Оксид хрома и серная кислота уравнение реакции

Хром. Химия хрома и его соединений

Положение в периодической системе химических элементов

Хром расположен в 6 группе (или в побочной подгруппе VI группы в короткопериодной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение атома хрома

Электронная конфигурация хрома в основном состоянии :

+24Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 1s Оксид хрома и серная кислота уравнение реакции 2sОксид хрома и серная кислота уравнение реакции 2pОксид хрома и серная кислота уравнение реакции

3s Оксид хрома и серная кислота уравнение реакции 3p Оксид хрома и серная кислота уравнение реакции 4s Оксид хрома и серная кислота уравнение реакции 3d Оксид хрома и серная кислота уравнение реакции

Примечательно, что у атома хрома уже в основном энергетическом состоянии происходит провал (проскок) электрона с 4s-подуровня на 3d-подуровень.

Физические свойства

Хром – твердый металл голубовато-белого цвета. Очень чистый хром поддается механической обработке. В природе встречается в чистом виде и широко применяется в различных отраслях науки, техники и производства. Чаще всего хром применяется, как компонент сплавов, которые используются при изготовлении медицинского или химического технологического оборудования и приборов.

Оксид хрома и серная кислота уравнение реакции

Изображение с портала top10a.ru

Температура плавления 1890 о С, температура кипения 2680 о С, плотность хрома 7,19 г/см 3 .

Нахождение в природе

Хром – довольно распространенный металл в земной коре (0,012 масс.%). Основной минерал, содержащий хром хромистый железняк FeO·Cr2O3 (или Fe(CrO2)2).

Способы получения

Хром получают из хромита железа. Для восстановления используют кокс:

Fe(CrO2)2 + 4C → Fe + 2Cr + 4CO

Еще один способ получения хрома: восстановление из оксида алюминием (алюмотермия):

Качественные реакции

Качественная реакция на ионы хрома +2 – взаимодействие избытка солей хрома (II) с щелочами . При этом образуется коричневый аморфный осадок гидроксида хрома (II).

Например , хлорид хрома (II) взаимодействует с гидроксидом натрия:

CrCl2 + 2NaOH → Cr(OH)2 + 2NaCl

Оксид хрома и серная кислота уравнение реакции

Качественная реакция на ионы хрома +3 – взаимодействие избытка солей хрома (III) с щелочами . При этом образуется серо-зеленый аморфный осадок гидроксида хрома (III).

Например , хлорид хрома (III) взаимодействует с гидроксидом калия:

CrCl3 + 3KOH → Cr(OH)3 + 3KCl

Оксид хрома и серная кислота уравнение реакции

При дальнейшем добавлении щелочи амфотерный гидроксид хрома (III) растворяется с образованием комплексной соли:

Обратите внимание , если мы поместим соль хрома (III) в избыток раствора щелочи, то осадок гидроксида хрома (III) не образуется, т.к. в избытке щелочи соединения хрома (III) сразу переходят в комплекс:

Соли хрома можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей хрома (II) с водным раствором аммиака также образуется коричневый осадок гидроксида хрома (II).

CrCl2 + 2NH3 + 2H2OCr(OH)2↓ + 2NH4Cl

Cr 2+ + 2NH3 + 2H2O → Cr(OH)2↓ + 2NH4 +

При взаимодействии растворимых солей хрома (III) с водным раствором аммиака также образуется серо-зеленый осадок гидроксида хрома (III).

CrCl3 + 3NH3 + 3H2O Cr(OH)3↓ + 3NH4Cl

Cr 3+ + 3NH3 + 3H2O → Cr(OH)3 ↓ + 3NH4 +

Химические свойства

В соединениях хром может проявлять степени окисления от +1 до +6. Наиболее характерными являются соединения хрома со степенями окисления +3 и +6. Менее устойчивы соединения хрома со степенью окисления +2. Хром образует комплексные соединения с координационным числом 6.

1. При комнатной температуре хром химически малоактивен из-за образования на его поверхности тонкой прочной оксидной пленки. При нагревании оксидная пленка хрома разрушается, и он реагирует практически со всеми неметаллами: кислородом, галогенами, серой, азотом, кремнием, углеродом, фосфором.

1.1. При взаимодействии хрома с галогенами образуются галогениды:

2Cr + 3Cl2 → 2CrCl3

1.2. Хром реагирует с серой с образованием сульфида хрома:

1.3. Хром взаимодействует с фосфором . При этом образуется бинарное соединение – фосфид хрома:

Cr + P → CrP

1.4. С азотом хром реагирует при нагревании до 1000 о С с образованием нитрида:

2Cr + N2 → 2CrN

1.5. Хром не взаимодействует с водородом.

1.6. Хром взаимодействует с кислородом с образованием оксида:

2. Хром взаимодействует и со сложными веществами:

2.1. Хром реагирует с парами воды в раскаленном состоянии:

2.2. В ряду напряжений хром находится левее водорода и поэтому в отсутствии воздуха может вытеснить водород из растворов минеральных кислот (соляной и разбавленной серной кислоты), образуя соли хрома (II).

Например , хром бурно реагирует с соляной кислотой :

Cr + 2HCl → CrCl2 + H2

В присутствии кислорода образуются соли хрома (III):

4Cr + 12HCl + 3O2 → 4CrCl3 + 6H2O

2.3. При обычных условиях хром не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат хрома (III) и вода:

2.4. Хром не реагирует при обычных условиях с концентрированной азотной кислотой также из-за пассивации.

Только при сильном нагревании концентрированная азотная кислота растворяет хром:

2.5. Растворы щелочей на хром практически не действуют.

2.6. Однако хром способен вытеснять многие металлы , например медь, олово, серебро и др. из растворов их солей.

Например , хром реагирует с хлоридом меди с образованием хлорида хрома (III) и меди:

2Cr + 3CuCl2 → 2CrCl3 + 3Cu

Восстановительные свойства хрома также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия, нитратами и нитритами, хлоратами в щелочной среде.

Например , при сплавлении хрома с хлоратом калия в щелочи хром окисляется до хромата калия:

Хлорат калия и нитрат калия также окисляют хром:

Оксид хрома (III)

Способы получения

Оксид хрома (III) можно получить различными методами :

1. Термическим разложением гидроксида хрома (III):

2. Разложением дихромата аммония:

3. Восстановлением дихромата калия углеродом (коксом) или серой:

Химические свойства

Оксид хрома (III) – типичный амфотерный оксид . При этом оксид химически довольно инертен. В высокодисперсном состоянии с трудом взаимодействует с кислотами и щелочами.

1. При сплавлении оксида хрома (III) с основными оксидами активных металлов образуются соли-хромиты.

Например , оксид хрома (III) взаимодействует с оксидом натрия:

2. Оксид хрома (III) взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солихромиты, а в растворе реакция практически не идет . При этом оксид хрома (III) проявляет кислотные свойства.

Например , оксид хрома (III) взаимодействует с гидроксидом натрия в расплаве с образованием хромита натрия и воды:

3. Оксид хрома (III) не взаимодействует с водой.

4. Оксид хрома (III) проявляет слабые восстановительные свойства . В щелочных расплавах окислителей окисляется до соединений хрома (VI).

Например , оксид хрома (III) взаимодействует с нитратом калия в щелочной среде:

Оксид хрома (III) окисляется бромом в присутствии гидроксида натрия:

Озоном или кислородом:

Нитраты и хлораты в расплаве щелочи также окисляют оксид хрома (III):

5. Оксид хрома (III) в высокодисперсном состоянии при сильном нагревании взаимодействует с сильными кислотами .

Например , оксид хрома (III) реагирует с серной кислотой:

6. Оксид хрома (III) проявляет слабые окислительные свойства при взаимодействии с более активными металлами.

Например , оксид хрома (III) реагирует с алюминием (термит):

Реакция очень экзотермическая, сопровождается выделением большого количества света:

Оксид хрома и серная кислота уравнение реакции Материал с сайта pikabu.ru

Если сжечь большой объем термита в тигле, то можно получить металлический хром:

Оксид хрома и серная кислота уравнение реакции Материал с сайта pikabu.ru

7. Оксид хрома (III) – твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например , из карбоната калия:

Оксид хрома (II)

Химические свойства

Оксид хрома (II) имеет основный характер, ему соответствует гидроксид хрома (II), обладающий основными свойствами.

1. При обычной температуре устойчив на воздухе, выше 100°С окисляется кислородом . Все соединения хрома (II) – сильные восстановители.

2. При высоких температурах оксид хрома (II) диспропорционирует :

3CrO → Cr + Cr2O3

3. Оксид хрома (II) не взаимодействует с водой.

4. Оксид хрома (II) проявляет основные свойства. Взаимодействует с сильными кислотами и кислотными оксидами .

Например , оксид хрома (II) взаимодействует с соляной кислотой:

CrO + 2HCl → CrCl2 + H2O

И с серной кислотой:

Оксид хрома (VI)

Оксид хрома (VI) CrO3 – темно-красное кристаллическое вещество. Гигроскопичен, расплывается на воздухе, малоустойчив, разлагается при нормальных условиях.

Способы получения

Оксид хром (VI) можно получить действием концентрированной серной кислоты на сухие хроматы или дихроматы:

Химические свойства

Оксид хрома (VI) – кислотный. Сильно ядовит. Оксиду хрома (VI) соответствуют хромовая (H2CrO4) и дихромовая (H2Cr2O7) кислоты.

Оксид хрома и серная кислота уравнение реакции Изображение с портала chemres.ru

1. При взаимодействии оксида хрома (VI) с водой образуется хромовые кислоты:

2. Оксид хрома (VI) проявляет кислотные свойства. Взаимодействует с основаниями и основными оксидами .

Например , оксид хрома (VI) взаимодействует с гидроксидом калия с образованием хромата калия:

Или с оксидом лития с образованием хромата лития:

3. Оксид хрома (VI) – очень сильный окислитель : окисляет углерод, серу, иод, фосфор, превращаясь при этом в оксид хрома (III).

Например , сера окисляется до оксида серы (IV):

Оксид хрома (VI) также окисляет сложные вещества, например , сульфиты:

И некоторые органические веществ, например , этанол:

Гидроксид хрома (III)

Гидроксид хрома (III) Cr(OH)3 – это твердое вещество серо-зеленого цвета.

Способы получения

1. Гидроксид хрома (III) можно получить действием раствора аммиака на соли хрома (III).

Например , хлорид хрома (III) реагирует с водным раствором аммиака с образованием гидроксида хрома (III) и хлорида аммония:

2. Пропусканием углекислого газа, сернистого газа или сероводорода через раствор гексагидроксохромата калия:

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить сложное вещество K3[Cr(OH)6] на составные части: KOH и Cr(OH)3. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Cr(OH)3 не реагирует с СО2, то мы записываем справа Cr(OH)3 без изменения. Гидроксид калия реагирует с избытком углекислого газа с образованием гидрокарбоната калия

3. Гидроксид хрома (III) можно получить действием недостатка щелочи на избыток соли хрома (III).

Например , хлорид хрома (III) реагирует с недостатком гидроксида калия с образованием гидроксида хрома (III) и хлорида калия:

4. Также гидроксид хрома (III) образуется при взаимодействии растворимых солей хрома (III) с растворимыми карбонатами, сульфитами и сульфидами . Сульфиды, карбонаты и сульфиты хрома (III) необратимо гидролизуются в водном растворе.

Например: бромид хрома (III) реагирует с карбонатом натрия. При этом выпадает осадок гидроксида хрома (III), выделяется углекислый газ и образуется бромид натрия:

Хлорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства

1. Гидроксид хрома (III) реагирует с растворимыми кислотами . При этом образуются средние соли.

Например , гидроксид хрома (III) взаимодействует с соляной кислотой с образованием хлорида хрома (III):

2. Гидроксид хрома (III) взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид хрома (III) взаимодействует с оксидом серы (VI) с образованием сульфата хрома (III):

3. Гидроксид хрома (III) взаимодействует с растворимыми основаниями (щелочами). При этом в растворе образуются комплексные соли . При этом гидроксид хрома (III) проявляет кислотные свойства.

Например , гидроксид хрома (III) взаимодействует с избытком гидроксидом натрия с образованием гексагидроксохромата:

4. Г идроксид хрома (III) разлагается при нагревании :

5. Под действием окислителей в щелочной среде переходит в хромат.

Например , при взаимодействии с бромом в щелочной среде гидроксид хрома (III) окисляется до хромата:

Гидроксид хрома (II)

Способы получения

1. Гидроксид хрома (II) можно получить действием раствора аммиака на соли хрома (II).

Например , хлорид хрома (II) реагирует с водным раствором аммиака с образованием гидроксида хрома (II) и хлорида аммония:

2. Гидроксид хрома (II) можно получить действием щелочи на соли хрома (II).

Например , хлорид хрома (II) реагирует с гидроксидом калия с образованием гидроксида хрома (II) и хлорида калия:

CrCl2 + 2KOH → Cr(OH)2↓ + 2KCl

Химические свойства

1. Гидроксид хрома (II) проявляет основные свойства . В частности, реагирует с растворимыми кислотами .

Например , гидроксид хрома (II) взаимодействует с соляной кислотой с образованием хлорида хрома (II). Соли хрома (II) окрашивают раствор в синий цвет.

2. Гидроксид хрома (II) взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид хрома (II) взаимодействует с оксидом серы (VI) с образованием сульфата хрома (II):

3. Гидроксид хрома (II) – сильный восстановитель.

Например , под действием кислорода воздуха гидроксид хрома (II) окисляется до гидроксида хрома (III):

Соли хрома

Соли хрома (II)

Все соли хрома (II) – сильные восстановители. В растворах окисляются даже кислородом воздуха.

Например , хлорид хрома (II) окисляется кислородом в растворе в присутствии щелочи до соединений хрома (III):

Концентрированные кислоты-окислители (азотная и серная) также окисляют соединения хрома (II):

Соли хрома (III)

Хром с валентностью III образует два типа солей:

  • Соли, в которых хром (III) является катионом. Например , хлорид хрома (III) CrCl3.
  • Соли, в которых хром (III) входит в состав кислотного остатка – хромиты и гидроксокомплексы хрома (III) . Например , хромит калия, KCrO2. или гексагидроксохромат (III) калия K3[Cr(OH)6].

1. Соли хрома (III) проявляют слабые восстановительные свойства . окисляются под действием сильных окислителей в щелочной среде.

Например , бром в присутствии гидроксида калия окисляет хлорид хрома (III):

2CrCl3 + 3Br2 + 16KOH → 2K2CrO4 + 6KBr + 6KCl + 8H2O

или сульфат хрома (III):

Пероксид водорода в присутствии щелочи также окисляет соли хрома (III):

Даже перманганат калия в щелочной среде окисляет соли хрома (III):

Комплексные соли хрома (III) также окисляются сильными окислителями в присутствии щелочей.

Например , гексагидроксохроматы окисляются бромом в щелочи:

Оксид свинца (IV) также окисляет хромиты:

2. Соли хрома (III) в щелочной среде образуют гидроксид хрома (III), который сразу растворяется, образуя гидроксокомплекс.

2CrCl3 + 6KOH → 2Cr(OH)3 + 6KCl

3. Более активные металлы вытесняют хром (III) из солей.

Например , цинк реагирует с хлоридом хрома (III):

Гидролиз солей хрома (III)

Растворимые соли хрома (III) и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

I ступень: Cr 3+ + H2O = CrOH 2+ + H +

II ступень: CrOH 2+ + H2O = Cr(OH )2 + + H +

Однако сульфиды, сульфиты, карбонаты хрома (III) и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой в момент образования.

Например , при сливании растворов солей хрома (III) и сульфита, гидросульфита, карбоната или сульфида натрия протекает взаимный гидролиз:

Более подробно про гидролиз можно прочитать в соответствующей статье.

Хромиты

Соли, в которых хром (III) входит в состав кислотного остатка (хромиты) — образуются из оксида хрома (III) при сплавлении с щелочами и основными оксидами:

Для понимания свойств хромитов их удобно мысленно разделить на два отдельных вещества.

Например , хромит натрия мы поделим мысленно на два вещества: оксид хрома (III) и оксид натрия.

NaСrO2 разделяем на Na2O и Cr2O3

При этом очевидно, что хромиты реагируют с кислотами. При недостатке кислоты образуется гидроксид хрома (III):

NaCrO2 + HCl (недостаток) + H2O → Cr(OH)3 + NaCl

В избытке кислоты гидроксид хрома (III) не образуется:

NaCrO2 + 4HCl (избыток) → CrCl3 + NaCl + 2H2O

NaCrO2 + 4HCl → CrCl3 + NaCl + 2H2O

Под действием избытка воды хромиты гидролизуются:

Соли хрома (VI)

Оксиду хрома ( VI ) соответствуют две кислоты – хромовая Н2 CrO 4 и дихромовая Н2 Cr 2 O 7. Поэтому хром в степени окисления +6 образует два типа солей: хроматы и дихроматы.

Например , хромат калия K2CrO4 и дихромат калия K2Cr2O7.

1. Различить эти соли довольно легко: хроматы желтые, а дихроматы оранжевые. Хроматы устойчивы в щелочной среде, а дихроматы устойчивы в кислой среде.

При добавлении к хроматам кислот они переходят в дихроматы.

Например , хромат калия взаимодействует с серной кислотой и разбавленной соляной кислотой с образованием дихромата калия:

И наоборот: дихроматы реагируют с щелочами с образованием хроматов.

Например , дихромат калия взаимодействует с гидроксидом калия с образованием хромата калия:

Видеоопыт взаимных переходов хроматов и дихроматов при добавлении кислоты или щелочи можно посмотреть здесь.

2. Хроматы и дихроматы проявляют сильные окислительные свойства. При взаимодействии с восстановителями они восстанавливаются до соединений хрома (III).

В нейтральной среде хроматы и дихроматы восстанавливаются до гидроксида хрома (III).

Например , дихромат калия реагирует с сульфитом натрия в нейтральной среде:

Хромат калия окисляет сульфид аммония:

При взаимодействии с восстановителями в щелочной среде хроматы и дихроматы образуют комплексные соли.

Например , хромат калия окисляет гидросульфид аммония в щелочной среде:

Хромат натрия окисляет сернистый газ:

Хромат натрия окисляет сульфид натрия:

При взаимодействии с восстановителями в кислой среде хроматы и дихроматы образуют соли хрома (III).

Например , дихромат калия окисляет сероводород в присутствии серной кислоты:

Дихромат калия окисляет йодид калия, фосфид кальция, соединения железа (II), сернистый газ, концентрированную соляную кислоту:

Видео:Оксид Хрома(6) - CrO3. Реакция Дихромата Калия и Серной Кислоты. Реакция K2Cr2O7 и H2SO4.Скачать

Оксид Хрома(6) - CrO3. Реакция Дихромата Калия и Серной Кислоты. Реакция K2Cr2O7 и H2SO4.

Хром, железо и медь

Твердый металл голубовато-белого цвета. Этимология слова «хром» берет начало от греч. χρῶμα — цвет, что связано с большим разнообразием цветов соединений хрома. Массовая доля этого элемента в земной коре составляет 0.02% по массе.

Оксид хрома и серная кислота уравнение реакции

Для хрома характерны степени окисления +2, +3 и +6. У соединений, где хром принимает степень окисления +2, свойства основные, +3 — амфотерные, +6 — кислотные.

Оксид хрома и серная кислота уравнение реакции

В природе хром встречается в виде следующих соединений.

  • Fe(CrO2)2 — хромистый железняк, хромит
  • (Mg, Fe)Cr2O4 — магнохромит
  • (Fe, Mg)(Cr, Al)2O4 — алюмохромит

Оксид хрома и серная кислота уравнение реакции

В промышленности хром получают прокаливанием хромистого железняка с углеродом. Также применяют алюминотермию для вытеснения хрома из его оксида.

    Реакции с неметаллами

Уже на воздухе вступает в реакцию с кислородом: на поверхности металла образуется пленка из оксида хрома (III) — Cr2O3 — происходит пассивирование. Реагирует с неметаллами при нагревании.

Оксид хрома и серная кислота уравнение реакции

Протекает в раскаленном состоянии.

Реакции с кислотами

Оксид хрома и серная кислота уравнение реакции

С холодными концентрированными серной и азотной кислотой реакция не идет. Она начинается только при нагревании.

Реакции с солями менее активных металлов

Хром способен вытеснить из солей металлы, стоящие в ряду напряжений правее него.

Соединения хрома (II)

Соединение хрома (II) носят основный характер. Оксид хрома (II) окисляется кислородом воздуха до более устойчивой формы — оксида хрома (III), реагирует с кислотами, кислотными оксидами.

Оксид хрома и серная кислота уравнение реакции

Гидроксид хрома (II), как нерастворимый гидроксид, легко разлагается при нагревании на соответствующий оксид и воду, реагирует с кислотами, кислотными оксидами.

Оксид хрома и серная кислота уравнение реакции

Соединения хрома (III)

Это наиболее устойчивые соединения, которые носят амфотерный характер. К ним относятся оксид хрома (III) гидроксид хрома (III).

Оксид хрома и серная кислота уравнение реакции

Оксид хрома (III) реагирует как с щелочами, так и с кислотами. В реакциях с щелочами при нормальной температуре (в растворе) образуются комплексные соли, при прокаливании — смешанные оксиды. С кислотами оксид хрома (III) образует различные соли.

H2O + NaOH + Cr2O3 → Na3[Cr(OH)6] (в растворе, гексагидроксохромат натрия)

Cr2O3 + 2NaOH → (t°) 2NaCrO2 + H2O (прокаливание, хромит натрия)

Cr2O3 + HCl = CrCl3 + H2O (сохраняем степень окисления Cr +3 )

Оксид хрома и серная кислота уравнение реакции

Оксид хрома (III) реагирует с более активными металлами (например, при алюминотермии).

При окислении соединение хрома (III) получают соединения хрома (VI) (в щелочной среде).

Соединения хрома (VI)

В этой степени окисления хром проявляет кислотные свойства. К ним относится оксид хрома (VI) — CrO3, и две кислоты, находящиеся в растворе в состоянии равновесия: хромовая — H2CrO4 и дихромовая кислоты — H2Cr2O7.

Принципиально важно помнить окраску хроматов и дихроматов (часто она бывает дана в заданиях в качестве подсказки). Хроматы окрашивают раствор в желтый цвет, а дихроматы — в оранжевый цвет.

Оксид хрома и серная кислота уравнение реакции

Хроматы переходят в дихроматы с увеличением кислотности среды (часто в реакциях с кислотами). Цвет раствора меняется с желтого на оранжевый.

Если же оранжевому раствору дихромата прилить щелочь, то он сменит свой цвет на желтый — образуется хромат.

Разложение дихромата аммония выглядит очень эффектно и носит название «вулканчик» 🙂

Оксид хрома и серная кислота уравнение реакции

В степени окисления +6 соединения хрома проявляют выраженные окислительные свойства.

Железо

Является одним из самых распространенных элементов в земной коре (после алюминия), составляет 4,65% ее массы.

Оксид хрома и серная кислота уравнение реакции

Для железа характерны две основные степени окисления +2, +3, +6.

Оксид хрома и серная кислота уравнение реакции

В природе железо встречается в виде следующих соединений:

  • Fe2O3 — красный железняк, гематит
  • Fe3O4 — магнитный железняк, магнетит
  • Fe2O3*H2O — бурый железняк, лимонит
  • FeS2 — пирит, серый или железный колчедан
  • FeCO3 — сидерит

Оксид хрома и серная кислота уравнение реакции

Получают железо восстановлением из его оксида — руды. Восстанавливают с помощью угарного газа, водорода.

Основными сплавами железа являются чугун и сталь. В стали содержание углерода менее 2%, меньше содержится P, Mn, Si, S. Чугун отличается бо́льшим содержанием углерода (2-6%), содержит больше P, Mn, Si, S.

Оксид хрома и серная кислота уравнение реакции

    Реакции с неметаллами

Fe + S = FeS (t > 700°C)

Fe + S = FeS2 (t 2+ в растворе является реакция с красной кровяной солью — K3[Fe(CN)6] — гексацианоферратом (III) калия. В результате реакции образуется берлинская лазурь (прусский синий).

Качественной реакцией на ионы Fe 2+ также является взаимодействие с щелочью (гидроксидом натрия). В результате выпадает осадок зеленого цвета.

Соединения железа (III) проявляют амфотерные свойства. Оксид и гидроксид железа (III) реагирует и с кислотами, и с щелочами.

Fe(OH)3 + KOH = K3[Fe(OH)6] (гексагидроксоферрат калия)

При сплавлении комплексные соли не образуются из-за испарения воды.

Гидроксид железа (III) — ржавчина, образуется на воздухе в результате взаимодействия железа с водой в присутствии кислорода. При нагревании легко распадается на воду и соответствующий оксид.

Оксид хрома и серная кислота уравнение реакции

Качественной реакцией на ионы Fe 3+ является взаимодействие с желтой кровяной солью K4[Fe(CN)6]. В результате реакции образуется берлинская лазурь (прусский синий).

Реакция хлорида железа (III) с роданидом калия также является качественной, в результате нее образуется характерный раствор ярко красного цвета.

Оксид хрома и серная кислота уравнение реакции

И еще одна качественная реакция на ионы Fe 3+ — взаимодействие с щелочью (гидроксидом натрия). В результате выпадает осадок бурого цвета.

Соединения железа (VI) — ферраты — соли несуществующей в свободном виде железной кислоты. Обладают выраженными окислительными свойствами.

Ферраты можно получить в ходе электролизом щелочи на железном аноде, а также действием хлора на взвесь Fe(OH)3 в щелочи.

Оксид хрома и серная кислота уравнение реакции

Один из первых металлов, освоенных человеком вследствие низкой температуры плавления и доступности получения руды.

Оксид хрома и серная кислота уравнение реакции

Основные степени окисления меди +1, +2.

Оксид хрома и серная кислота уравнение реакции

Медь встречается в самородном виде и в виде соединений, наиболее известные из которых:

  • CuFeS2 — медный колчедан, халькопирит
  • Cu2S — халькозин
  • Cu2CO3(OH)2 — малахит

Оксид хрома и серная кислота уравнение реакции

Пирометаллургический метод получения основан на получении меди путем обжига халькопирита, который идет в несколько этапов.

Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте и дальнейшем вытеснении меди более активными металлами, например — железом.

Оксид хрома и серная кислота уравнение реакции

Медь, как малоактивный металл, выделяется при электролизе солей в водном растворе на катоде.

CuSO4 + H2O = Cu + O2 + H2SO4 (медь — на катоде, кислород — на аноде)

    Реакции с неметаллами

Во влажном воздухе окисляется с образованием основного карбоната меди.

При нагревании реагирует с кислородом, селеном, серой, при комнатной температуре с: хлором, бромом и йодом.

4Cu + O2 = (t) 2Cu2O (при недостатке кислорода)

2Cu + O2 = (t) 2CuO (в избытке кислорода)

Оксид хрома и серная кислота уравнение реакции

Реакции с кислотами

Медь способна реагировать с концентрированными серной и азотной кислотами. С разбавленной серной не реагирует, с разбавленной азотной — реакция идет.

Оксид хрома и серная кислота уравнение реакции

Реагирует с царской водкой — смесью соляной и азотной кислот в соотношении 1 объем HNO3 к 3 объемам HCl.

С оксидами неметаллов

Медь способна восстанавливать неметаллы из их оксидов.

Cu + SO2 = (t) CuO + S

Cu + NO = (t) CuO + N2

Соединения меди I

В степени окисления +1 медь проявляет основные свойства. Соединения меди (I) можно получить путем восстановления соединений меди (II).

Оксид меди (I) можно восстановить до меди различными восстановителями: угарным газом, алюминием (алюминотермией), водородом.

Оксид меди (I) окисляется кислородом до оксида меди (II).

Оксид меди (I) вступает в реакции с кислотами.

Гидроксид меди CuOH неустойчив и быстро разлагается на соответствующий оксид и воду.

Соединения меди (II)

Степень окисления +2 является наиболее стабильной для меди. В этой степени окисления у меди есть оксид CuO и гидроксид Cu(OH)2. Данные соединения проявляют преимущественно основные свойства.

Оксид меди (II) получают в реакциях термического разложения гидроксида меди (II), реакцией избытка кислорода с медью при нагревании.

    Реакции с кислотами

CuO + CO = Cu + CO2

Гидроксид меди (II) — Cu(OH)2 — получают в реакциях обмена между растворимыми солями меди и щелочью.

Оксид хрома и серная кислота уравнение реакции

При нагревании гидроксид меди (II), как нерастворимое основание, легко разлагается на соответствующий оксид и воду.

Реакции с кислотами

Реакции с щелочами

Как сказано выше, гидроксид меди (II) носит преимущественно основный характер, однако способен проявлять и амфотерные свойства. В растворе концентрированной щелочи он растворяется, образуя гидроксокомлпекс.

Реакции с кислотными оксидами

Обратите особое внимание на реакцию взаимодействия соли меди (II) — сульфата меди (II), карбоната натрия и воды.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Видео:Химический вулкан и огненная метель с оксидом хрома!Скачать

Химический вулкан и огненная метель с оксидом хрома!

Занятие элективного курса «Хром и его соединения»

Разделы: Химия

Цель: углубить знания учащихся по теме занятия.

  • дать характеристику хрома как простого вещества;
  • познакомить учащихся с соединениями хрома разной степени окисления;
  • показать зависимость свойств соединений от степени окисления;
  • показать окислительно – восстановительные свойства соединений хрома;
  • продолжить формирование умений учащихся записывать уравнения химических реакций в молекулярном и ионном виде, составлять электронный баланс;
  • продолжить формирование умений наблюдать химический эксперимент.

Форма занятия: лекция с элементами самостоятельной работы учащихся и наблюдением за химическим экспериментом.

I. Повторение материала предыдущего занятия.

1. Ответить на вопросы и выполнить задания:

— Какие элементы относятся к подгруппе хрома?

— Написать электронные формулы атомов

— К какому типу элементов относятся?

— Какие степени окисления проявляют в соединениях?

— Как изменяется радиус атомов и энергия ионизации от хрома к вольфраму?

Можно предложить заполнить учащимся заполнить таблицу, используя табличные величины радиусов атомов, энергии ионизации и сделать выводы.

ЭлементЭлектронные формулыРадиус атома нмЭнергия ионизации эВСтепень окисления
хром…3s 2 3p 6 3d 5 4s 10,1256,76+2,+3,+6
молибден…4s 2 4p 6 4d 5 5s 10,1367,10+3,+4,+5,+6
вольфрам…5s 2 5p 6 5d 4 6s 20,1407,98+3,+4,+5,+6

2. Заслушать сообщение учащегося по теме «Элементы подгруппы хрома в природе, получение и применение».

  1. Хром.
  2. Соединения хрома. (2)
  • Оксид хрома; (2)
  • Гидроксид хрома. (2)
  1. Соединения хрома. (3)
  • Оксид хрома; (3)
  • Гидроксид хрома. (3)
  1. Соединения хрома (6)
  • Оксид хрома; (6)
  • Хромовая и дихромовая кислоты.
  1. Зависимость свойств соединений хрома от степени окисления.
  2. Окислительно – восстановительные свойства соединений хрома.

Хром – это белый с голубоватым отливом блестящий металл, очень твердый (плотность 7, 2 г/см 3 ), температура плавления 1890˚С.

Химические свойства: хром при обычных условиях неактивный металл. Это объясняется тем, что его поверхность покрыта оксидной пленкой (Сr2О3). При нагревании оксидная пленка разрушается, и хром реагирует с простыми веществами при высокой температуре:

Задание: составить уравнения реакций хрома с азотом, фосфором, углеродом и кремнием; к одному из уравнений составить электронный баланс, указать окислитель и восстановитель.

Взаимодействие хрома со сложными веществами:

При очень высокой температуре хром реагирует с водой:

Задание: составить электронный баланс, указать окислитель и восстановитель.

Хром реагирует с разбавленной серной и соляной кислотами:

Задание: составить электронный баланс, указать окислитель и восстановитель.

Концентрированные серная соляная и азотная кислоты пассивируют хром.

2. Соединения хрома. (2)

1. Оксид хрома (2) — СrО – твердое ярко – красное вещество, типичный основной оксид (ему соответствует гидроксид хрома (2) — Сr(ОН)2), не растворяется в воде, но растворяется в кислотах:

Задание: составить уравнение реакции в молекулярном и ионном виде взаимодействия оксида хрома (2) с серной кислотой.

Оксид хрома (2) легко окисляется на воздухе:

Задание: составить электронный баланс, указать окислитель и восстановитель.

Оксид хрома (2) образуется при окислении амальгамы хрома кислородом воздуха:

2Сr (амальгама) + О2 = 2СrО

2. Гидроксид хрома (2) — Сr(ОН)2 – вещество желтого цвета, плохо растворимо в воде, с ярко выраженным основным характером, поэтому взаимодействует с кислотами:

Задание: составить уравнения реакций в молекулярном и ионном виде взаимодействия оксида хрома (2) с соляной кислотой.

Как и оксид хрома (2), гидроксид хрома (2) окисляется:

Задание: составить электронный баланс, указать окислитель и восстановитель.

Получить гидроксид хрома (2) можно при действии щелочей на соли хрома (2):

Задание: составить ионные уравнения.

3. Соединения хрома. (3)

1. Оксид хрома (3) — Сr2О3 – порошок темно – зеленого цвета, нерастворим в воде, тугоплавкий, по твёрдости близок к корунду (ему соответствует гидроксид хрома (3) – Сr(ОН)3). Оксид хрома (3) имеет амфотерный характер, однако в кислотах и щелочах растворяется плохо. Реакции со щелочами идут при сплавлении:

Задание: составить уравнение реакции в молекулярном и ионном виде взаимодействия оксида хрома (3) с гидроксидом лития.

С концентрированными растворами кислот и щелочей взаимодействует с трудом:

Задание: составить уравнения реакций в молекулярном и ионном виде взаимодействия оксида хрома (3) с конценрированной серной кислотой и концентрированным раствором гидроксида натрия.

Оксид хрома (3) может быть получен при разложении дихромата аммония:

2. Гидроксид хрома (3) Сr(ОН)3 получают при действии щелочей на на растворы солей хрома (3):

Задание: составить ионные уравнения

Гидроксид хрома (3) представляет собой осадок серо – зеленого цвета, при получении которого, щелочь надо брать в недостатке. Полученный таким образом гидроксид хрома (3), в отличие от соответствующего оксида легко взаимодействует с кислотами и щелочами, т.е. проявляет амфотерные свойства:

Задание: составить уравнения реакций в молекулярном и ионном виде взаимодействия гидроксида хрома (3) с соляной кислотой и гидроксидом натрия.

При сплавлении Сr(ОН)3 со щелочами получаются метахромиты и ортохромиты:

4. Соединения хрома. (6)

1. Оксид хрома (6) — СrО3 – темно – красное кристаллическое вещество, хорошо растворимо в воде – типичный кислотный оксид. Этому оксиду соответствует две кислоты:

  • СrО3 + Н2О = Н2СrО4(хромовая кислота – образуется при избытке воды)
  • СrО3 + Н2О =Н2Сr2О7(дихромовая кислота – образуется при большой концентрации оксида хрома (3)).

Оксид хрома (6) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

Окисляет также иод, серу, фосфор, уголь:

Задание: составить уравнения химических реакций оксида хрома (6) с йодом, фосфором, углем; к одному из уравнений составить электронный баланс, указать окислитель и восстановитель

При нагревании до 250 0 С оксид хрома (6) разлагается:

Оксид хрома (6) можно получить при действии концентрированной серной кислоты на твердые хроматы и дихроматы:

2. Хромовая и дихромовая кислоты.

Хромовая и дихромовая кислоты существуют только в водных растворах, образуют устойчивые соли, соответственно хроматы и дихроматы. Хроматы и их растворы имеют желтую окраску, дихроматы – оранжевую.

Хромат — ионы СrО4 2- и дихромат – ионы Сr 2О7 2- легко переходят друг в друга при изменении среды растворов

В кислой среде раствора хроматы переходят в дихроматы:

В щелочной среде дихроматы переходят в хроматы:

При разбавлении дихромовая кислота переходит в хромовую кислоту:

5. Зависимость свойств соединений хрома от степени окисления.

Степень окисления+2+3+6
ОксидСrОСr2О3СrО3
Характер оксидаосновнойамфотерныйкислотный
ГидроксидСr(ОН)2Сr(ОН)3 – Н3СrО3Н2СrО4

Н2Сr2О7Характер гидроксидаосновнойамфотерныйкислотный

→ ослабление основных свойств и усиление кислотных→

6. Окислительно – восстановительные свойства соединений хрома.

Реакции в кислотной среде.

В кислотной среде соединения Сr +6 переходят в соединения Сr +3 под действием восстановителей: H2S, SO2, FeSO4

1. Уравнять уравнение реакции методом электронного баланса, указать окислитель и восстановитель:

2. Дописать продукты реакции, уравнять уравнение методом электронного баланса, указать окислитель и восстановитель:

Реакции в щелочной среде.

В щелочной среде соединения хрома Сr +3 переходят в соединения Сr +6 под действием окислителей: J2, Br2, Cl2, Ag2O, KClO3, H2O2, KMnO4:

  • 2KCrO2 +3 Br 2 +8NaOH =2Na2CrO4 + 2KBr +4NaBr + 4H2O
  • Cr +3 — 3e → Cr +6
  • Br2 0 +2e → 2Br —

Уравнять уравнение реакции методом электронного баланса, указать окислитель и восстановитель:

Дописать продукты реакции, уравнять уравнение методом электронного баланса, указать окислитель и восстановитель:

Таким образом, окислительные свойства последовательно усиливаются с изменением степеней окисления в ряду: Cr +2 → Сr +3 → Сr +6 . Соединения хрома (2) — сильные восстановители, легко окисляются, превращаясь в соединения хрома (3). Соединения хрома (6) – сильные окислители, легко восстанавливаются в соединения хрома (3). Соединения хрома (3) при взаимодействии с сильными восстановителями проявляют окислительные свойства, переходя в соединения хрома (2), а при взаимодействии с сильными окислителями проявляют восстановительные свойства, превращаясь в соединеня хрома (6)

К методике проведения лекции:

  1. Для активизации познавательной деятельности учащихся и поддержания интереса, целесообразно в ходе лекции проводить демонстрационный эксперимент. В зависимости от возможностей учебной лаборатории можно демонстрировать учащимся следующие опыты:
  • получении оксида хрома (2) и гидроксида хрома (2), доказательство их основных свойств;
  • получение оксида хрома (3) и гидроксида хрома (3), доказательство их амфотерных свойств;
  • получение оксида хрома (6) и растворение его в воде (получение хромовой и дихромовой кислот);
  • переход хроматов в дихроматы, дихроматов в хроматы.
  1. Задания самостоятельной работы можно дифференцировать с учетом реальных учебных возможностей учащихся.
  2. Завершить лекцию можно выполнением следующих заданий: напишите уравнения химических реакций с помощью которых можно осуществить следующие превращения:
  • Cr→ CrCl2→ Cr(OH)2→ Cr(OH)3→ Cr(NO3)3→ Cr2O3→ Cr
  • Cr →Cr(NO3)3→ Cr(OH)3→ K3[Cr(OH)6]→ Cr(OH)3→ CrCl3
  • Cr2(SO4)3→ Cr(OH)3→ CrCl3
  • Оксид хрома и серная кислота уравнение реакции

.III. Домашнее задание: доработать лекцию (дописать уравнения химических реакций)

Перечень рекомендуемой литературы:

  1. Васильева З.Г. Лабораторные работы по общей и неорганической химии. -М.: «Химия», 1979 – 450 с.
  2. Егоров А.С. Репетитор по химии. – Ростов-на-Дону: «Феникс», 2006.-765 с.
  3. Кудрявцев А.А. Составление химических уравнений. — М., «Высшая школа», 1979. — 295 с.
  4. Петров М.М. Неорганическая химия. – Ленинград: «Химия», 1989. – 543 с.
  5. Ушкалова В.Н. Химия: конкурсные задания и ответы. — М.: «Просвещение», 2000. – 223 с.

🎦 Видео

Получение ОКСИДА ХРОМА (VI) CrO3. Реакция ДИХРОМАТА КАЛИЯ и КОНЦЕНТРИРОВАННОЙ СЕРНОЙ КИСЛОТЫ. ОпытыСкачать

Получение ОКСИДА ХРОМА (VI) CrO3. Реакция ДИХРОМАТА КАЛИЯ и КОНЦЕНТРИРОВАННОЙ СЕРНОЙ КИСЛОТЫ. Опыты

ОКСИДЫ ХИМИЯ — Что такое Оксиды? Химические свойства Оксидов | Реакция ОксидовСкачать

ОКСИДЫ ХИМИЯ — Что такое Оксиды? Химические свойства Оксидов | Реакция Оксидов

Реакция ОКСИДА ВАНАДИЯ, СЕРЫ и СЕРНОЙ КИСЛОТЫ. Получение СУЛЬФАТА ВАНАДИЯ. Опыты по химии дома.Скачать

Реакция ОКСИДА ВАНАДИЯ, СЕРЫ и СЕРНОЙ КИСЛОТЫ. Получение СУЛЬФАТА ВАНАДИЯ. Опыты по химии дома.

СЕРНАЯ КИСЛОТА разбавленная и концентрированная - в чем отличия? | Химия ОГЭСкачать

СЕРНАЯ КИСЛОТА разбавленная и концентрированная - в чем отличия? | Химия ОГЭ

Серная кислота и ее соли. 9 класс.Скачать

Серная кислота и ее соли. 9 класс.

Очень агрессивный реактив - ТРИОКСИД ХРОМА!Скачать

Очень агрессивный реактив - ТРИОКСИД ХРОМА!

Все реакции по теме «Хром» для ЕГЭ по химии | Екатерина СтрогановаСкачать

Все реакции по теме «Хром» для ЕГЭ по химии | Екатерина Строганова

КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и МеталламиСкачать

КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и Металлами

Взаимодействие оксида меди с серной кислотойСкачать

Взаимодействие оксида меди с серной кислотой

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Концентрированная серная кислота. Получаем. Измеряем. Храним.Скачать

Концентрированная серная кислота. Получаем. Измеряем. Храним.

Реакция Оксида Кальция и Серной Кислоты. Реакция CaO и H2SO4.Скачать

Реакция Оксида Кальция и Серной Кислоты. Реакция CaO и H2SO4.

Реакция на оксид хрома шестивалентный. Как определяют концентрацию хрома в сварочном аэрозолеСкачать

Реакция на оксид хрома шестивалентный. Как определяют концентрацию хрома в сварочном аэрозоле

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Качественная реакция ионов хрома(III) со щелочью. Получение и свойства гидроксида хромаСкачать

Качественная реакция ионов хрома(III) со щелочью. Получение и свойства гидроксида хрома

Триоксид Серы(6). Разложение Сульфаминовой кислоты. Ангидрид Серной кислоты.Скачать

Триоксид Серы(6). Разложение Сульфаминовой кислоты. Ангидрид Серной кислоты.

Серная кислота. Химические свойства. Реакции с металлами.Скачать

Серная кислота. Химические свойства. Реакции с металлами.

Получение угольной пены - Реакция сахара и серной кислоты!Скачать

Получение угольной пены - Реакция сахара и серной кислоты!
Поделиться или сохранить к себе: