действительно:

(т.е. модуль произведения равен произведению модулей), поэтому исходное уравнение можно переписать так:

Как видим, у нас действительно возник общий множитель. Теперь, если собрать все модули с одной стороны, то можно вынести этот множитель за скобку:

Ну а теперь вспоминаем, что произведение равно нулю, когда хотя бы один из множителей равен нулю:

Таким образом, исходное уравнение с двумя модулями свелось к двум простейшим уравнениям, о которых мы говорили в самом начале урока. Такие уравнения решаются буквально в пару строчек.:)

Данное замечание, возможно, покажется излишне сложным и неприменимым на практике. Однако в реальности вам могут встретиться куда более сложные задачи, нежели те, что мы сегодня разбираем. В них модули могут комбинироваться с многочленами, арифметическими корнями, логарифмами и т.д. И в таких ситуациях возможность понизить общую степень уравнения путём вынесения чего-либо за скобку может оказаться очень и очень кстати.:)

Теперь хотелось бы разобрать ещё одно уравнение, которое на первый взгляд может показаться бредовым. На нём «залипают» многие ученики — даже те, которые считают, что хорошо разобрались в модулях.

Тем не менее, это уравнение решается даже проще, чем то, что мы рассматривали ранее. И если вы поймёте почему, то получите ещё один приём для быстрого решения уравнений с модулями.

Нет, это не опечатка: между модулями именно плюс. И нам нужно найти, при каких x

сумма двух модулей равна нулю.:)

В чём вообще проблема? А проблема в том, что каждый модуль — число положительное, либо в крайнем случае ноль. А что будет, если сложить два положительных числа? Очевидно, снова положительное число:

Последняя строчка может натолкнуть на мысль: единственный случай, когда сумма модулей равна нулю — это если каждый модуль будет равен нулю:

А когда модуль равен нулю? Только в одном случае — когда подмодульное выражение равно нулю:

Таким образом, у нас есть три точки, в которых обнуляется первый модуль: 0, 1 и −1; а также две точки, в которых обнуляется второй модуль: −2 и 1. Однако нам нужно, чтобы оба модуля обнулялись одновременно, поэтому среди найденных чисел нужно выбрать те, которые входят в оба набора. Очевидно, такое число лишь одно: x=1

Видео:Уравнение с двумя модулями: особенности решенияСкачать

Уравнение с двумя модулями: особенности решения

Решение уравнений с модулем методом интервалов

Видео:Уравнения с модулемСкачать

Уравнения с модулем

Уравнения с несколькими модулями в одной части

Чем больше модулей, тем больше приходиться их раскрывать и тем больше получается различных уравнений. Когда модулей один или два — это не сложно. Сложность возникает когда модулей больше двух. Человек может забыть рассмотреть какой-то из случаев, и получится что уравнение решено не полностью.

Давайте решим следующее уравнение:

У данного уравнения два модуля в левой части. Оно решается путем раскрытия модулей. Не будем комментировать решение, а сразу приведём его:

Решение уравнений с двумя модулями

Такой вид уравнения удобнее решать методом интервалов (или более точно — методом промежутков). Суть этого метода в том, чтобы разбить координатную прямую на несколько промежутков, а затем решить уравнение на каждом из этих промежутков. Модули исходного уравнения на каждом промежутке будут раскрываться по разному.

Решим уравнение |x − 5| − |x| = 1 методом интервалов.

Для начала нарисуем координатную прямую и обозначим её как x

Решение уравнений с двумя модулями

Если координатная прямая содержит все числа, которые существуют в природе, то логично что она содержит и корни нашего уравнения.

Теперь надо разбить координатную прямую на промежутки. Для этого сначала нужно найти на ней те точки, на которых модули нашего уравнения будут менять свой порядок раскрытия. То есть, найти точки перехода для модулей |x − 5| и |x| .

Чтобы найти точки перехода, нужно выяснить при каких значениях x подмодульные выражения равны нулю. Узнать это можно приравняв к нулю подмодульные выражения обоих модулей, и решить обычные линейные уравнения:

Решение уравнений с двумя модулями

Для модуля |x − 5| точкой перехода будет 5 . Для модуля |x| точкой перехода будет 0 .

Теперь отметим точки перехода на координатной прямой. Мéньшие числа нужно отмечать левее, большие числа правее:

Решение уравнений с двумя модулями

Проведем дуги от точек перехода:

Решение уравнений с двумя модулями

С помощью неравенств подпишем каждый промежуток. Получится три промежутка: от минус бесконечности до нуля, от нуля до пяти, и от пяти до плюс бесконечности. То есть: x x значение 0 не включено в данный промежуток. Но зато это значение включено во второй промежуток 0 ≤ x .

Во втором же промежутке 0 ≤ x значение 5 не включено в данный промежуток, но зато оно включено в третий промежуток x ≥ 5 .

Проще говоря, каждый промежуток включает в себя левый конец, и не включает правый. Сделано это специально, чтобы не допустить потерь значений переменной x. Описать с помощью неравенств нужно все значения на координатной прямой, не допуская их потерь.

Решение уравнений с двумя модулями

Включение левого конца в рассматриваемый промежуток и исключение его из правого это лишь общепринятое правило. На самом деле концы рассматриваемого промежутка можно включать в любой из соседствующих промежутков. Например, значение 0 можно было включить в первый промежуток. Тогда он принял бы вид x ≤ 0 , а второй промежуток принял бы вид 0 , потому что ноль уже был включен в первый промежуток.

Но лучше всего исходить из ситуации, потому что в каких-то случаях левый конец промежутка целесообразнее исключить из рассматриваемого промежутка и включить его в правый конец соседнего промежутка. Об этом мы поговорим позже.

Теперь выясним как будут вести себя модули |x − 5| и |x| на каждом из этих промежутков. От этого будет зависеть то, как они будут раскрываться.

Начнем с первого промежутка x x , то при любом значении x на данном промежутке подмодульное выражение x − 5 станет отрицательным, а значит модуль |x − 5| на промежутке x −(x − 5) + x = 1 , которое получилось после раскрытия модулей на промежутке x

Решение уравнений с двумя модулями

Это уравнение решений не имеет. Значит на промежутке x исходное уравнение не имеет корней. Проще говоря, корень уравнения не является числом меньшим нуля.

Следующий промежуток, на котором нужно решить уравнение это промежуток 0 ≤ x .

Если x больше или равно нулю, но меньше пяти, то подмодульное выражение x − 5, станет отрицательным, а значит модуль |x − 5| на промежутке 0 ≤ x будет раскрываться со знаком минус. Второй модуль |x| на промежутке 0 ≤ x будет раскрываться с плюсом.

В результате после раскрытия модулей на промежутке 0 ≤ x уравнение с модулем |x − 5| |x| = 1 примет вид −(x − 5) − x = 1

Решение уравнений с двумя модулями

Решим это уравнение:

Решение уравнений с двумя модулями

Получили корень 2. Чтобы проверить действительно ли это число является корнем исходного уравнения, нужно посмотреть принадлежит ли это число рассматриваемому промежутку 0 ≤ x . Принадлежит? Да. Значит число 2 является корнем уравнения |x − 5| |x| = 1 . Проверка также показывает это:

Решение уравнений с двумя модулями

Следующий промежуток, который нужно рассмотреть это промежуток x ≥ 5 .

Если x больше или равно пяти, то модуль |x − 5| на промежутке x ≥ 5 будет раскрываться со знаком плюс. Второй модуль |x| на промежутке x ≥ 5 тоже будет раскрываться с плюсом.

В результате после раскрытия модулей на промежутке x ≥ 5 уравнение с модулем |x − 5| |x| = 1 примет вид x − 5 − x = 1 .

Решение уравнений с двумя модулями

Решим это уравнение:

Решение уравнений с двумя модулями

Это уравнение не имеет решений. Значит на промежутке x ≥ 5 исходное уравнение корней не имеет. Проще говоря, корень уравнения не является числом, бóльшим либо равным пяти.

В итоге корнем уравнения является число 2, которое мы нашли решив исходное уравнение на промежутке 0 ≤ x

Пример 2. Решить уравнение |x − 3| + |x + 2| = 7

Решение

Шаг 1. Находим точки перехода для модулей |x − 3| и |x + 2|

Решение уравнений с двумя модулями

Шаг 2. Отметим на координатной прямой найденные точки перехода и выделим получившиеся промежутки:

Решение уравнений с двумя модулями

Шаг 3. Решим исходное уравнение на каждом промежутке. Для этого посмóтрим как будут раскрываться модули |x − 3| и |x + 2| на этих промежутках.

На промежутке x модуль |x − 3| будет раскрываться с минусом. Можно проверить это, подставив в данный модуль любое число из промежутка x . Например, числа −4 или −9

Следующий модуль |x + 2| на промежутке x тоже будет раскрываться с минусом. Убедимся в этом подставив любые два числа из промежутка x в подмодульное выражение. Например, числа −6 и −8

Значит после раскрытия модулей на промежутке x исходное уравнение |x − 3| + |x + 2| = 7 принимает следующий вид:

Решение уравнений с двумя модулями

Обязательно нужно проверить входит ли найденный корень −3 в рассматриваемый промежуток x x найденный корень −3 и проверить верное ли оно. В данном случае неравенство −3 верно, значит корень −3 входит в промежуток x и соответственно является корнем исходного уравнения.

На следующем промежутке −2 ≤ x x ≥ 3 исходное уравнение |x − 3| + |x + 2| = 7 принимает следующий вид:

Решим это уравнение:

Решение уравнений с двумя модулями

Этот корень входит в рассматриваемый промежуток x ≥ 3, значит является корнем исходного уравнения. Проверка также показывает это:

Решение уравнений с двумя модулями

Ответ: −3 и 4.

Пример 3. Решить уравнение |2x − 3| + |2x + 7| = 16

Решение

Найдём точки перехода для модулей |2x − 3| и |2x + 7|

Решение уравнений с двумя модулями

Отметим точки перехода на координатной прямой. Меньшие числа нужно отмечать левее, большие правее:

Решение уравнений с двумя модулями

Решим исходное уравнение |2x − 3| + |2x + 7| = 16 на промежутке Решение уравнений с двумя модулями. Оба модуля на этом промежутке будут раскрываться с минусом:

Решение уравнений с двумя модулями

Корень −5 принадлежит промежутку Решение уравнений с двумя модулями, значит является корнем исходного уравнения.

Теперь решим исходное уравнение на промежутке Решение уравнений с двумя модулями. Модуль |2x − 3| на этом промежутке раскрывается с минусом, а модуль |2x + 7| — с плюсом:

Решение уравнений с двумя модулями

Видим, что на промежутке исходное уравнение не имеет решений (корней).

Теперь решим исходное уравнение на промежутке Решение уравнений с двумя модулями. Оба модуля на данном промежутке раскрываются с плюсом:

Решение уравнений с двумя модулями

Корень 3 принадлежит промежутку Решение уравнений с двумя модулями, значит является корнем исходного уравнения.

Ответ: −5 и 3 .

Пример 4. Решить уравнение |x − 2| + 3x = |x − 5| − 18

Решение

Найдём точки перехода для модулей |x − 2| и |x 5|

Решение уравнений с двумя модулями

Отметим точки перехода на координатной прямой:

Решение уравнений с двумя модулями

Решим исходное уравнение на промежутке x . Модули |x − 2| и |x 5| на этом промежутке раскрываются с минусом:

Решение уравнений с двумя модулями

Число −5 принадлежит промежутку x , значит является корнем исходного уравнения.

Решим исходное уравнение на промежутке 2 ≤ x . Модуль |x − 2| на этом промежутке раскрывается с плюсом, а модуль |x 5| — с минусом:

Решение уравнений с двумя модулями

Число Решение уравнений с двумя модулямине принадлежит промежутку 2 ≤ x , значит не является корнем исходного уравнения.

Решим исходное уравнение на промежутке x ≥ 5 . Модули |x − 2| и |x 5| на этом промежутке будут раскрываться с плюсом:

Решение уравнений с двумя модулями

Число −7 не принадлежит промежутку x ≥ 5 , значит не является корнем исходного уравнения.

Ответ: −5

Пример 5. Решить уравнение |x| + |x − 7| + 2|x − 4| = 2

Решение

Найдём точки перехода для модулей |x|, |x − 7| и |x 4|

Решение уравнений с двумя модулями

Отметим точки перехода на координатной прямой:

Решение уравнений с двумя модулями

Решим исходное уравнение на промежутке x . Все три модуля: |x|, |x − 7| и |x 4| на этом промежутке раскрываются с минусом:

Решение уравнений с двумя модулями

Число Решение уравнений с двумя модулямине принадлежит промежутку x , значит не является корнем исходного уравнения.

Решим теперь исходное уравнение на промежутке 0 ≤ x |x| на этом промежутке раскрывается с плюсом, а модули |x − 7| и |x 4| — с минусом:

Решение уравнений с двумя модулями

Число Решение уравнений с двумя модулямине принадлежит промежутку 0 ≤ x , значит не является корнем исходного уравнения.

Решим теперь исходное уравнение на промежутке 4 ≤ x . Модуль |x| на этом промежутке раскрывается с плюсом; модуль |x − 7| — с минусом; модуль |x 4| — с плюсом:

Решение уравнений с двумя модулями

Число Решение уравнений с двумя модулямине принадлежит промежутку 4 ≤ x , значит не является корнем исходного уравнения.

Решим исходное уравнение на промежутке x ≥ 7 . Все три модуля: |x|, |x − 7| и |x 4| на этом промежутке раскрываются с плюсом:

Решение уравнений с двумя модулями

Число Решение уравнений с двумя модулямине принадлежит промежутку x ≥ 7 , значит не является корнем исходного уравнения.

Решив исходное уравнение на каждом промежутке, мы не нашли корней, удовлетворяющих этому уравнению. Значит данное уравнение не имеет корней.

В ответе можно написать словами, что корней нет (или решений нет), либо указать символ пустого множества. Этот символ будет указывать, что множество корней уравнения |x| + |x − 7| + 2|x − 4| = 2 пусто.

Ответ: ø.

Пример 6. Решить уравнение Решение уравнений с двумя модулями

Решение

Найдём точки перехода для модулей Решение уравнений с двумя модулямии Решение уравнений с двумя модулями

Если методом интервалов нужно решить уравнение с модулем, который в свою очередь содержит внутри себя другой модуль, то точки перехода надо искать для случаев: когда внутренний модуль раскрывается с плюсом и когда он раскрывается с минусом. Точки перехода будут меняться в зависимости от этих случаев. Давайте посмотрим как это происходит.

Если у модуля Решение уравнений с двумя модулямивнутренний модуль раскроется с плюсом, то есть если 2x − 1 ≥ 0 (что равносильно Решение уравнений с двумя модулями), то исходное уравнение примет вид |2x − 1 − 5| + x = |6 − x| . Здесь и далее надо учесть, что внутренний модуль будет раскрываться с плюсом при тех значениях x, которые будут больше либо равны Решение уравнений с двумя модулями. Отметим эту точку на координатной прямой.

Решение уравнений с двумя модулями

Теперь найдем точки перехода. Поскольку исходное уравнение приняло вид |2x − 1 − 5| + x = |6 − x| , то точки перехода надо найти для модулей |2x − 1 − 5| и |6 − x| .

Для модуля |2x − 1 − 5| точкой перехода будет число 3 , а для модуля |6 − x| — число 6 . Отметим эти числа на той же координатной прямой где мы отметили точку Решение уравнений с двумя модулями

Решение уравнений с двумя модулями

Сейчас нас интересуют только те значения x , которые удовлетворяют условию Решение уравнений с двумя модулями, потому что только при этом условии внутренний модуль исходного уравнения раскрывается с плюсом. Поэтому рассматривать промежуток Решение уравнений с двумя модулямимы не будем. Рассмотреть нужно те промежутки где x удовлетворяет условию Решение уравнений с двумя модулями

Решение уравнений с двумя модулями

Первый промежуток на котором мы будем решать уравнение это Решение уравнений с двумя модулями. На нем модуль |2x − 1 − 5| раскрывается с минусом, а модуль |6 − x| с плюсом:

Решение уравнений с двумя модулями

Получили тождество — равенство верное при любом значении x . В данном случае решением исходного уравнения является любое число из промежутка Решение уравнений с двумя модулями. Любое число из этого промежутка также удовлетворяют условию Решение уравнений с двумя модулями

Теперь решим исходное уравнение на промежутке 3 ≤ x . Оба модуля на этом промежутке раскрываются с плюсом. Тогда:

Решение уравнений с двумя модулями

Корень 3 принадлежит рассматриваемому промежутку. Также этот корень удовлетворяет условию Решение уравнений с двумя модулями, согласно которому внутренний модуль исходного уравнения раскрывается с плюсом.

Теперь решим исходное уравнение на промежутке x ≥ 6 . На этом промежутке модуль |2x − 1 − 5| раскрывается с плюсом, а модуль |6 − x| с минусом. Тогда:

Решение уравнений с двумя модулями

Корень 0 не удовлетворяет условию x ≥ 6 , значит на данном промежутке исходное уравнение корней не имеет.

Итак, если внутренний модуль уравнения Решение уравнений с двумя модулямираскрывается с плюсом, то решениями уравнения являются: промежуток Решение уравнений с двумя модулями, а также число 3. Запишем эти решения одним промежутком:

Решение уравнений с двумя модулями

Теперь решим исходное уравнение для случая когда внутренний модуль раскрывается с минусом. То есть когда 2x − 1 (что равносильно неравенству Решение уравнений с двумя модулями). В этом случае исходное уравнение примет вид:

Отметим точку Решение уравнений с двумя модулямина координатной прямой.

Решение уравнений с двумя модулями

Нас будут интересовать те значения x которые располагаются слева от Решение уравнений с двумя модулями. Это те значения при которых внутренний модуль исходного уравнения раскрывается с минусом.

Найдем точки перехода для модулей |−2x + 1 − 5| и |6 − x| . Для первого модуля это число −2, для второго модуля — число 6

Решение уравнений с двумя модулями

Рассматривать будем только те промежутки, которые располагаются слева от Решение уравнений с двумя модулями. Только при них внутренний модуль исходного уравнения раскрывается с минусом

Решение уравнений с двумя модулями

Решим уравнение на промежутке x . На этом промежутке оба модуля раскрываются с плюсом. Тогда:

Решение уравнений с двумя модулями

Это уравнение решений не имеет. Значит на промежутке x исходное уравнение не имеет корней.

Решим теперь уравнение на промежутке Решение уравнений с двумя модулями. Замечаем, что при подстановке левого конца этого промежутка (числа −2) в модуль |−2x + 1 − 5| данный модуль раскрывается с плюсом, а при остальных значениях промежутка Решение уравнений с двумя модулямимодуль |−2x + 1 − 5| раскрывается с минусом.

Поэтому число −2 разумнее включить в промежуток x , который мы уже рассмотрели. На промежутке x модуль раскрывался с плюсом, и при включении числа −2 в данный промежуток, он также будет раскрываться с плюсом.

На промежутке Решение уравнений с двумя модулямимодуль |−2x + 1 − 5| раскрывается с минусом, а модуль |6 − x| с плюсом. Тогда:

Решение уравнений с двумя модулями

Получится корень который не удовлетворяет условию Решение уравнений с двумя модулями. Несмотря на это число Решение уравнений с двумя модулямиявляется корнем исходного уравнения, потому что мы получили его когда решали уравнение для случая 2x − 1 ≥ 0 .

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Задания для самостоятельного решения

Примечание: Решения, не удовлетворяющие исходному уравнению, подчёркнуты красным.

Видео:Уравнение с двумя модулями #1Скачать

Уравнение с двумя модулями #1

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Решение уравнения с модулем |x+8|+|x-3|+|x+2|=1.Скачать

Решение уравнения с модулем |x+8|+|x-3|+|x+2|=1.

Калькулятор онлайн.
Решение уравнений и неравенств с модулями.

Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями. Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> |x| или abs(x) — модуль x

Введите уравнение или неравенство с модулями
Решить уравнение или неравенство

Видео:Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать

Уравнения с модулем. Часть 2  | Математика | TutorOnline

Немного теории.

Видео:Уравнение с двумя модулями - bezbotvyСкачать

Уравнение с двумя модулями - bezbotvy

Уравнения и неравенства с модулями

В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что ( |x-a| ) — это расстояние на числовой прямой между точками x и a: ( |x-a| = rho (x;; a) ). Например, для решения уравнения ( |x-3|=2 ) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: ( x_1=1 ) и ( x_2=5 ).

Решение уравнений с двумя модулями

Решая неравенство ( |2x+7| 0 ), то уравнение ( |f(x)|=c ) равносильно совокупности уравнений: ( left[begin f(x)=c \ f(x)=-c endright. )
2) Если ( c > 0 ), то неравенство ( |f(x)| c ) равносильно совокупности неравенств: ( left[begin f(x) c endright. )
4) Если обе части неравенства ( f(x) 0. Значит, |2х – 4| = (2х – 4), |х + 3| = (х + 3). Таким образом, на рассматриваемом промежутке заданное уравнение принимает вид: (2х – 4) + (х + 3) = 8. Решив это уравнение, находим: х = 3. Это значение принадлежит рассматриваемому промежутку, а потому является корнем заданного уравнения.
Итак, (x_1=-1, ; x_2=3 ).

Второй способ
Преобразуем уравнение к виду 2|x – 2| + |x + 3| = 8. Переведём эту аналитическую модель на геометрический язык: нам нужно найти на координатной прямой такие точки М(х), которые удовлетворяют условию ( 2rho(x; ;2)+ rho(x; ;-3) =8 ) или
MA + 2MB = 8
( здесь A = A(–3), B = B(2) ).

Решение уравнений с двумя модулями

Интересующая нас точка М не может находиться левее точки А, поскольку в этом случае 2MB > 10 и, следовательно, равенство MA + 2MB = 8 выполняться не может.
Рассмотрим случай, когда точка ( M_1(x) ) лежит между А и В. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(2 – х) = 8,
откуда находим: x = –1.
Рассмотрим случай, когда точка ( M_2(x) ) лежит правее точки B. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(х – 2) = 8,
откуда находим: х = 3.
Ответ: –1; 3.

Пусть теперь требуется решить неравенство ( |f(x)| |f(x)| ). Отсюда сразу следует, что ( g(x) > 0 ). Воспользуемся тем, что при ( g(x) > 0 ) неравенство ( |f(x)| 0, \ -g(x) 0 \ f(x) -g(x) endright. )

Третий способ.
Воспользуемся тем, что при ( g(x) > 0 ) обе части неравенства ( |f(x)| 0 \ (f(x))^2 0 \ x^2 — 3x + 2 -(2x — x^2) endright. )
Решая эту систему, получаем:
( left<begin x(x — 2) 0 \ (x^2 — 3x + 2)^2 0 endright. Rightarrow )
( left<begin 0 0 endright. Rightarrow )
( left<begin 0 05 endright. )
Из последней системы находим: ( 05 g(x) ). Освободиться от знака модуля можно тремя способами.

Первый способ
Если (f(x) geqslant 0), то ( |f(x)| = f(x) ) и заданное неравенство принимает вид ( f(x) > g(x) ).
Если (f(x) g(x) ).
Таким образом, задача сводится к решению совокупности двух систем неравенств:
( left<begin f(x) geqslant 0 \ f(x) > g(x) endright. ) ( left<begin f(x) g(x) endright. )

Второй способ.
Рассмотрим два случая: ( g(x) geqslant 0, ; g(x) g(x) ) выполняется для всех x из области определения выражения f(x).
Если ( g(x) geqslant 0 ), то воспользуемся тем, что согласно утверждению 3) в самом начале данной теории неравенство ( |f(x)| > g(x) ) равносильно совокупности неравенств ( f(x) g(x) ).
Таким образом, заданное неравенство сводится к совокупности трёх систем:
( left<begin g(x) g(x) endright. )

Третий способ.
Воспользуемся тем, что при ( g(x) geqslant 0 ) неравенство ( |f(x)| > g(x) ) равносильно неравенству ( (|f(x)|)^2 > (g(x))^2 ). Это позволит свести неравенство ( |f(x)| > g(x) ) к совокупности систем:
( left<begin g(x) (g(x))^2 endright. )

ПРИМЕР 5. Решить неравенство ( |x^2 — 3x + 2| geqslant 2x — x^2 )

Первый способ
Задача сводится к решению совокупности двух систем неравенств:
( left<begin x^2 — 3x + 2 geqslant 0 \ x^2 — 3x + 2 geqslant 2x — x^2 endright. ) ( left<begin x^2 — 3x + 2 0 ), то заданное неравенство равносильно совокупности двух неравенств:
( left[begin x^2 — 3x + 2 geqslant 2x — x^2 \ x^2 — 3x + 2 leqslant -(2x — x^2) endright. )
Таким образом, получаем совокупность неравенства и двух систем неравенств:
( 2x — x^2 leqslant 0; ) ( left<begin 2x — x^2 > 0 \ x^2 — 3x + 2 geqslant 2x — x^2; endright. ) ( left<begin 2x — x^2 > 0 \ x^2 — 3x + 2 leqslant -(2x — x^2) endright. )
Решив неравенство ( 2x — x^2 leqslant 0 ), получим: ( x leqslant 0,; x geqslant 2 )
Решив первую систему, получим: ( 0 0 ), то обе части заданного неравенства можно возвести в квадрат. Таким образом, получаем совокупность неравенства и системы неравенств:
( 2x — x^2 leqslant 0; ) ( left<begin 2x — x^2 > 0 \ (x^2 — 3x + 2)^2 geqslant (2x — x^2)^2 endright. )
Решив неравенство ( 2x — x^2 leqslant 0 ), получим: ( x leqslant 0,; x geqslant 2 )
Решая систему, получаем последовательно:
( left<begin x(x — 2)

📸 Видео

Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Уравнение с двумя модулями #3Скачать

Уравнение с двумя модулями #3

Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.Скачать

Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.

Неравенства с модулем | Математика | TutorOnlineСкачать

Неравенства с модулем | Математика | TutorOnline

УРАВНЕНИЯ С МОДУЛЕМ | метод интерваловСкачать

УРАВНЕНИЯ С МОДУЛЕМ | метод интервалов

Модуль в модуле в уравнении. Алгебра 7 класс.Скачать

Модуль в модуле в уравнении. Алгебра 7 класс.

Как решить уравнение с двумя модулямиСкачать

Как решить уравнение с двумя модулями

Уравнение с двумя модулями #2Скачать

Уравнение с двумя модулями #2

Решение уравнения с двумя модулямиСкачать

Решение уравнения с двумя модулями

Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать

Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравнении

Как решить уравнение с двумя модулями?Скачать

Как решить уравнение с двумя модулями?

Неравенство с двумя модулями. Задание 14 ЕГЭ по профильной математикеСкачать

Неравенство с двумя модулями. Задание 14 ЕГЭ по профильной математике

Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.Скачать

Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.
Поделиться или сохранить к себе: