Методы решения трансцендентных уравнений python

Библиотека Sympy: символьные вычисления в Python

Что такое SymPy ? Это библиотека символьной математики языка Python. Она является реальной альтернативой таким математическим пакетам как Mathematica или Maple и обладает очень простым и легко расширяемым кодом. SymPy написана исключительно на языке Python и не требует никаких сторонних библиотек.

Документацию и исходный код этой библиотеки можно найти на ее официальной странице.

Видео:Решение 1 го нелинейного алгебраического уравнения в PythonСкачать

Решение 1 го нелинейного алгебраического уравнения в Python

Первые шаги с SymPy

Используем SymPy как обычный калькулятор

В библиотеке SymPy есть три встроенных численных типа данных: Real , Rational и Integer . С Real и Integer все понятно, а класс Rational представляет рациональное число как пару чисел: числитель и знаменатель рациональной дроби. Таким образом, Rational(1, 2) представляет собой 1/2 , а, например, Rational(5, 2) — соответственно 5/2 .

Библиотека SymPy использует библиотеку mpmath , что позволяет производить вычисления с произвольной точностью. Таким образом, ряд констант (например, пи, e), которые в данной библиотеке рассматриваются как символы, могут быть вычислены с любой точностью.

Как можно заметить, функция evalf() дает на выходе число с плавающей точкой.

В SymPy есть также класс, представляющий такое понятие в математике, как бесконечность. Он обозначается следующим образом: oo .

Символы

В отличие от ряда других систем компьютерной алгебры, в SymPy можно в явном виде задавать символьные переменные. Это происходит следующим образом:

После их задания, с ними можно производить различные манипуляции.

С символами можно производить преобразования с использованием некоторых операторов языка Python. А именно, арифметических ( + , -` , «* , ** ) и логических ( & , | ,

Библиотека SymPy позволяет задавать форму вывода результатов на экран. Обычно мы используем формат такого вида:

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Алгебраические преобразования

SymPy способна на сложные алгебраические преобразования. Здесь мы рассмотрим наиболее востребованные из них, а именно раскрытие скобок и упрощение выражений.

Раскрытие скобок

Чтобы раскрыть скобки в алгебраических выражениях, используйте следующий синтаксис:

При помощи ключевого слова можно добавить поддержку работы с комплексными переменными, а также раскрытие скобок в тригонометрических функциях.

Упрощение выражений

Если вы хотите привести выражение к более простому виду (возможно, сократить какие-то члены), то используйте функцию simplify .

Также надо сказать, что для определенных видов математических функций существуют альтернативные, более конкретные функции для упрощения выражений. Так, для упрощения степенных функций есть функция powsimp , для тригонометрических — trigsimp , а для логарифмических — logcombine , radsimp .

Видео:Численные методы (1 урок)(Решение нелинейных уравнений. Метод дихотомии. Python)Скачать

Численные методы (1 урок)(Решение нелинейных уравнений. Метод дихотомии. Python)

Вычисления

Вычисления пределов

Для вычисления пределов в SymPy предусмотрен очень простой синтаксис, а именно limit(function, variable, point) . Например, если вы хотите вычислить предел функции f(x) , где x -> 0 , то надо написать limit(f(x), x, 0) .

Также можно вычислять пределы, которые стремятся к бесконечности.

Дифференцирование

Для дифференцирования выражений в SymPy есть функция diff(func, var) . Ниже даны примеры ее работы.

Проверим результат последней функции при помощи определения производной через предел.

tan 2 (𝑥)+1 Результат тот же.

Также при помощи этой же функции могут быть вычислены производные более высоких порядков. Синтаксис функции будет следующим: diff(func, var, n) . Ниже приведено несколько примеров.

Разложение в ряд

Для разложения выражения в ряд Тейлора используется следующий синтаксис: series(expr, var) .

Интегрирование

В SymPy реализована поддержка определенных и неопределенных интегралов при помощи функции integrate() . Интегрировать можно элементарные, трансцендентные и специальные функции. Интегрирование осуществляется с помощью расширенного алгоритма Риша-Нормана. Также используются различные эвристики и шаблоны. Вот примеры интегрирования элементарных функций:

Также несложно посчитать интеграл и от специальных функций. Возьмем, например, функцию Гаусса:

Результат вычисления можете посмотреть сами. Вот примеры вычисления определенных интегралов.

Также можно вычислять определенные интегралы с бесконечными пределами интегрирования (несобственные интегралы).

Решение уравнений

При помощи SymPy можно решать алгебраические уравнения с одной или несколькими переменными. Для этого используется функция solveset() .

Как можно заметить, первое выражение функции solveset() приравнивается к 0 и решается относительно х . Также возможно решать некоторые уравнения с трансцендентными функциями.

Системы линейных уравнений

SymPy способна решать широкий класс полиномиальных уравнений. Также при помощи данной библиотеки можно решать и системы уравнений. При этом переменные, относительно которых должна быть разрешена система, передаются в виде кортежа во втором аргументе функции solve() , которая используется для таких задач.

Факторизация

Другим мощным методом исследования полиномиальных уравнений является факторизация многочленов (то есть представление многочлена в виде произведения многочленов меньших степеней). Для этого в SymPy предусмотрена функция factor() , которая способна производить факторизацию очень широкого класса полиномов.

Булевы уравнения

Также в SymPy реализована возможность решения булевых уравнений, что по сути означает проверку булевого выражения на истинность. Для этого используется функция satisfiable() .

Данный результат говорит нам о том, что выражение (x & y) будет истинным тогда и только тогда, когда x и y истинны. Если выражение не может быть истинным ни при каких значениях переменных, то функция вернет результат False .

Видео:10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

Линейная алгебра

Матрицы

Матрицы в SymPy создаются как экземпляры класса Matrix :

В отличие от NumPy , мы можем использовать в матрицах символьные переменные:

И производить с ними разные манипуляции:

Дифференциальные уравнения

При помощи библиотеки SymPy можно решать некоторые обыкновенные дифференциальные уравнения. Для этого используется функция dsolve() . Для начала нам надо задать неопределенную функцию. Это можно сделать, передав параметр cls=Function в функцию symbols() .

Теперь f и g заданы как неопределенные функции. мы можем в этом убедиться, просто вызвав f(x) .

Теперь решим следующее дифференциальное уравнение:

Чтобы улучшить решаемость и помочь этой функции в поиске решения, можно передавать в нее определенные ключевые аргументы. Например, если мы видим, что это уравнение с разделяемыми переменными, то мы можем передать в функцию аргумент hint=’separable’ .

Бесплатные кодинг марафоны с ревью кода

Наш телеграм канал проводит бесплатные марафоны по написанию кода на Python с ревью кода от преподавателя

Видео:Решение нелинейного уравнения методом простых итераций (программа)Скачать

Решение нелинейного уравнения методом простых итераций (программа)

Найти корень трансцендентного уравнения с питоном

Я должен решить следующее трансцендентное уравнение

для заданной константы c.

Например Я сделал короткий код в Mathematica, где я создал список случайных значений для константы c

Чем я определил функцию

и начал искать корни:

Теперь я хотел бы запрограммировать что-то подобное в python (возможно, используя numpy?), но я не могу найти хороший ответ на подобную проблему. Может ли кто-нибудь помочь?

Один из способов, который я достиг в прошлом, – использовать scipy.optimize.minimize для поиска минимумов квадратичной функции.

Это отнюдь не дурацкое, но оно может быть быстрым и точным. Если есть несколько корней, например, minimize найдет ту, что находится в “направлении спуска”, из выбранной вами начальной точки, поэтому я выбрал небольшое положительное значение выше.

Еще одна проблема, на которую следует обратить внимание, которая всегда верна с проблемами минимизации, – это цифры с совершенно разными порядками. В вашем уравнении, когда c становится очень большим, первый положительный корень становится очень маленьким. Если вы попытаетесь найти корни в этом обстоятельстве, вам может потребоваться масштабировать как x , чтобы быть рядом с 1, чтобы получить точные результаты (здесь)).

В качестве альтернативы вы можете использовать root :

Тогда res выглядит следующим образом:

Если вы заинтересованы в решении систем уравнений с помощью root , вы можете проверить этот ответ.

Для этого типа простых одномерных функций вы можете легко найти все корни в интересующем вас интервале, используя реализацию Python для Chebfun. Я знаю два, Chebpy и pychebfun, которые оба превосходны.

Например, используя Chebpy, можно было бы найти корни cos(x)/x — 0.05 в интервале [0.5, 12] :

Видео:14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

Решение системы трансцендентных уравнений с питоном

Предполагая, что у меня есть следующие четыре уравнения:

    cos (x)/x = a
    cos (y)/y = b
    a + b = 1
    c sinc (x) = d sinc (y)

для неизвестных переменных x, y, a и b . Заметим, что cos(x)/x=a имеет несколько решений. Аналогично для переменной y . Меня интересуют только значения x и y , которые являются первыми положительными корнями (если это имеет значение).

Можно с уверенностью предположить, что a, b, c и d — известные реальные константы, все положительные.

В Mathematica код для решения будет выглядеть примерно так:

который в результате возвращает

Хотя это было довольно просто, я понятия не имею, как сделать что-нибудь подобное в python. Поэтому, если кто-то может мне помочь (или просто показать мне, как это сделать), я бы очень признателен.

💥 Видео

Решение n го нелинейных алгебраических уравнений в PythonСкачать

Решение n го нелинейных алгебраических  уравнений в Python

Численное решение уравнений, урок 3/5. Метод хордСкачать

Численное решение уравнений, урок 3/5. Метод хорд

34 Задача: Найти корни квадратного уравнения при помощи PythonСкачать

34 Задача: Найти корни квадратного уравнения при помощи Python

Алгоритмы. Нахождение корней уравнения методом хордСкачать

Алгоритмы. Нахождение корней уравнения методом хорд

Решение нелинейного уравнения методом Ньютона (касательных) (программа)Скачать

Решение нелинейного уравнения методом Ньютона (касательных) (программа)

Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Python - численное решение дифференциального уравнения 1го порядка и вывод графикаСкачать

Python - численное решение дифференциального уравнения 1го порядка и вывод графика

Решения системы линейных уравнений на Python (Sympy).Скачать

Решения системы линейных уравнений на Python (Sympy).

#5. Математические функции и работа с модулем math | Python для начинающихСкачать

#5. Математические функции и работа с модулем math | Python для начинающих

Использование библиотеки SymPy для работы с системами уравнений в PythonСкачать

Использование библиотеки SymPy для работы с системами уравнений в Python

Python для самых маленьких. Линейные уравнения. Решение задачСкачать

Python для самых маленьких. Линейные уравнения. Решение задач

Решение систем линейных матричных уравнений через формулы Крамера в PythonСкачать

Решение систем линейных матричных уравнений через формулы Крамера в Python

Вычислительная математика. Метод касательных на Python(1 практика).Скачать

Вычислительная математика. Метод касательных на Python(1 практика).

Метод Ньютона | Лучший момент из фильма Двадцать одно 21Скачать

Метод Ньютона | Лучший момент из фильма Двадцать одно  21
Поделиться или сохранить к себе: