Сравнение между собой Ср и СV приводит к уравнению Майера:
.
Это уравнение показывает, что Ср больше, чем СV на величину универсальной газовой постоянной R. Это объясняется тем, что при изобарном нагревании газа, в отличие от изохорного нагревания, требуется дополнительное количество теплоты на совершение работы расширения газа.
Таким образом, молярная теплоемкость газа определяется лишь числом степеней свободы и не зависит от температуры. Это утверждение справедливо в довольно широком интервале температур лишь для одноатомных газов.Уже у двухатомных газов число степеней свободы, проявляющееся в теплоемкости, зависит от температуры.
Дата добавления: 2015-10-05 ; просмотров: 923 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Видео:Термодинамика | уравнение МайераСкачать
Вывести уравнение роберта майера ср сv r где ср сv удельные теплоемкости газа
Теплоёмкость идеального газа. Уравнение Майера |
Теплоёмкость тела характеризуется количеством теплоты, необходимой для нагревания этого тела на один градус:
Однако, теплоёмкость – величина неопределённая, поэтому пользуются понятиями удельной и молярной теплоёмкости. Удельная теплоёмкость (Суд) есть количество теплоты, необходимое для нагревания единицы массы вещества на 1 градус [Cуд] = Дж/К. Для газов удобно пользоваться молярной теплоемкостью Cμ— количество теплоты, необходимое для нагревания 1 моля газа на 1 градус:
Из п. 1.2 известно, что молярная масса – масса одного моля: Теплоёмкость термодинамической системы зависит от того, как изменяется состояние системы при нагревании. Если газ нагревать при постоянном объёме, то всё подводимое тепло идёт на нагревание газа, то есть изменение его внутренней энергии. Теплоёмкость при этом обозначается СV. СР – теплоемкость при постоянном давлении. Если нагревать газ при постоянном давлении Р в сосуде с поршнем, то поршень поднимется на некоторую высоту h, то есть газ совершит работу (рис. 4.2). Итак, проводимое тепло и теплоёмкость зависят от того, каким путём осуществляется передача тепла. Значит, Q и С не являются функциями состояния. Величины СР и СV оказываются связанными простыми соотношениями. Найдём их. Пусть мы нагреваем один моль идеального газа при постоянном объёме(dA = 0). Тогда первое начало термодинамики запишем в виде:
Теплоемкость при постоянном объёме будет равна:
Из (4.2.4) следует, что
Для произвольной идеальной массы газа:
При изобарическом процессе, кроме увеличения внутренней энергии, происходит совершение работы газом:
Из этого следует, что физический смысл универсальной газовой постоянной в том, что R – численно равна работе, совершаемой одним молем газа при нагревании на один градус в изобарическом процессе. Используя это соотношение, Роберт Майер в 1842 г. вычислил механический эквивалент теплоты: 1 кал = 4,19 Дж. Полезно знать формулу Майера для удельных теплоёмкостей: Видео:Урок 172. Применение 1 закона термодинамики для различных процессовСкачать Уравнение МайераУравнение Майера связывает теплоемкости идеального газа в двух изопроцессах, тогда перейдем к самому его определению. Видео:Количество теплоты, удельная теплоемкость вещества. 8 класс.Скачать Теплоемкость. Уравнение МайераПереданное телу количество теплоты для его нагревания на 1 К получило название теплоемкости тела данной системы. Обозначение принимается буквой » С » : Значение теплоемкости единицы молярной массы тела: c μ = C v ( 2 ) . Выражение называется молярной теплоемкостью. Теплоемкость не считается функцией состояния, так как является характеристикой бесконечно близких состояний системы или выражается в качестве функции бесконечно малого процесса, совершаемого в системе. В количественном выражении это означает, что из ( 1 ) , применяя первое начало термодинамики, дифференциальная форма получится: C = δ Q d T = d U + p d V d T ( 3 ) . Видео:Решение задач на термохимические уравнения. 8 класс.Скачать Уравнение Майера для идеального газаОпределение термодинамической системы производится при помощи трех параметров p , V , T . Существующее между ними отношение получило название уравнения состояния. Для идеального газа используется уравнение Менделеева-Клапейрона. Данная связь запишется в виде: p = p ( T , V ) или T = T ( p , V ) , V = V ( p , T ) . При выборе независимых переменных в качестве V и T внутренняя энергия системы выражается в виде функции U = U ( T , V ) . Получим, что значение полного дифференциала от внутренней энергии примет вид: d U = ∂ U ∂ T V d T + ∂ U ∂ V T d V ( 4 ) . Произведем подстановку из ( 4 ) в ( 3 ) , тогда c = ∂ U ∂ T V d T + ∂ U ∂ V T d V + p d V d T = ∂ U ∂ T V + p + ∂ U ∂ V T d V d T ( 5 ) . Исходя из формулы ( 5 ) , теплоемкость находится в зависимости от процесса. Если он изохорный, то Значение теплоемкости изохорного процесса запишется как: C V = ∂ U ∂ T V ( 6 ) . При изобарном теплоемкость выражается через формулу: C p = ∂ U ∂ T V + p + ∂ U ∂ V T ∂ V ∂ T p = C V + p + ∂ U ∂ V T ∂ V ∂ T p ( 7 ) . Перейдем к рассмотрению исследуемой системе идеального газа. Запись малого приращения энергии идеального газа: d U = i 2 v R d T ( 8 ) . d U d V T = 0 ( 9 ) . Состояние идеального газа описывается при помощи уравнения Менделеева-Клапейрона: ∂ V ∂ T p = v R p ( 11 ) . Произведем подстановку в ( 7 ) из ( 10 ) и ( 11 ) : C p = C V + p + 0 v R p = C V + v R ( 12 ) . Выражение ( 12 ) называют выведенным соотношением Майера. Или для молярных теплоемкостей: C μ p = C μ V + R ( 13 ) . Найти удельную теплоемкость смеси 16 г кислорода и 10 г гелия в процессе с постоянным давлением. Если Q считается количеством тепла, получаемым смесью газов в процессе, то Q = c p m ∆ T ( 1 . 1 ) , где m является массой смеси, c p – удельной теплоемкостью смеси при неизменном давлении. Q O 2 — это количество тепла, получаемое кислородом: Q O 2 = c p O 2 m O 2 ∆ T ( 1 . 2 ) , m O 2 выражается массой кислорода, c p O 2 – теплоемкостью кислорода с постоянным давлением. Для гелия аналогично: Q H e = c p H e m H e ∆ T ( 1 . 3 ) . Кроме этого рассмотрим: Q = c p m ∆ T = Q O 2 + Q H e = c p O 2 m O 2 ∆ T + c p H e m H e ∆ T ( 1 . 4 ) . Нахождение массы смеси производится по закону сохранения массы: m = m O 2 + m H e ( 1 . 5 ) . Произведем выражение теплоемкости c p из ( 1 . 4 ) , учитывая ( 1 . 5 ) . Тогда имеем: c p = c p O 2 m O 2 + c p H e m H e m O 2 + m H e ( 1 . 6 ) . Существует связь между молярной теплоемкостью и удельной: c μ = c · μ → c = c μ μ ( 1 . 7 ) . Если c μ V = i 2 R , то по уравнению Роберта Майера c μ p = c μ V + R : c μ p = i + 2 2 R ( 1 . 8 ) ; i H e = 3 , i O 2 = 5 . В данном случае удельные теплоемкости запишутся как: c p H e = 5 2 R μ H e , c p O 2 = 7 R 2 μ O 2 ( 1 . 9 ) . Результатом будет записанная формула удельной теплоемкости смеси: c p = 7 R 2 μ O 2 m O 2 + 5 2 R μ H e m H e m O 2 + m H e ( 1 . 10 ) . c p = 3 , 5 · 8 , 31 · 16 32 + 2 , 5 · 8 , 31 · 10 4 26 = 14 , 5 + 51 , 94 26 = 2 , 56 Д ж г К . Ответ: удельная теплоемкость смеси равняется 2 , 56 Д ж г К . При проведении опытов Джоулем было получено, что с μ p — c μ V = 1 , 986 к а л К · м о л ь . Значение газовой постоянной, измеренной в механических единицах R = 8 , 314 · 10 7 э р г К · м о л ь . Определите, как соотносятся 1 к а л , э р г , Д ж . Основой решения данного задания принято считать уравнение Майера, формула записывается: с μ p = c μ V + R → c μ p — c μ V = R ( 2 . 1 ) . Отсюда получим, что: c μ p — c μ V = 1 , 986 к а л К · м о л ь = 8 , 314 · 10 7 э р г К · м о л ь → 1 к а л = 4 , 18 · 10 7 э р г = 4 , 18 Д ж . Ответ: 1 к а л = 4 , 18 · 10 7 э р г = 4 , 18 Д ж . 🎦 ВидеоАдиабатный процесс. 10 класс.Скачать Теплоемкость. Теплоемкость газа. Молярная теплоемкостьСкачать Лекция по физике №8. Распределение Больцмана. Теплоёмкость, Уравнение адиабатического процесса.Скачать Рассмотрение темы: "Теплоёмкость газов"Скачать Физика для чайников. Урок 27. Теплоёмкость газаСкачать Решение задач на уравнение теплового баланса. Физика 8 классСкачать Урок 147. Задачи на основное уравнение МКТ идеального газаСкачать Физика # 27. Теплоёмкость газаСкачать Теплоемкость газовСкачать Лекция №1 "Основные понятия молекулярной физики"Скачать 28. Prove that: Cp - Cv = R | Mayer's formula | Complete ConceptСкачать ФИЗИКА ЗА 5 МИНУТ - ТЕРМОДИНАМИКАСкачать Урок 113 (осн). Задачи на уравнение теплового балансаСкачать Термодинамика - Лекция 3Скачать Консультация по термодинамике. Часть 1Скачать Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать |