Видео:18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать
Определение
Видео:Однородное дифференциальное уравнениеСкачать
Как определить однородное дифференциальное уравнение
Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx : y → ty , x → tx . Если t сократится, то это однородное дифференциальное уравнение. Производная y′ при таком преобразовании не меняется.
.
Пример
Определить, является ли данное уравнение однородным
Делаем замену y → ty , x → tx .
Делим на t 2 .
.
Уравнение не содержит t . Следовательно, это однородное уравнение.
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Метод решения однородного дифференциального уравнения
Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux . Покажем это. Рассмотрим уравнение:
(i)
Делаем подстановку:
y = ux ,
где u — функция от x . Дифференцируем по x :
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение (i).
,
,
(ii) .
Разделяем переменные. Умножаем на dx и делим на x ( f ( u ) – u ) .
При f ( u ) – u ≠ 0 и x ≠ 0 получаем:
Интегрируем:
Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:
Заменим постоянную интегрирования C на ln C , тогда
Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C . Тогда общий интеграл примет вид:
Далее следует рассмотреть случай f ( u ) – u = 0 .
Если это уравнение имеет корни, то они являются решением уравнения (ii). Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i).
Всякий раз, когда мы, в процессе преобразований, делим какое-либо уравнение на некоторую функцию, которую обозначим как g ( x, y ) , то дальнейшие преобразования справедливы при g ( x, y ) ≠ 0 . Поэтому следует отдельно рассматривать случай g ( x, y ) = 0 .
Видео:Однородные дифференциальные уравнения первого порядка #calculus #differentialequation #maths #Скачать
Пример решения однородного дифференциального уравнения первого порядка
Проверим, является ли данное уравнение однородным. Делаем замену y → ty , x → tx . При этом y′ → y′ .
,
,
.
Сокращаем на t .
Постоянная t сократилась. Поэтому уравнение является однородным.
Делаем подстановку y = ux , где u – функция от x .
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0 , |x| = x . При x ≤ 0 , |x| = – x . Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0 , а нижний – к значениям x ≤ 0 .
,
Умножаем на ± dx и делим на .
При u 2 – 1 ≠ 0 имеем:
Интегрируем:
Интегралы табличные,
.
Применим формулу:
( a + b )( a – b ) = a 2 – b 2 .
Положим a = u , .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.
Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C .
Умножаем на x и подставляем ux = y .
,
.
Возводим в квадрат.
,
,
.
Теперь рассмотрим случай, u 2 – 1 = 0 .
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.
Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.
Автор: Олег Одинцов . Опубликовано: 19-07-2012 Изменено: 24-02-2015
Видео:6. Дифференциальные уравнения, приводящиеся к однороднымСкачать
Однородные дифференциальные уравнения
Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными заменой y = xu, или, что тоже самое, , где u новая искомая функция. Действительно, тогда y’ = u + u’x и исходное уравнение может быть переписано в виде u + u’x = f(u), или u’x = f(u)u. Из последнего при f(u)u можем записать
.
Пример. Решить уравнение (y 2 — 2xy)dx + x 2 dy = 0. Это однородное уравнение, так как y 2 — 2xy и x 2 однородные функции второй степени. Делаем замену y = xu, dy = udx + xdu. Подставляя в уравнение, имеем
(x 2 u 2 — 2x 2 u)dx + x 2 (udx + xdu) = 0.
Раскрывая скобки, приводя подобные и сокращая на x 2 , получаем уравнение с разделяющимися переменными
(u 2 — u)dx + xdu = 0
Разделяя переменные, получаем или, что то же самое,
Интегрируя последнее соотношение, имеем lnu — ln(u-1) = lnx + lnC. Потенцируя (переходя от логарифмической функции к e x ), можем записать
или, делая обратную замену
, получаем общий интеграл уравнения
Уравнения вида приводятся к однородным переносом начала координат в точку пересечения прямых a1x + b1y +c1 = 0, a2x + b2y +c2 = 0, если определитель
отличен от нуля, и заменой a1x + b1y = z, если этот определитель равен нулю.
Решить однородные уравнения онлайн можно с помощью специального сервиса Дифференциальные уравнения онлайн.
Видео:Замена переменных в дифференциальных уравнениях.Скачать
Как решить однородное дифференциальное уравнение
Чтобы решить однородное дифференциальное уравнение 1-го порядка, используют подстановку u=y/x, то есть u — новая неизвестная функция, зависящая от икса. Отсюда y=ux. Производную y’ находим с помощью правила дифференцирования произведения: y’=(ux)’=u’x+x’u=u’x+u (так как x’=1). Для другой формы записи: dy=udx+xdu.После подстановки уравнение упрощаем и приходим к уравнению с разделяющимися переменными.
Примеры решения однородных дифференциальных уравнений 1-го порядка.
1) Решить уравнение
Проверяем, что это уравнение является однородным (см. Как определить однородное уравнение). Убедившись, делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем: u’x+u=u(1+ln(ux)-lnx). Так как логарифм произведения равен сумме логарифмов, ln(ux)=lnu+lnx. Отсюда
u’x+u=u(1+lnu+lnx-lnx). После приведения подобных слагаемых: u’x+u=u(1+lnu). Теперь раскрываем скобки
u’x+u=u+u·lnu. В обеих частях стоит u, отсюда u’x=u·lnu. Поскольку u — функция от икса, u’=du/dx. Подставляем,
Получили уравнение с разделяющимися переменными. Разделяем переменные, для чего обе части умножаем на dx и делим на x·u·lnu, при условии, что произведение x·u·lnu≠0
В левой части — табличный интеграл. В правой — делаем замену t=lnu, откуда dt=(lnu)’du=du/u
ln│t│=ln│x│+C. Но мы уже обсуждали, что в таких уравнениях вместо С удобнее взять ln│C│. Тогда
ln│t│=ln│x│+ln│C│. По свойству логарифмов: ln│t│=ln│Сx│. Отсюда t=Cx. ( по условию, x>0). Пора делать обратную замену: lnu=Cx. И еще одна обратная замена:
По свойству логарифмов:
Это — общий интеграл уравнения.
Вспоминаем условие произведение x·u·lnu≠0 (а значит, x≠0,u≠0, lnu≠0, откуда u≠1). Но x≠0 из условия, остается u≠1, откуда x≠y. Очевидно, что y=x ( x>0) входят в общее решение.
2) Найти частный интеграл уравнения y’=x/y+y/x, удовлетворяющий начальным условиям y(1)=2.
Сначала проверяем, что это уравнение является однородным (хотя наличие слагаемых y/x и x/y уже косвенно указывает на это). Затем делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем полученные выражения в уравнение:
u’x=1/u. Так как u — функция от икса, u’=du/dx:
Получили уравнение с разделяющимися переменными. Чтобы разделить переменные, умножаем обе части на dx и u и делим на x (x≠0 по условию, отсюда u≠0 тоже, значит, потери решений при этом не происходит).
и поскольку в обеих частях стоят табличные интегралы, сразу же получаем
Выполняем обратную замену:
Это — общий интеграл уравнения. Используем начальное условие y(1)=2, то есть подставляем в полученное решение y=2, x=1:
3) Найти общий интеграл однородного уравнения:
(x²-y²)dy-2xydx=0.
Замена u=y/x, откуда y=ux, dy=xdu+udx. Подставляем:
(x²-(ux)²)(xdu+udx)-2ux²dx=0. Выносим x² за скобки и делим на него обе части (при условии x≠0):
(1-u²)(xdu+udx)-2udx=0. Раскрываем скобки и упрощаем:
xdu-u²xdu-u³dx-udx=0. Группируем слагаемые с du и dx:
(x-u²x)du-(u³+u)dx=0. Выносим общие множители за скобки:
x(1-u²)du-u(u²+1)dx=0. Разделяем переменные:
x(1-u²)du=u(u²+1)dx. Для этого обе части уравнения делим на xu(u²+1)≠0 (соответственно, добавляем требования x≠0 (уже отметили), u≠0):
В правой части уравнения — табличный интеграл, рациональную дробь в левой части раскладываем на простые множители:
(или во втором интеграле можно было вместо подведения под знак дифференциала сделать замену t=1+u², dt=2udu — кому какой способ больше нравится). Получаем:
По свойствам логарифмов:
Вспоминаем условие u≠0. Отсюда y≠0. При С=0 y=0, значит, потери решений не происходит, и y=0 входит в общий интеграл.
Можно получить запись решения в другом виде, если слева оставить слагаемое с x:
Геометрический смысл интегральной кривой в этом случае — семейство окружностей с центрами на оси Oy и проходящих через начало координат.
Задания для самопроверки:
Так как u=y/x, u²=y²/x², то есть y²=u²x²,
2) Проверив, что данное уравнение является однородным, делаем замену y=ux, отсюда y’=u’x+u. Подставляем в условие:
Делим обе части уравнения на x:
Интегрируем обе части:
и, умножив на x обе части уравнения, получаем:
📹 Видео
4. Однородные дифференциальные уравнения (часть 1)Скачать
7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Дифференциальное уравнение.Замена переменныхСкачать
Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятияСкачать
2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Дифференциальные уравнения с разделяющими переменными. 11 класс.Скачать
Дифференциальные уравнения, 3 урок, Однородные уравненияСкачать
15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать
Дифференциальные уравнения, 7 урок, Дифференциальные уравнения, допускающие понижение порядкаСкачать
Однородные дифференциальные уравнения: метод замены 1Скачать