Язык c программы решения уравнения

Программа для решения квадратных уравнений на C++

Язык c программы решения уравненияДовольно часто в пособиях по программированию встречаются задания по нахождению решений каких-нибудь математических уравнений. Задача нахождения корней квадратного уравнения — это довольно тривиальная задача, как и многие другие задачи. Решается она очень просто при помощи листа бумаги и ручки, но решение можно автоматизировать посредством написания прикладной программы и её использования. В этой статье мы напишем такую программу.

Алгоритм решения квадратного уравнения

Многие знают, что уравнение вида ax 2 + bx + c = 0 , где a не равно 0, называют квадратным уравнением.

Существуют различные способы решения квадратных уравнений, но мы рассмотрим решение через дискриминант.

Обозначается дискриминант буквой D . Из школьного курса знаем, что D = b 2 — 4ac .

Существует несколько условий:

  • Если D > 0, то решение имеет 2 различных вещественных корня.
  • Если D = 0, то оба вещественных корня равны.
  • Если D для вводавывода в консоли, #include для работы с математическими функциями и область using namespace std;

Просим пользователя ввести значения переменных и сохраняем каждое значение

Проверяем условие, если дискриминант больше или равен 0, то находим корни и выводим

в противном случае выводим сообщение

На этом всё, осталось скомпилировать, запустить и проверить. Запускаем и вводим данные, чтобы D был меньше 0

В этом случае D = 3*3 — 4*2*3 = -15, а это меньше 0, значит ответ программа дала верный.

Ответы тоже верны. Программа работает правильно.

Ниже представлен весь листинг программы для нахождения корней квадратного уравнения на C++

Для вас это может быть интересно:

Видео:Уроки C++. Простые линейные уравненияСкачать

Уроки C++. Простые линейные уравнения

Программа для решения квадратных уравнений на C++ : 24 комментария

Программировать так сложно…

  1. Nicknixer Автор записи 15.10.2016

Не так сложно, как Вам кажется! Немного литературы, немного практики и смотреть на код решения такой задачи Вы будете по-другому.

Доброго времени суток! Помогите пожалуйста написать программу, которая считает сколько символов в ряде двумерного массива. То есть , например массив 5 на 5, сколько символов в 1 ряде, сколько во 2 и т.д.

Ответил вам по электронной почте

Критику принимаете? 🙂
Программа дырявая как сито.

Если число очень маленькое, но положительное, например 10^(-20) — у вас будет переполнение или типо того. Оператор > проверяет знак числа (это отдельный бит), а оператор == для дробных чисел не имеет смысла, т.к. в младших разрядах числа обычно находится какой-нибудь мусор, который при таком сравнении дает false.

x = ( -1*b + sqrt(b*b — 4*a*c) ) / (2 * a);
x = ( -1*b — sqrt(b*b — 4*a*c) ) / (2 * a);

Тут есть три вопроса:
1) зачем два раза вычислять одно и тоже (я про корень)
2) что делать если мне корни надо как-то использовать, а не просто вывести (тут есть проблема, ведь у меня то один корень — то два). Чтобы лучше понять в чем проблема — попробуйте вынести вычисление корней в отдельную функцию. У вас то вообще, если корень один — то их выведется все равно два, одинаковых.
3) в переменной «a» может быть ноль (или близкое к нулю число) — при этом мы получим деление на ноль (а точнее, переполнение).

Но это ведь еще не все. Что будет если и «a» и «b» равны нулю? — тебе надо рассмотреть два варианта — если c = 0 (условно, близко к нулю), то корней бесконечно много. А если c != 0, то корней нет.

Вообще, эта задача — прекрасный пример для юнит-тестирования и демонстрации принципов разработки через тестирование. Именно его я рассматривал в своей статье по теме тестирования: Юнит-тестирование. Пример. Boost Unit Test. Дело в том, что тут куча вариантов сделать ошибку, при этом их понимание приходит не сразу, т.е. школьник решая задачу напишет по формуле которой учили (ну и вот как у вас). А потом надо разбираться и смотреть как программа может сломаться, при этом разрабатывать тесты.

  1. Николай Сергейчук Автор записи 09.02.2017

Принимаем 🙂
Согласен с вами во всём! Программу можно реализовать намного лучше, используя различные проверки и валидацию входных данных.
Однако, статья рассчитана на аудиторию, которая только начинает познавать программирование или делает лабораторную. 🙂 Чтобы людям легче было понять, реализация данной программы упрощена до невозможности. И, возможно, несправедливо было с моей стороны не предупредить их о возможных ошибках в работе программы, которые могут вскрыться позже, если подать на вход определенные значения.
Кстати, у вас интересная статья по тестированию!

Николай, доброго времени суток! Можете помочь с написанием програмки в с++? 1-1/2!+1/3!-1/4!+1/5! и так до 1/100! ? Чтобы при заднии в строке номера члена последовательности выдавал сумму до него по такой вот формуле? Буду очень благодарен!

Пожалуйста подскажите как ввести экран правильный ответ дискриминанта

Помогите решить в Dev C++
Sqrt x^2+1+sqrt|x|,x0

Здравствуйте, можете помочь с решением биквадратного и триквадратного уравнения?

#include
using namespace std;
int main()
<
/*Решение квадратных уравнений*/
setlocale(0, «»);
cout a;
cout b;
cout c;
D = pow(b, 2) — 4 * a * c;
cout

ну и? если даже тупо скопировать код и вставить его в cpp.sh , ничего не работает. поебота какая то этот с++

Уважаемая, Лена! Я, надеюсь, вы знаете, что код программы, написанной на языке программирования C++ нельзя тупо вставить в блокнот и сохранить под названием «cpp.sh»? Если не знали, то я, видимо, открыл для вас Америку!

помогите решить. заданы 3 перемены a.b.c записать вы радение на С
< 7a/b+2a, если a=b,
Х= b,
b и а не равно != с

iconcerts где забыл
#include

Я ради интереса написал программу нахождения корней квадратного уравнения на С++, с выводом корней как в десятичном виде, так и в виде простой дроби (причём уже сокращённой), потому что выводя корни в десятичном виде программа их одновременно сокращает и округляет и 1/3 превращается в 0.333333 хотя на самом деле 0.333333 (3), то есть для проверки правильно ли нашёл корни ваш ребёнок, вы с получите что-то типа: X1= 0.285714; X2=0.214286, а на самом деле это будет X1=2/7; X2=3/14, кроме того, если корень из дискриминанта не получается целым числом, вы уже получите двойную неточность: сначала при извлечении корня программа отсечёт значение до 4-6 цифр после запятой с округлением, а затем сделает то же самое при делении числителя на знаменатель. Я и здесь сделал вывод корней в двух значениях: в десятичном и в виде выражения X1= (-b + sqrt(D))/(2*a); X2= (-b — sqrt(D))/(2*a), то есть выводится примерно вот так X1=-5+sqrt(21)/2; X2=-5-sqrt(21)/2 с одновременным разложением дискриминанта под корнем на множители, вынесением этих множителей из-под корня, если они выносятся нацело, их перемножением и дальнейшим сокращением. Вот, например, имеем a=3, b=15, c=3, при решении получаем D=189 программа выдаёт десятичные корни X1= -0.208712 и X2= -4.79129, а в виде выражения имеем: X1= -5+sqrt(21)/2, то есть первоначально получаем: X1= -15+sqrt(189)/6, -> 189=21*9 -> -15+3sqrt(21)/6 далее идёт сокращение на 3 и итог -5+sqrt(21)/2

День добрый.
Недавно начал изучать C++. Решил попробовать написать решение квадратного уравнения именно через оператор вида «условие ? выполняется : не выполняется». Т.е. если условие выполняется, то имеем два решения (даже если d = 0, то тоже должно быть два решения x1 = x2), если d a;
std::cout b;
std::cout c;
d = pow(b, 2) — 4 * a*c;
d >= 0 ? xfst = ((-b + sqrt(d)) / double(2 * a)) , xscd = ((-b — sqrt(d)) / double(2 * a)) : std::cout

  1. Николай Сергейчук Автор записи 12.02.2020

if (d >= 0) <
xfst = ((-b + sqrt(d)) / double(2 * a));
xscd = ((-b — sqrt(d)) / double(2 * a));
std::cout

Создать программу для решения квадратного уравнения.
У меня не получаеться, но и копифейсом я не хочу заниматься.
Прошу помогите. Заранее спасибо.

Здравствуйте! Как решить эту задачу? Приведенный пример сверху не подходит .

Давайте напишем действительно полезную программу! Вы наверняка уже устали считать дискриминант для квадратных уравнений? Давайте автоматизируем этот процесс.

На вход программы подаются три целых числа — коэффициенты уравнения ax^2 + bx + c = 0ax
2
+bx+c=0

Гарантируется, что a neq 0a

=0.

Выведите через пробел корни уравнения в порядке убывания и округленные «вниз». Если уравнение имеет корень кратности 2 — выведите одно число. Если у уравнения нет действительных корней — выведите «NO»

Для извлечения корней используйте функцию sqrt. Она содержится в библиотеке сmath ( она уже импортирована в коде ). Для округления воспользуйтесь функцией floor ( из той же библиотеки ).

1 0 -4
Sample Output 1:

2 -2
Sample Input 2:

1 2 2
Sample Output 2:

Пожалуйста подскажите как ввести экран ответ дискриминанта

Пожалуйста подскажите как ввести на екран ответь дискриминанта

Подскажите как правильно решить?
Обчислити z = (x1 + y1) / (x2 + y2), де х1, х2 — коренi рiвняння 2х^2 + x — 4 =0.
y1, y2 — коренi рiвняння ay^2 + 2y — 1 = 0. Усi коренi дiйснi.

using namespace std;

int main() <
double a = 2, b, c = -4;
int x1, x2;
double a1, b1 = 2, c1 = -1;
int y1, y2;
float z;

if((b*b — 4*a*c) >= 0 ) <
x1 = ( -1*b + sqrt(b*b — 4*a*c)) / (2 * a);
cout a1;

if((b1*b1 — 4*a1*c1) >= 0) <
y1 = ( -1*b1 + sqrt(b1*b1 — 4*a1*c1)) / (2 * a1);
cout = 0, y1 >= 0, y2 >= 0) <
z = (x1 + y1)/(x2 +y2);
cout

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Видео:Задача 411. Квадратное уравнение. acmp.ru C++Скачать

Задача 411. Квадратное уравнение. acmp.ru C++

Решение линейного уравнения

Видео:Уроки C++ с нуля🔥Решение математических задач на языке С++🔥Переменные в языке С++🔥Скачать

Уроки C++ с нуля🔥Решение математических задач на языке С++🔥Переменные в языке С++🔥

Решение уравнения на Си.Программа на си должна решать линейное уравнение

Задается линейное уравнение ax=b. Задаются параметры уравнения a и b. Программа определяет, есть ли решение уранвения, если решение есть,то оно выводится на экран.При написании программы полезными будет уроки Ввод данных с клавиатуры в Си и Логические операции в Си Описание алгоритма решения линейного уравнения на Си. В начале программы с клавиатуры задаются значения параметров уравнения a и b.
В уравнении ax=b необходимо проанализировать все возможные варианты.
Если a=0 и b=0, то решение уравнения это любое действительное число
Если a=0 b и b≠0,т уравнения не имеет решений
Если a≠0,то решение уравнения рассчитывается по формуле x=b/a
Чтобы проверить выполнение двух условий одновременно, необходимо использовать логическую функцию И. В Си он задается с помощью &&.

Возможный вариант реализации программа на си решение линейного уравнения
#include
#include
#include

На заметку.
1.Чтобы вывести вещественное число на экран без лишних нулей используется %g
printf («Ищем решение уравнения %gx=%g «, a,b);
2.Чтобы задать условие равенства 0 используется ==. Например условие a=0 задается в Си a==0. Чтобы задать условие не равенства 0 используется логическое отрицание, которое задается знаком ! Например b≠0 задается в Си !(b==0)
Задания для самостоятельной работы:
1.Решение квадратного уравнения. Задается уравнение ax^2+bx+c=0. Задаются параметры a и b и c с клавиатуры. Определяется дискриминант. Если решения есть , то выводятся на экран, если решения нет то сообщается об этом.
В этой программе необходимо вычислить дискриминант d=b*b-4*a*c
Если d 0, то два решения x1=(-b+sqrt(d))/2a и x2 =(-b-sqrt(d))/2a

Возможный вариант реализации программа на си решение квадратного уравнения

#include
#include
#include
#include

main()
<
float a; // коэффициент при x^2
float b; // коэффицент при x
float c;// свободный член
float d;// переменная для дискрименанта

float x1;// переменная для первого корня
float x2;// перменная для второго корня

// ввод коэффициентов уравнения

printf («Введите коэффициент an»);
scanf(«%f», &a);
printf («Введите коэффициент bn»);
scanf(«%f», &b);
printf («Введите свободный член сn»);
scanf(«%f», &c);
printf («Ищем решение уравнения %gx^2+%gx+%g=0n», a,b,c);
// расчет дискрименанта
d=b*b-4*a*c;

// анализ дискрименанта
if (d

if (d>0)
<
x1=(-b+sqrt(d))/(2*a);
x2=(-b-sqrt(d))/(2*a);
printf («Уравнение имеет два корняn»);
printf(«x1=%gn»,x1);
printf(«x2=%gn»,x2);

Полезно почитать по теме условия в си

Видео:Программа для решения квадратных уравнений на С++Скачать

Программа для решения квадратных уравнений на С++

Решение квадратного уравнения

Уравнение вида a⋅x 2 + b⋅x + c = 0квадратное уравнение.

a, b, c — действительные числа, a ≠ 0.

Для того чтобы вычислить корни квадратного уравнения, нужно сначала найти дискриминант.

D = b 2 — 4⋅a⋅c;

  • если D 0, то уравнение имеет два действительных корня:
    • x1 = (-b + √D) / (2⋅a);
    • x2 = (-b + √D) / (2⋅a).

🔥 Видео

решение (поиск корней) квадратных уравнений c++Скачать

решение (поиск корней) квадратных уравнений c++

Язык C за 100 секунд [перевод на русский]Скачать

Язык C за 100 секунд [перевод на русский]

Пишем программы #1 квадратные уравнения на C++Скачать

Пишем программы #1 квадратные уравнения на C++

Решение уравнений, линейная программа на С++Скачать

Решение уравнений, линейная программа на С++

Решение квадратного уравнения на C# для консоли Windows в Visual Studio 2022Скачать

Решение квадратного уравнения на C# для консоли Windows в Visual Studio 2022

Visual C++. Программа решения уравнений динамики вязкой жидкости. Урок 1. Теоретические основыСкачать

Visual C++. Программа решения уравнений динамики вязкой жидкости. Урок 1. Теоретические основы

Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

С++ для начинающих Урок 8 - Решение квадратного уравненияСкачать

С++ для начинающих Урок 8 - Решение квадратного уравнения

34 Задача: Найти корни квадратного уравнения при помощи PythonСкачать

34 Задача: Найти корни квадратного уравнения при помощи Python

10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравненияСкачать

10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравнения

Visual C++. Программа решения уравнений Навье-Стокса. Урок 6. Решение модельного уравнения энергииСкачать

Visual C++. Программа решения уравнений Навье-Стокса. Урок 6. Решение модельного уравнения энергии

Научиться программировать - C# - "решение квадратного уравнения", разбор задачи (часть 1)Скачать

Научиться программировать - C# - "решение квадратного уравнения", разбор задачи (часть 1)

Программирование на С++. Урок 13. Решение квадратного уравнения.Скачать

Программирование на С++. Урок 13. Решение квадратного уравнения.

Программа для решения корней квадратного уравнения с использованием дискриминанта на языке ПаскальСкачать

Программа для решения корней квадратного уравнения с использованием дискриминанта на языке Паскаль

Решение уравнений (метод дихотомии) на C#Скачать

Решение уравнений (метод дихотомии) на C#
Поделиться или сохранить к себе: