Калькулятор решений уравнений с дробями онлайн с решением в полном виде

Рациональные уравнения онлайн калькулятор

Наш калькулятор поможет вам решить рациональное уравнение или неравенство. Искусственный интеллект, который лежит в основе калькулятора, даст ответ с подробным решением и пояснениями.

Калькулятор полезен старшеклассникам при подготовке к контрольным работам и экзаменам, для проверки знаний перед ЕГЭ, родителям школьников с целью контроля решения многих задач по математике и алгебре.

Содержание
  1. Добро пожаловать на сайт Pocket Teacher
  2. Наш искусственный интеллект решает сложные математические задания за секунды
  3. начать
  4. Рациональные уравнения
  5. Бесплатный онлайн калькулятор
  6. Универсальный математический калькулятор
  7. Онлайн калькулятор уравнений, интегралов, производных, пределов, дробей и пр.
  8. Пояснения к калькулятору
  9. Упрощение выражений, раскрытие скобок, разложение многочленов на множители
  10. Решение уравнений и неравенств
  11. Решение систем уравнений и неравенств
  12. Вычисление выражений с логарифмами
  13. Вычисление пределов функций
  14. Решение интегралов
  15. Вычисление производных
  16. Действия над комплексными числами
  17. Калькулятор дробей: решение уравнений с дробями
  18. Онлайн калькулятор уравнений с дробями
  19. Как перевести смешанную дробь в обыкновенную
  20. Как перевести обыкновенную дробь в смешанную
  21. Как перевести обыкновенную дробь в десятичную
  22. Как перевести десятичную дробь в обыкновенную
  23. Как перевести дробь в проценты
  24. Как перевести проценты в дробь
  25. Сложение дробей
  26. Вычитание дробей
  27. Умножение дробей
  28. Деление дробей

Видео:Решить уравнение с дробями - Математика - 6 классСкачать

Решить уравнение с дробями - Математика - 6 класс

Добро пожаловать на сайт Pocket Teacher

Наш искусственный интеллект решает сложные математические задания за секунды

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Видео:Как найти Х в уравнении с дробью. Уравнений с дробями. Как решить дробное уравнение. Пропорция.Скачать

Как найти Х в уравнении с дробью. Уравнений с дробями. Как решить дробное уравнение. Пропорция.

начать

Видео:Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Рациональные уравнения

В рациональных уравнениях обе части уравнения представляют собой рациональные выражения вида: s(x) = 0 или расширено: s(x) = b(x), где s(x), b(x) – рациональные выражения.

Рациональное выражение является алгебраическим выражением, которое состоит из рациональных чисел и переменной величины, соединенных с помощью сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем. Таким образом, это целые и дробные выражения без радикалов.

Действия с рациональными числами обладают свойствами действий с целыми числами.

К примеру, при умножении рациональных чисел есть дополнительное свойство – умножение взаимно обратных чисел. Для того чтобы умножить два рациональных числа, необходимо умножить модули этих чисел, а перед ответом поставить «плюс», если у множителей одинаковые знаки и «минус», если знаки разные.

Умножение рационального числа на ноль. Когда в рациональном уравнении хоть один множитель – ноль, то и произведение будет равняться нолю.

Умножение рациональных чисел с разными знаками. При умножении нескольких чисел с разными знаками, необходимо умножить модули каждого из этих чисел. Если количество множителей с отрицательными знаками – четное, то произведение всегда будет со знаком «плюс», если количество множителей с отрицательными знаками – нечетное, то и произведение будет со знаком «минус».

Делить на ноль в рациональных уравнениях, как и в обычных нельзя.

Чтобы решить рациональное уравнение, необходимо определить тип этого уравнения и применить некоторые математические хитрости, созданные для этого типа. Если Вы не помните этих хитростей, то можете воспользоваться калькулятором для решения рациональных уравнений, который быстро подберёт все корни данного уравнений.

Решением рационального уравнения будут являться корень – конкретное число, при постановке которого в уравнение даст верное равенство. Корней рационального уравнения может быть много и важно в решении не упустить ни один корень.

Видео:Уравнения с дробями 5 класс (задания, примеры) - как решать?Скачать

Уравнения с дробями 5 класс (задания, примеры) - как решать?

Бесплатный онлайн калькулятор

Наш бесплатный решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей группе ВКонтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать

Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.

Универсальный математический калькулятор

Онлайн-калькулятор позволяет решать математические выражения любой сложности с выводом подробного результата решения по шагам. Калькулятор решений уравнений с дробями онлайн с решением в полном виде

Также универсальный калькулятор умеет производить действия со скобками, дробями, тригонометрическими функциями, возведение в любую степень и многое другое (смотрите примеры ниже).

Видео:Уравнения с дробями 6 класс (задания, примеры) - как решать?Скачать

Уравнения с дробями 6 класс (задания, примеры) - как решать?

Онлайн калькулятор уравнений, интегралов, производных, пределов, дробей и пр.

Разделитель системы уравнений

Натуральный логарифм и предел:

Видео:Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать

Решение задач с помощью уравнений. Видеоурок 29. Математика 6 класс

Пояснения к калькулятору

  1. Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку ↵ .
  2. Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками ← и → .
  3. ⌫ — удалить в поле ввода символ слева от курсора.
  4. C — очистить поле ввода.
  5. При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
  6. Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½ , ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо → и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши ← и ввести число.
  7. Ввод числа в n-ой степени и квадратного корня прозводится кнопками a b и √ соответственно. Завершить ввод значения в степени или в корне можно клавишей → .

Видео:Уравнение с дробями видео урок ( Математика 5 класс )Скачать

Уравнение с дробями видео урок ( Математика 5 класс )

Упрощение выражений, раскрытие скобок, разложение многочленов на множители

Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.

Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Решение уравнений и неравенств

Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x , y , z .

Примеры решений уравнений и неравенств:

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Решение систем уравнений и неравенств

Системы уравнений и неравенств также решаются с помощью онлайн калькулятора. Чтобы задать систему необходимо ввести уравнения/неравенства, разделяя их точкой с запятой с помощью кнопки ; .

Примеры вычислений систем уравнений и неравенств:

Видео:Уравнение. 5 класс.Скачать

Уравнение. 5 класс.

Вычисление выражений с логарифмами

В калькуляторе кнопкой loge(x) возможно задать натуральный логарифм, т.е логарифм с основанием «e»: loge(x) — это ln(x). Для того чтобы ввести логарифм с другим основанием нужно преобразовать логарифм по следующей формуле: $$log_a left(bright) = frac$$ Например, $$log_ left(5x-1right) = frac$$

Примеры решений выражений с логарифмами:

Видео:Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать

Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.

Вычисление пределов функций

Предел функции задается последовательным нажатием групповой кнопки f(x) и функциональной кнопки lim .

Примеры решений пределов:

Видео:КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ, СВОДЯЩЕЕСЯ К ЛИНЕЙНОМУ? Примеры | АЛГЕБРА 7 классСкачать

КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ, СВОДЯЩЕЕСЯ К ЛИНЕЙНОМУ? Примеры | АЛГЕБРА 7 класс

Решение интегралов

Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
∫ f(x) — для неопределенного интеграла;
b a∫ f(x) — для определенного интеграла.

В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.

Примеры вычислений интегралов:

Видео:дробное уравнение как решать для 6 классаСкачать

дробное уравнение как решать для 6 класса

Вычисление производных

Математический калькулятор может дифференцировать функции (нахождение производной) произвольного порядка в точке «x». Ввод производной в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
f'(x) — производная первого порядка;
f»(x) — производная второго порядка;
f»'(x) — производная третьего порядка.
f n (x) — производная любого n-о порядка.

Видео:№6 Линейное уравнение х-х/3=3 Простое уравнение с дробями Решите уравнение с дробью 9кл 11кл ОГЭ ЕГЭСкачать

№6 Линейное уравнение х-х/3=3 Простое уравнение с дробями Решите уравнение с дробью 9кл 11кл ОГЭ ЕГЭ

Действия над комплексными числами

Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i

Видео:Сложное уравнение с дробями. Алгебра 7 класс.Скачать

Сложное уравнение с дробями. Алгебра 7 класс.

Калькулятор дробей: решение уравнений с дробями

Онлайн калькулятор дробей позволяет производить простейшие арифметические операции с дробями: сложение дробей, вычитание дробей, умножение дробей, деление дробей. Чтобы произвести вычисления, заполните поля соответствующие числителям и знаменателям двух дробей.

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Онлайн калькулятор уравнений с дробями

Дробью в математике называется число, представляющее часть единицы или несколько её частей.

Обыкновенная дробь записывается в виде двух чисел, разделенных обычно горизонтальной чертой, обозначающей знак деления. Число, располагающееся над чертой, называется числителем. Число, располагающееся под чертой, называется знаменателем. Знаменатель дроби показывает количество равных частей, на которое разделено целое, а числитель дроби – количество взятых этих частей целого.

Дроби бывают правильными и неправильными.

  • Правильной называется дробь, у которой числитель меньше знаменателя.
  • Неправильная дробь – если у дроби числитель больше знаменателя.

Смешанной называется дробь, записанная в виде целого числа и правильной дроби, и понимается как сумма этого числа и дробной части. Соответственно, дробь, не имеющая целую часть, называется простой дробью. Любая смешанная дробь может быть преобразована в неправильную простую дробь.

Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)

Как перевести смешанную дробь в обыкновенную

Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя: Калькулятор решений уравнений с дробями онлайн с решением в полном виде

Калькулятор решений уравнений с дробями онлайн с решением в полном виде

Видео:Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Как перевести обыкновенную дробь в смешанную

Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:

  1. Поделить числитель дроби на её знаменатель
  2. Результат от деления будет являться целой частью
  3. Остаток отделения будет являться числителем

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Как перевести обыкновенную дробь в десятичную

Для того, чтобы перевести обыкновенную дробь в десятичную, нужно разделить её числитель на знаменатель.

Как перевести десятичную дробь в обыкновенную

Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:

  1. Записать дробь в виде десятичная Калькулятор решений уравнений с дробями онлайн с решением в полном виде
  2. Умножать числитель и знаменатель на 10 до тех пор, пока числитель не станет целым числом.
  3. Найти наибольший общий делитель и сократить дробь.

Калькулятор решений уравнений с дробями онлайн с решением в полном виде

Как перевести дробь в проценты

Для того, чтобы перевести обыкновенную или смешанную дробь в проценты, необходимо перевести её в десятичную дробь и умножить на 100.

Как перевести проценты в дробь

Для того, чтобы перевести проценты в дробь, необходимо получить из процентов десятичную дробь (разделив на 100), затем полученную десятичную дробь перевести в обыкновенную.

Сложение дробей

Алгоритм действий при сложении двух дробей такой:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Выполнить сложение дробей путем сложения их числителей.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Вычитание дробей

Алгоритм действий при вычитании двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Умножение дробей

Алгоритм действий при умножении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  3. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  4. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Деление дробей

Алгоритм действий при делении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Чтобы произвести деление дробей, нужно преобразовать вторую дробь, поменяв местами её числитель и знаменатель, а затем произвести умножение дробей.
  3. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Поделиться или сохранить к себе: