О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Уравнение. 5 класс.Скачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Правила решения уравнений в 5 классе. Как запомнить и вывести их самому.Скачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Уравнения. 5 классСкачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Видео:Решение простых уравнений. Как решать уравнения в 5 классе, не зная правил. План решения уравнений.Скачать
О решении уравнений в 5–6-х классах
Разделы: Математика
Сухие строки уравнений —
В них сила разума влилась.
В них объяснение явлений,
Вещей разгаданная связь.
Л.М.Фридман
Уравнения в школьном курсе математики занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники. Обучение детей умению решать уравнения начинается уже в начальной школе. У учеников формируется понятие уравнения, как равенства с неизвестным числом, которое требуется найти. Используя правила нахождения неизвестных компонентов, дети учатся находить корни простейших уравнений. Свое дальнейшее развитие содержательно-методическая линия уравнений получает в 5-6 классах, причем на этом этапе уже есть возможность и необходимость показать детям прикладную ценность уравнений. Однако, по моему мнению, чрезмерное стремление некоторых педагогов к использованию уравнений для решения текстовых задач в 5 классе, является необоснованным и в некоторой степени вредным. Оно не способствует в полной мере развитию мыслительных навыков детей. В пятом классе со своими учениками я рассматриваю арифметические подходы к решению задач разных типов. Учебные пособия “Математика-5” , “Математика-6” И.И. Зубаревой, А.Г. Мордковича нацеливают педагога на постепенное введение буквенных выражений, уравнений. Учащиеся учатся использовать их для перевода предложений, сформулированных на русском языке, на математический язык. Дети осознанно подходят к составлению уравнения по условию задачи, постепенно овладевают умением выделять величины, устанавливать связи и зависимости между ними. Но для того, чтобы ребенок мог полноценно решить задачу с помощью уравнения, ему необходимо уметь решать уравнения. Обучению приемам решения уравнений уделяю достаточно много времени. В пятом классе закрепляю и довожу до автоматизма умение решать уравнения “по компонентам”, ввожу прием “форточка” для решения двухшаговых уравнений, этот же приемом использую для решения более сложных уравнений. Дети часто затрудняются при выборе действия для нахождения неизвестного компонента. Чтобы избежать ошибки, использую прием “маленький пример”, который позволяет ребенку на однозначных числах выяснить, как найти неизвестное число и по аналогии выполнить действие. Например, надо решить уравнение (123х+ 34):18 = — 45. ребенок будет действовать следующим образом:
маленький пример”: 6:2=3 6=3*2
Таким образом, оставляя одно действие, заключая все остальное в “форточку”, ребенок придет к простейшему уравнению. Прием “форточка” вызывает интерес детей, привлекает их внимание, надолго запоминается. Кроме того, его использую как пропедевтику способа замены переменных.
Уже в шестом классе начинаю вводить способ решения уравнений, сводящихся к линейным, основанный на переносе слагаемых. Дети умеют раскрывать скобки, приводить подобные. Но при этом обязательно показываю, что, например, уравнение
2х-34= -56 можно решить двумя способами: использовать “форточку” или перенести слагаемые. Это делаю для того, чтобы дети привыкали к поиску разных способов выполнения одной и той же задачи, выбору наиболее рационального. Такая система работы дает положительный результат: даже самые слабые дети успешно решают уравнения. Этот подход к обучению умению решать уравнения был мной апробирован в классе компенсирующего обучения.
Далее предлагаю проекты уроков в 6 классе, на котором ввожу способ решения уравнений с переносом слагаемых. На уроках используются презентации, выполненные в программе PowerPoint. Более эффективно использовать интерактивную доску.
Тема урока: Решение уравнений
Цели урока:Повторение способов решения простейших и двухшаговых уравнений.
Оборудование: интерактивная доска, сканер, учебник “Математика-6”, И.И. Зубарева, А.Г. Мордкович.
Этап урока | Цель этапа урока | Содержание | Методический комментарий |
1. Проверка домашней работы | Закрепление навыка самопроверки, умения находить свои и чужие ошибки, объяснять их причину; |
Актуализация знаний по теме урока.
2. Решите уравнение:
б) 36: (12+х) = -6.
Какие рассуждения вы проводили при решении первого уравнения из домашней работы? Второго уравнения?
1) Попробуйте провести аналогичные рассуждения для решения уравнения
Как надо изменить уравнение, чтобы можно было применить имеющиеся знания по решению уравнений?
3) При переезде через государственную границу человек меняет свой паспорт, а слагаемое меняет свой знак.
4) Ребята! Как бы вы поступили при решении уравнения
5) А такого уравнения
6) Хорошо, а теперь давайте попробуем составить алгоритм решения уравнений, похожих на уравнение 7(2+у)-3у=5у-6.
1) Учитель создает проблемную ситуацию.
Учащиеся делают вывод о том, что известные им приемы не работают.
2) Дети говорят о том, что было бы хорошо, если бы все переменные были в одной стороне уравнения.
3) Далее учитель показывает, как перенести слагаемые из одной части уравнения в другую.
4) Перенесли бы слагаемые 14 и 5у, затем привели подобные и нашли значение переменной.
5) Сначала бы раскрыли скобки, затем выполнили перенос слагаемых, приведение подобных и нашли значение переменной.
6) Формулируют последовательность действий и вклеивают в свои справочники алгоритм решения уравнения, в котором есть скобки и переменная может находиться в разных частях уравнения.
е)-3(5а-1)+4а = 2а+7(5-3а)
Самопроверка по образцу, который дает учитель.
Синим цветом выделены уравнения повышенной для этого урока сложности, их выполняют те ученики, которые быстрее других справляются с работой.
Как вы думаете, это всегда будет так?
Давайте наше предположение проверим.
Предлагаю в группах обсудить решение следующих уравнений:
1 группа – решите уравнение 3х-12=0;
2 группа – решите уравнение
3 группа – решите уравнение
Сколько корней получилось у ваших уравнений?
Вывод: Уравнение вида ax = b может иметь один корень, может не иметь корней, может иметь бесконечно много корней.
Учащиеся работают в группах.
Учитель оказывает помощь группам при необходимости.
Организует обсуждение полученных результатов, помогает сделать выводы.
Таблица с выводами (заранее распечатанная) вклеивается в справочник
Тема урока: Решение уравнений.
Цели урока:
- Закрепление навыка решения простейших и двухшаговых уравнений.
- Формирование умения решать уравнения, используя перенос слагаемых из одной части в другую.
- Развитие коммуникативных навыков учащихся.
- Первичный контроль знаний и умений учеников по данной теме.
Оборудование: интерактивная доска, компьютерный класс, учебник “Математика-6”, И.И. Зубарева, А.Г. Мордкович.
Этап урока | Цель этапа урока | Содержание | Методический комментарий |
1. Проверка домашней работы | Закрепление навыка самопроверки, умения находить свои и чужие ошибки, объяснять их причину; |
Актуализация знаний по теме урока.
в) 17+3(15-с)=(4-с)-2(с-5).
Учитель оказывает помощь слабоуспевающим ученикам.
2) Повторение алгоритма решения уравнений. Дети обсуждают в парах , а один ученик на компьютере в режиме “пауза” перетаскивает фигуры в нужном порядке.
3) Решение уравнений (проектор переводится в режим “пауза”), один ребенок работает на компьютере, а затем работа проверяется детьми.
9 человек проходят тестирование на компьютерах, остальные самостоятельно работают на местах.
Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
Приемы решения уравнений в 5-6 классах
статья по алгебре (5 класс) на тему
Уравнения — не только одна из самых распространенных, но и одна из самых проблемных математических задач. Рассмотрим некоторые приемы решения простейших уравнений на уроках в 5-6 классах, которые в дальнейшем используем при решении более сложных уравнений. К концу обучения в 6 классе формируем обобщенный метод решения уравнений.
Видео:Простые уравнения. Как решать простые уравнения?Скачать
Скачать:
Вложение | Размер |
---|---|
priemy_zachetnaya_statya.docx | 22.86 КБ |
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Предварительный просмотр:
Жарова Галия Шамратовна
Учитель математики МКОУ «Садовская СШ» Быковского района Волгоградской области тел. 8904-405-49-56
Приемы решения уравнений в 5-6 классах
Уравнение – самая простая и распространенная форма математической задачи. Решение уравнений — одна из проблем в математике. В 5-м классе изучение уравнений начинается с определения уравнения, его корней, что значит решить уравнение. Повторяются правила нахождения неизвестных компонентов сложения, вычитания. Решаются уравнения, которые содержат буквенные выражения только в одной части уравнения. Для их решения учащиеся должны выполнить последовательно несколько преобразований, каждое из которых освоено ими раньше: 395+х=864 или 59=81-k (№395 Математика 5 класс Н.Я. Виленкин и др.) Учащиеся 5 класса затрудняются решать уравнения такого типа, как (х + 121) — 38 =269. Алгоритм решения таких уравнений дан в №375 данного учебника.
Обычно такие уравнения решаются так:
чтобы найти уменьшаемое х +121,
надо к вычитаемому 38 прибавить разность 269:
х + 121 = 38 + 269;
Далее рассуждают так: чтобы найти неизвестное слагаемое Х, надо из суммы 307 вычесть известное слагаемое121:
Чаще всего ученики не видят в этом уравнении вычитаемого 38 и уменьшаемого (х+121). Если учащиеся имеют хорошие навыки решения простейших уравнений, можно решать подобные уравнения, приведя их к простейшим уравнениям. Рассмотрим этот прием на примерах решения уравнений из № 376 учебник Математика 5класс Н.Я.Виленкин и др.
Обозначим выражение, стоящее в скобках через a: х + 15 = а
Тогда получим такое уравнение:
Теперь возвращаемся к выражению, стоящему в скобках:
Подстановка 45-у = а;
Подстановка х+24= а;
Подстановка х – 15 = а;
Этот приём позволяет легко решать такие сложные уравнения.
Для тех учащихся, кто так и не усвоил правил нахождения неизвестных: слагаемого, вычитаемого, множителя и т.д., используется при решении простейших уравнений приём «по аналогии». Например, нужно решить уравнение: х – 284 = 127. В стороне от этого уравнения слабый ученик записывает простейший арифметический пример 7 — 3 = 4. Ученик смотрит, где в этом примере должен стоять х (на месте7). Как из этого простого примера найти 7? Надо к 3 прибавить 4. Значит, и в данном уравнении, чтобы найти х, надо 127 сложить с 284
Учащиеся 6-го класса осваивают новые методы решения уравнений. Вначале рассматривается возможность умножения или деления обеих частей на одно и то же отличное от нуля число. В обоих случаях делаются выводы о том, что при умножении (или делении) обеих частей уравнения на неравное нулю число получается новое уравнение с теми же корнями, что и заданное.
Далее осваивается способ переноса слагаемых из одной части уравнения в другую с переменой знака у слагаемого на противоположный. Так как обоснование этому способу также не дается (не изучались свойства равенства), то активно используется методические приемы с весами, с помощью которых учащиеся осознают смысл этого преобразования: все математические действия сопровождаются соответствующими действиями с весами. Покажем это на примере.
Решите уравнение х + 6 = 15
Вначале наполняем конкретным содержанием данную задачу: показываем картинку с весами или рассматриваем рисунок в учебнике. После выяснения соответствия картинки тексту задачи приступаем к решению уравнения.
Вынем из левой части уравнения число 6, это тоже самое, что снять с левой чаши весов гири в 5 кг и 1 кг. Чтобы равновесие не нарушилось, надо и с правой чаши весов снять гири массой в 6 кг, т.е. для сохранения равенства надо из правой части уравнения вычесть число 6.
После упрощения получаем
Просмотрев ход решения, можно сделать выводы: а) число 9 является корнем уравнения, б) при переносе членов из одной части уравнения в другую с переменой знаков получаем новое уравнение, но с тем же корнем.
После решения уравнения делаются выводы о возможности переноса членов, являющихся буквенными выражениями. Делается вывод, что любые слагаемые можно переносить из одной части уравнения в другую, изменяя при этом знаки.
В 6 классе учащиеся знакомятся с понятием модуля числа и учатся решать уравнения с модулем. Уравнения с модулем сводятся к простейшим уравнениям, в решении которых применяется определение модуля, учитывается, что под знаком модуля могут быть как положительные выражения, так и отрицательные, при этом модуль бывает только неотрицательным числом. Начнем с такого вида:
Решаем это уравнение как линейное: неизвестные — в одну сторону, известные — в другую, изменив при этом их знаки:
Теперь обе части уравнения делим на число, стоящее перед модулем икса:
📹 Видео
Уравнения со скобками - 5 класс (примеры)Скачать
МАТЕМАТИКА 5 класс: Уравнение | Короткий видеоурокСкачать
Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать
11. Уравнения (Виленкин, 5 класс)Скачать
Математика 5 класс. Уравнение. Корень уравненияСкачать
ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать
Решение сложных уравнений 4-5 класс.Скачать
Как научить ребёнка решать уравнения без ошибокСкачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Решение уравнений (относительно умножения и деления). 5 классСкачать
РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 классСкачать