Математика 5 класс уравнения с процентами

Проценты. Задачи по математике для 5 класса.

Задача 1

Организм взрослого человека на 70% состоит из воды. Какова масса воды в теле человека, который весит 76 кг?

    Решение
  • 1) 76 : 100 = 0,76 (кг) 1% от массы человека;
  • 2) 0,76 * 70 = 53,2(кг).
  • Ответ: масса воды 53,2 кг.

Задача 2

Металлический конструктор состоит из 300 деталей. 12% этих деталей гайки. Сколько гаек в металлическом конструкторе?

    Решение
  • 1) 300 : 100 = 3(детали) 1% всех деталей конструктора;
  • 2) 3 * 12 = 36 (гаек).
  • Ответ: в конструкторе 36 гаек.

Задача 3

В грушах сладких сортов содержится сахара 15% от их массы. Сколько кг сахара будет содержаться в 6 кг груш?

    Решение
  • 1) 6 : 100 = 0,06 (кг) 1% от шести килограмм;
  • 2) 0,06 * 15 = 0,9 (кг).
  • Ответ: в шести кг груш будет содержаться 0,9 кг сахара.

Задача 4

В классе 30 человек, из них девочек – 18. Сколько процентов мальчиков в классе?

    Решение
  • 1) 30 : 100 = 0,3 — 1% процент всех детей класса;
  • 2) 30 – 18 = 12 – мальчиков в классе;
  • 3) 12 : 0,3 = 40%.
  • Ответ: в классе учится 40% мальчиков.

Задача 5

Если высушить свежие груши, то их масса уменьшится на 80%. Сколько понадобится свежих груш для приготовления 8 кг сушеных?

    Решение
  • 1) 100 – 80 = 20% — составляет масса сухих груш относительно свежих;
  • 2) 8 : 20 = 0,4 (кг) 1% свежих груш для приготовления 8 кг сушеных;
  • 3) 0,4 * 100 = 40 (кг).
  • Ответ: понадобится 40 кг свежих груш.

Задача 6

1% процент книги, которую читал Сережа, составляет 4 страницы. Сколько страниц осталось прочитать Сереже, если он уже прочитал 30%?

    Решение
  • 1) 30 * 4 = 120 (стр.) прочитал Сережа;
  • 2) 4 * 100 = 400 (стр.) все страницы книги;
  • 3) 400 – 120 = 280 (стр.).
  • Ответ: Сереже осталось прочесть 280 страниц.

Задача 7

Количество сливок, получаемых из молока, равно 21%. Сколько сливок получиться, если использовать 48 литров молока?

    Решение
  • 1) 48 : 100 = 0,48 (л) 1% от 48 литров;
  • 2) 0,48 * 21 = 10,08 (л).
  • Ответ: сливок получится 10,08 литров.

Задача 8

Периметр прямоугольника равен 80 см. 60% этого периметра – сумма длин прямоугольника. Чему равна ширина прямоугольника?

    Решение
  • 1) 80 : 100 = 0,8 (см) 1% от периметра прямоугольника;
  • 2) 100 – 60 = 40% — часть суммы ширин в периметре;
  • 3) 0,8 * 40 = 32 (см);
  • 4) 32 : 2 = 16 (см).
  • Ответ: ширина прямоугольника равна 16 см.

Задача 9

Одна из сторон треугольника равна 15 см, длина второй равна 80% первой, а длина третей – 150% второй. Чему равен периметр этого треугольника?

    Решение
  • 1) 12 : 100 = 0,15 (см) 1% от длины первой стороны;
  • 2) 0,15 * 80 = 12 (см) длина второй стороны;
  • 3) 12 : 100 = 0,12 (см) 1% от длины второй стороны;
  • 4) 0,12 * 150 = 18 см (см) длина третьей стороны.
  • 5) 12 + 15 + 18 = 45 (см).
  • Ответ: периметр треугольника равен 45 см.

Задача 10

На приготовление ужина у мамы ушло 2 часа. Для приготовления мясных блюд понадобилось 40% времени, десерт занял 20%, все остальное время было затрачено на приготовление салатов. Сколько времени понадобилось маме для приготовления каждого из блюд?

    Решение
  • 1) 40 + 20 = 60% времени ушло у мамы на приготовление мясных блюд и десерта;
  • 2) 100 – 60 = 40% времени заняло приготовление салатов;
  • 2 часа = 120 мин.
  • 3) 120 : 100 = 1,2 (мин) 1% от 2 часов;
  • 4) 40 * 1,2 = 48 (мин);
  • 5) 20 * 1,2 = 24 (мин).
  • Ответ: на приготовление салатов 48 мин, на приготовление мясных блюд 48 минут, на приготовление десерта 24 минуты.

Задача 11

В течении месяца Саша играл с папой в шахматы. За это время было сыграно 25 партий, из которых 80% выиграл папа. Сколько партий в шахматы выиграл за месяц Саша?

    Решение
  • 1) 100 – 80 = 20% партий выиграл Саша;
  • 2) 25 : 100 = 0,25 – 1% процент от всех партий;
  • 3) 20 * 0,25 = 5 (партий).
  • Ответ: Саша выиграл 5 партий.

Задача 12

У Лены в аквариуме 8 меченосцев, что составляет 40% всех ее рыбок. Сколько всего рыбок у Лены в аквариуме?

    Решение
  • 1) 8 : 40 = 0,2 — 1% от всех рыбок;
  • 2) 0,2 * 100 = 20 (рыбок).
  • Ответ: всего у Лены 20 рыбок в аквариуме.

Задача 13

За зиму медведь Вини Пух съел 16 горшочков меда. Сколько горшочков меда заготовил Вини Пух, если у него осталось 20% всех его запасов?

    Решение
  • 1) 100 – 20 = 80% — меда съел за зиму Вини Пух;
  • 2) 16 : 80 = 0,2 (меда) 1% от всего меда;
  • 3) 0,2 * 100 = 20.
  • Ответ: на зиму Вини Пух заготовил 20 горшочков меда.

Задача 14

Грибы теряют при сушке 75% своей массы. Сколько понадобится свежих грибов для приготовления 4 кг сушеных?

    Решение
  • 1) 100 – 75 = 25% масса сушеных грибов от массы свежих;
  • 2) 4 : 25 = 0,16 1% от массы свежих грибов;
  • 3) 0,16 * 100 = 16 (кг).
  • Ответ : понадобится 16 кг свежих грибов.

Задача 15

На олимпиаде школьная команда набрала 72 очка. Сколько очков можно набрать на олимпиаде, если набранные командой очки составляют 80% из всех возможных?

    Решение
  • 1) 72 : 80 = 0,9(очков) 1% от всех возможных очков;
  • 2) 0,9 * 100 = 90 (очков).
  • Ответ: на олимпиаде можно набрать 90 очков.

Видео:5 класс, 40 урок, ПроцентыСкачать

5 класс, 40 урок, Проценты

Как решать задачи на проценты в 5 классе

В этой статье вы узнаете, что такое процент, как решать задачи на проценты. Примеры, а также вашему вниманию предлагаю инфографику, которую вы можете скачать и распечатать для наглядного представления данной темы. Изучать тему начинают в 5 классе, поэтому все объяснения адаптированы для детей 11-12 лет.

Видео:Проценты - математика 5 класс. Основные задачи на процентыСкачать

Проценты - математика 5 класс. Основные задачи на проценты

Что такое процент

За 1 процент принято считать сотую долю от любой величины. Следовательно, 100% — это есть вся величина.

Например, если путник прошел весь путь 5 км, то 5 км — это 100%.

1% пути вычисляем 5 км : 100% = 0,05 км

Маша прочитала всю книгу в 120 листов. 120 листов — 100%. 1% 120 : 100 = 1,2%

Видео урок на решение задач с процентами в 5 классе

Видео:Проценты. 5 класс.Скачать

Проценты. 5 класс.

Как перевести процент в десятичную дробь

Соответственно, если мы будем оперировать понятием целого, то сделана вся работа будет равно 1, а если понятием проценты — сделана на 100%.

Например, студент напечатал весь реферат на 100 листах. Получается, что выполнения вся работа. Это равно единице (понятие «Целое»), или 100% реферата (понятие «Процент»).

1 страница реферата занимает глава «Введение». Значит, 1% реферата (сотая часть) приходится на введение. 1 страница — это 1/100 реферата, что можно выразить в десятичной дроби, как 0,01.

2 страницы реферата — это 2%, или 0,02 всей печатной работы.

Чтобы перевести проценты в десятичную дробь, нужно число процента разделить на 100.

Примеры перевода процентов в десятичную дробь:

18% = 18 : 100 = 0,18

120% = 120 : 100 = 1,2

2000% = 2000 : 100 = 20

Если вся величина 100%, то откуда может берется понятие 120%, 200% и даже 500% ?

Это легко понять на следующих примерах:

Путешественник проделал путь 100 км в первый день пути на велосипеде. (проехал 100%)

На следующий день он проехал расстояние в 120 км. (120%, т.к. на следующий день он проехал на 20% больше).

Видео:Уравнение. 5 класс.Скачать

Уравнение. 5 класс.

Как найти процент от числа

Когда нам известно значение всей величины и проценты, то мы можем найти числовое значение, которое приходится на проценты.

Иван написал сочинение на 8 листах. 25% он написал утром. Сколько листов сочинения Иван написал за утро?

Решить задачу можно двумя способами.

1 способ.

Найдем вначале сколько листов приходится на 1%. Вспомним, что 1 процент — это сотая часть.

1) 8 : 100 = 0,08 листа — 1% сочинения.

теперь узнаем сколько листов приходится на 25%:

2) 0,08 x 25 = 2 листа — это 25%

2 способ

Его проще запомнить. Сначала нужно перевести процент в десятичную дробь.

0,25 — часть от целого нужно найти, чтобы узнать количество листов. Вся работа — единица (1).

Найдем 0,25 от 8.

Смотрите другой пример на графике ниже

Математика 5 класс уравнения с процентами

Видео:Как быстро решать задачи на процентыСкачать

Как быстро решать задачи на проценты

Нахождение числа по его процентам

Следующая ситуация, с которой школьникам 5 класса будут регулярно сталкиваться в задачах на проценты, — это нахождение величины, когда известно какой процент, она составляет.

Мама потратила в магазина на продукты 120 рублей. Это 40% от всей суммы, которую мама потратила на покупки. Сколько денег истратила мама в магазине?

Решение

Так же, как и в первом варианте, эту задачу можно решить тремя способами.

1 способ

Мы можем посчитать сколько денег составляет 1% от всей покупки:

1) 120 : 40 = 3 рубля приходится на 1%

Теперь посчитаем 100% (сумму всей покупки)

2) 3 x 100 = 300 рублей составляет 100% (истратила мама на покупки).

2 способ

Переведем проценты в десятичную дробь

1) 40% = 40 : 100 = 0,4

Чтобы найти сколько это составляет процентов, нужно величину, составляющую долю от целого, разделить на процент, выраженный десятичной дробью:

2) 120 : 0,4 = 300 рублей — вся затраченная сумма.

3 способ

Подойдет для тех, кто знаком с пропорцией.

120 рублей — это 40%

x рублей — это 100%

Отсюда получаем пропорцию:

Математика 5 класс уравнения с процентами

Другая задача разобрана на рисунке с диаграммой ниже:

Математика 5 класс уравнения с процентами

Видео:Задачи на проценты 5 класс. Как найти процент от числа. Как решать задачи по математике. Часть 25.1Скачать

Задачи на проценты 5 класс. Как найти процент от числа. Как решать задачи по математике. Часть 25.1

Найти процентное отношение чисел

Еще один тип задач на проценты подразумевает выражение отношения величин в процентах.

В классе 30 учеников. Мальчиков — 12. Какой процент составляют мальчики?

Решение

1 способ

Найдем, какая часть класса приходится на мальчиков:

Выразим найденное в процентах:

2 способ

Можно решить составлением пропорции

30 учеников — это весь класс и составляет 100%, 12 мальчиков — это X %

Математика 5 класс уравнения с процентами

Бонусом еще одна задача:

Математика 5 класс уравнения с процентами

Видео:Как легко считать проценты #математика #проценты #5класс #примерыСкачать

Как легко считать проценты #математика #проценты #5класс #примеры

Наглядное пособие по процентам распечатать

Вы можете распечатать данное учебное пособие, чтобы наглядно видеть, как решать задачи на проценты. Если ежедневно обращаться к данной шпаргалке, то материал запомнится сам собою.

Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать

Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.

Задачи репетитора по математике на проценты (5 класс)

Предлагаю Вашему вниманию небольшой список типовых задач на проценты —5 класс. Материал ориентирован на способных учеников, в работе с которыми репетитор по математике имеет, как правило, достаточную свободу в плане соответствия программным и возрастным стандартам. Часть задач является базовыми только для 6 класса (по учебнику Виленкина), но вполне могут быть рассмотрены уже в 5 классе. Данный материал был подготовлен мной специально для занятия с Артемом — учеником Курчатовской школы.

Задачи по математике 5 класс / проценты

1) Билет на концерт стоит 2400 рублей, а стоимость билета в кино составляет 20% от стоимости билета на концерт. Сколько стоит билет в кино?

2) Маша потратила в магазине 45% своих денег. Найдите потраченную сумму денег, если у нее всего было 800 рублей.

3) Бегун пробежал 600м, что составляет 40% всей его намеченной дистанции. Найдите длину дистанции.

4) В младших классах учится 200 учеников, что составляет 40% учеников старших классов. Сколько учеников учится в школе?

5) В книге 3 главы. Число страниц в первой главе составляет 30% всей книги, число страниц второй главы – 45% книги, а в третьей 50 страниц. Сколько страниц в книге?

6) В магазин привезли арбузы. В первый день продали 25% всех арбузов, во второй 55% арбузов, а остальные 60кг арбузов в третий день. Сколько всего килограммов арбузов привезли в магазин?

7) Цена на товар увеличилась на 20%. Найдите новую цену, если старая составляла 400рублей.

8) Цена на товар снизилась на 5%. Найдите новую цену, если прежняя цена составляла 200рублей.

9) Цена на ботинки выросла на 30%. Сколько стоят ботинки теперь, если раньше они стоили 3100руб?

10) 31 декабря елка подешевела на 40%. Найдите новую стоимость елки, если до 31 числа она стоила 2100рублей.

11) После увеличения цена на мобильный телефон на 10% он стал стоить 6600 руб. Определите первоначальную цену телефона.

12) После снижения цены на товар на 30% он стал стоить 4200рублей. Найдите его первоначальную цену.

13) Банкомат берет 3% от положенной в него суммы денег. Сколько денег положить в банкомат, чтобы на счету оказалось 776 рублей?

14) Банкомат берет комиссию в 2% от внесенной суммы денег. Сколько денег необходимо опустить в банкомат, чтобы на счет пришло 196рублей?

15) После снижения цены на 15% товар стал стоить 255 рублей. Найдите начальную его цену.

16) После увеличения стоимости брюк на 5% они стали стоить 2310руб. Какова была их начальная стоимость?

17) Банкомат берет комиссию в 4% от внесенной суммы денег. Сколько рублей нужно опустить в банкомат, чтобы после вычитания из этой суммы комиссии на счету оказалось 288 рублей?

18) В школе 800 учеников. Из низ 120 человек приняли учатие в лыжной гонке. сколько процентов всех учеников школы приняло участие в гонке?

19) Витя пошел в магазин, взяв с собой 400 рублей. Он купил тетрадь за 24 рубля. Сколько процентов всех денег он потратил?

20) Школьники решили посадить на субботнике 200 деревьев. В первый час работы было посажено 54 дерева. Сколько % всех деревьев они успели посадить за это время?

21) Цена на товар увеличилась на 25%. На сколько % ее теперь надо снизить, чтобы вернуть начальную цену?

22) В саду росли яблоки и груши. Если сорвать 50% всех яблок и 25% всех груш, то и тех и других окажется поровну. Сколько растет в саду яблок и сколько груш, если их всего 360 штук?

23) Карлсон с Малышом поедали вкусные плюшки. Малыш съел только 20% своих плюшек, а Карлсон слопал все свои. Во сколько раз больше имелось плюшек у Карлсона, чем у Малыша, если на пару они съели 80% всех имевшихся у них плюшек?

Указание репетиторам по математике: Все номера подобраны с учетом специфики программного изучения математики в 5 классе (по учебнику Виленкина) и предполагают решения без использования десятичных дробей и необходимости умножать (делить) на обыкновенные дроби. Для 5 класса задачи под номерами 21 и 22 являются близкими к олимпиадными и должны включатся репетитором по математике в план урока только при наличии определенных способностей ученика. Никаких иксов и отношений в этих номерах. Так бы они решились в 6 классе. Ученику 5 класса необходимо сделать рисунок и показать доли целого объекта. Чаще сопровождайте задачи рисунками и, конечно же, следите за точностью и лаконичностью своих объяснений.

Список содержит достаточное количество упражнений как для решения совместно с репетитором, так и для домашнего закрепления. Я постарался подобрать несколько задач на каждый их типовой вариант.

Вдогонку от репетитора: Стоит отметить, что подборки дополнительных задач на проценты в современной школьной дидактике и учебных интернет проектах часто не имеют четкого ориентира на работу с конкретным возрастом, классом или программой, что сильно усложняет репетитору по математике подготовку к уроку. Мешанина — наиболее точное слово для описания характера составления таких материалов. Задача часто включается в учебный список уже только потому, что в ее тексте присутствует знак «%». А ведь школьники в 5 классе еще не имеют полного представления о дробях и не могут работать с % в сложных сравнениях (у Маши на 10% больше денег, чем у Вити), требующих соответствующего выражения величин через переменные, понять дробные/десятичные проценты, а также взрослые решения с применением пропорций и уравнений. Во многих рассмотренных мной подборках отсутствовала полноценная дидактическая поддержка закрепления пройденного (следующая задача часто не похожа на предыдущую). Поэтому я уже давно пользуюсь своими разработками. Материалы на урок я стараюсь составлять так, чтобы в них полностью отсутствовали перечисленные выше недостатки (за исключением закрепеления понимания отдельных усложненных/олимпиадных задач). Приходите заниматься.

Колпаков А.Н. Репетитор по математике. Москва. Автор подборки задач.

🎦 Видео

Проценты 5 класс. Что такое процент. Как найти 1 процент от числа, кг, метра, литраСкачать

Проценты 5 класс. Что такое процент. Как найти 1 процент от числа, кг, метра, литра

Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать

Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.

Проценты. Как считать проценты? | МатематикаСкачать

Проценты. Как считать проценты? | Математика

Решение задач на проценты способом пропорции. 6 класс.Скачать

Решение задач на проценты способом пропорции. 6 класс.

Проценты. Практическая часть - решение задачи. 5 класс.Скачать

Проценты. Практическая часть - решение задачи. 5 класс.

Математика 5 ПроцентыСкачать

Математика 5 Проценты

Проценты | Математика 5 класс #39 | ИнфоурокСкачать

Проценты | Математика 5 класс #39 | Инфоурок

Задачи на проценты 5 класс.Скачать

Задачи на проценты 5 класс.

Математика 5 класс. Уравнение. Корень уравненияСкачать

Математика 5 класс. Уравнение. Корень уравнения

КАК НАЙТИ ПРОЦЕНТ ОТ ЧИСЛА? Примеры | МАТЕМАТИКА 5 классСкачать

КАК НАЙТИ ПРОЦЕНТ ОТ ЧИСЛА? Примеры | МАТЕМАТИКА 5 класс

Математика 6 класс (Урок№11 - Задачи на проценты. Часть 1.)Скачать

Математика 6 класс (Урок№11 - Задачи на проценты. Часть 1.)

Задача на проценты - три способа решенияСкачать

Задача на проценты - три способа решения
Поделиться или сохранить к себе: