Вывести уравнение колебаний физического маятника из закона сохранения энергии

Видео:Урок 92 (осн). Колебательное движение. МаятникиСкачать

Урок 92 (осн). Колебательное движение. Маятники

Гармонические колебания

Вывести уравнение колебаний физического маятника из закона сохранения энергии

О чем эта статья:

9 класс, 11 класс, ЕГЭ/ОГЭ

Видео:Классические уравнения | физический маятник | вывод при помощи уравнения Эйлера - ЛагранжаСкачать

Классические уравнения | физический маятник | вывод при помощи уравнения Эйлера - Лагранжа

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Видео:Математические и пружинные маятники. 11 класс.Скачать

Математические и пружинные маятники. 11 класс.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Видео:Галилео. Эксперимент. Закон сохранения энергииСкачать

Галилео. Эксперимент. Закон сохранения энергии

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Видео:Вывод закона сохранения механической энергии | Физика 9 класс #22 | ИнфоурокСкачать

Вывод закона сохранения механической энергии | Физика 9 класс #22 | Инфоурок

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Видео:ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ в механике класс физика ПерышкинСкачать

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ в механике класс физика Перышкин

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T = t/N

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

Она используется в уравнении гармонических колебаний:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Видео:Превращение энергии при колебаниях. Уравнение колебательного движения. 1 часть. 9 класс.Скачать

Превращение энергии при колебаниях. Уравнение колебательного движения. 1 часть. 9 класс.

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Видео:Закон сохранения и превращения энергии. 9 класс.Скачать

Закон сохранения и превращения энергии. 9 класс.

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

Вывести уравнение колебаний физического маятника из закона сохранения энергии

l — длина нити [м]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Видео:Физический маятникСкачать

Физический маятник

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

Вывести уравнение колебаний физического маятника из закона сохранения энергии

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Видео:Урок 122. Закон сохранения полной механической энергииСкачать

Урок 122. Закон сохранения полной механической энергии

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Видео:Закон Сохранения Энергии // Урок по Физике 7 класс - Закон Сохранения Механической ЭнергииСкачать

Закон Сохранения Энергии // Урок по Физике 7 класс - Закон Сохранения Механической Энергии

1.1. Уравнение гармонических колебаний

В этом разделе мы покажем, что уравнения колебательного движения многих систем, в сущности, одинаковы, так что различные физические процессы могут быть описаны одними и теми же математическими формулами.

Пружинный маятник — это система, состоящая из шарика массой m, подвешенного на пружине длиной Вывести уравнение колебаний физического маятника из закона сохранения энергии.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Рис. 1.2. К выводу уравнения движения для пружинного маятника

В положении равновесия (рис. 1.2) сила тяжести Вывести уравнение колебаний физического маятника из закона сохранения энергииуравновешивается упругой силой Вывести уравнение колебаний физического маятника из закона сохранения энергии:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Вывести уравнение колебаний физического маятника из закона сохранения энергии

где Вывести уравнение колебаний физического маятника из закона сохранения энергии – статическое удлинение пружины. Направим ось x вниз и выберем начало отсчета так, что координата x = 0 соответствует положению неподвижного шарика в положении равновесия.

Если теперь оттянуть шарик от положения равновесия на расстояние x, то полное удлинение пружины станет равным Вывести уравнение колебаний физического маятника из закона сохранения энергии. По закону Гука проекция результирующей силы на ось ОХ будет тогда равна

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Знак минус означает, что сила стремится уменьшить отклонение от положения равновесия. Полученное выражение соответствует упругой силе слабо деформированной пружины.

Запишем теперь уравнение второго закона Ньютона:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Его можно также представить в виде:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Математический маятник

Математический маятник это идеализированная система, состоящая из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Будем характеризовать отклонение маятника от положения равновесия углом Вывести уравнение колебаний физического маятника из закона сохранения энергии, который образует нить с вертикалью (рис. 1.3).

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Рис. 1.3. К выводу уравнения движения математического маятника

При отклонении маятника от положения равновесия на материальную точку массой m действуют сила тяжести Вывести уравнение колебаний физического маятника из закона сохранения энергиии сила натяжения нити Вывести уравнение колебаний физического маятника из закона сохранения энергии. Соответственно, уравнение движения этой материальной точки имеет вид

Вывести уравнение колебаний физического маятника из закона сохранения энергии.

Проецируя его на направления нормали и касательной к траектории (окружности радиуса Вывести уравнение колебаний физического маятника из закона сохранения энергии), получаем

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Модуль скорости Вывести уравнение колебаний физического маятника из закона сохранения энергииравен Вывести уравнение колебаний физического маятника из закона сохранения энергии, учитывая, что при движении точки к положению равновесия угол Вывести уравнение колебаний физического маятника из закона сохранения энергииубывает, а скорость точки Вывести уравнение колебаний физического маятника из закона сохранения энергиирастет, напишем

Вывести уравнение колебаний физического маятника из закона сохранения энергии.

Тогда второе из написанных выше уравнений движения приобретает вид

Вывести уравнение колебаний физического маятника из закона сохранения энергии

При малых отклонениях маятника от вертикали, когда Вывести уравнение колебаний физического маятника из закона сохранения энергии,

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Физический маятник

Физический маятник это протяженное колеблющееся тело, закрепленное на оси. Его размеры таковы, что его невозможно рассматривать как материальную точку.

Пример физического маятника приведен на рис. 1.4.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Рис. 1.4. К выводу уравнения движения физического маятника

При отклонении маятника от положения равновесия на угол Вывести уравнение колебаний физического маятника из закона сохранения энергиивозникает вращательный момент, стремящийся вернуть маятник в положение равновесия. Этот момент равен

Вывести уравнение колебаний физического маятника из закона сохранения энергии

где m – масса маятника, а l – расстояние 0C между точкой подвеса 0 и центром масс C маятника.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Рассматривая Вывести уравнение колебаний физического маятника из закона сохранения энергиикак вектор, связанный с направлением поворота правилом правого винта, противоположность знаков Вывести уравнение колебаний физического маятника из закона сохранения энергиии Вывести уравнение колебаний физического маятника из закона сохранения энергииможно объяснить тем, что векторы Вывести уравнение колебаний физического маятника из закона сохранения энергиии Вывести уравнение колебаний физического маятника из закона сохранения энергиинаправлены в противоположные стороны. Обозначив момент инерции маятника относительно оси, проходящей через точку подвеса, как I, для маятника можно записать основное уравнение динамики вращательного движения:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Ограничимся рассмотрением малых отклонений от положения равновесия:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

В этом случае уравнение колебаний принимает вид:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

В случае, когда физический маятник можно представить как материальную точку, колеблющуюся на нити длиной l, момент инерции равен

Вывести уравнение колебаний физического маятника из закона сохранения энергии

и мы приходим к уравнению (1.6) движения математического маятника.

Колебания поршня в сосуде с идеальным газом

Рассмотрим цилиндр с площадью поперечного сечения Вывести уравнение колебаний физического маятника из закона сохранения энергии, в который вставлен поршень массы Вывести уравнение колебаний физического маятника из закона сохранения энергии(рис. 1.5). Под поршнем в цилиндре идеальный газ с показателем адиабаты Вывести уравнение колебаний физического маятника из закона сохранения энергии, над поршнем воздух с постоянным (атмосферным) давлением Вывести уравнение колебаний физического маятника из закона сохранения энергии. Поршень может двигаться в цилиндре вверх и вниз без трения. Будем считать, что в равновесии объем идеального газа под поршнем равен Вывести уравнение колебаний физического маятника из закона сохранения энергиии изменения объема газа, обусловленные движением поршня, происходят адиабатно, то есть без теплообмена со стенками цилиндра и поршнем.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Рис. 1.5. Колебания поршня, закрывающего сосуд с идеальным газом

В состоянии равновесия давление в газе под поршнем складывается из атмосферного давления Вывести уравнение колебаний физического маятника из закона сохранения энергиии давления Вывести уравнение колебаний физического маятника из закона сохранения энергии, оказываемого поршнем. Обозначим это результирующее давление Вывести уравнение колебаний физического маятника из закона сохранения энергии:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Переместим поршень на расстояние x вверх. Объем сосуда увеличится и станет равным

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Соответственно уменьшится давление. В силу предположения об отсутствии теплообмена, новое давление в газе можно найти из уравнения адиабаты Пуассона

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Здесь Вывести уравнение колебаний физического маятника из закона сохранения энергии— показатель адиабаты, зависящий от числа степеней свободы молекул газа.

При малых колебаниях, когда изменение объема газа Вывести уравнение колебаний физического маятника из закона сохранения энергиимного меньше его «равновесной» величины Вывести уравнение колебаний физического маятника из закона сохранения энергии, то есть когда

Вывести уравнение колебаний физического маятника из закона сохранения энергии

выражение (1.11) можно разложить в ряд Тейлора:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

На поршень действуют три силы: сила атмосферного давления Вывести уравнение колебаний физического маятника из закона сохранения энергии, сила давления газа под поршнем Вывести уравнение колебаний физического маятника из закона сохранения энергиии сила тяжести Вывести уравнение колебаний физического маятника из закона сохранения энергии. Знаки сил соответствуют выбору положительного направления оси x вверх. Используя (1.10) и (1.12), находим для равнодействующей Вывести уравнение колебаний физического маятника из закона сохранения энергииэтих сил:

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Используя (1.13), уравнение движения поршня

Видео:Применение закона сохранения и превращения механической энергии. Практическая часть. 9 класс.Скачать

Применение закона сохранения и превращения механической энергии. Практическая часть. 9 класс.

Формулы математического маятника

Видео:математический маятник ЕГЭ ФИЗИКА колебания частота периодСкачать

математический маятник ЕГЭ ФИЗИКА колебания частота период

Определение и формулы математического маятника

Математический маятник — это колебательная система, являющаяся частным случаем физического маятника, вся масса которого сосредоточена в одной точке, центре масс маятника.

Обычно математический маятник представляют как шарик, подвешенный на длинной невесомой и нерастяжимой нити. Это идеализированная система, совершающая гармонические колебания под действием силы тяжести. Хорошим приближением к математическому маятнику массивный маленький шарик, осуществляющий колебания на тонкой длинной нити.

Галилей первым изучал свойства математического маятника, рассматривая качание паникадила на длинной цепи. Он получил, что период колебаний математического маятника не зависит от амплитуды. Если при запуске мятника отклонять его на разные малые углы, то его колебания будут происходить с одним периодом, но разными амплитудами. Это свойство получило название изохронизма.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Видео:Видеоурок по физике "Математический и пружинный маятники"Скачать

Видеоурок по физике "Математический и пружинный маятники"

Уравнение движения математического маятника

Математический маятник — классический пример гармонического осциллятора. Он совершает гармонические колебания, которые описываются дифференциальным уравнением:

где $varphi $ — угол отклонения нити (подвеса) от положения равновесия.

Решением уравнения (1) является функция $varphi (t):$

где $alpha $ — начальная фаза колебаний; $_0$ — амплитуда колебаний; $_0$ — циклическая частота.

Колебания гармонического осциллятора — это важный пример периодического движения. Осциллятор служит моделью во многих задачах классической и квантовой механики.

Видео:Галилео. Эксперимент. Математический маятник ГалилеяСкачать

Галилео. Эксперимент. Математический маятник Галилея

Циклическая частота и период колебаний математического маятника

Циклическая частота математического маятника зависит только от длины его подвеса:

Период колебаний математического маятника ($T$) в этом случае равен:

Выражение (4) показывает, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения.

Видео:Колебания математического маятникаСкачать

Колебания математического маятника

Уравнение энергии для математического маятника

При рассмотрении колебаний механических систем с одной степенью свободы часто берут в качестве исходного не уравнения движения Ньютона, а уравнение энергии. Так как его проще составлять, и оно является уравнением первого порядка по времени. Предположим, что трение в системе отсутствует. Закон сохранения энергии для совершающего свободные колебания математического маятника (колебания малые) запишем как:

где $E_k$ — кинетическая энергия маятника; $E_p$ — потенциальная энергия маятника; $v$ — скорость движения маятника; $x$ — линейное смещение груза маятника от положения равновесия по дуге окружности радиуса $l$, при этом угол — смещение связан с $x$ как:

Максимальное значение потенциальной энергии математического маятника равно:

Максимальная величина кинетической энергии:

где $h_m$ — максимальная высота подъема маятника; $x_m$- максимальное отклонение маятника от положения равновесия; $v_m=_0x_m$ — максимальная скорость.

Видео:Математический маятник или откуда формула периодаСкачать

Математический маятник или откуда формула периода

Примеры задач с решением

Задание. Какова максимальная высота подъема шарика математического маятника, если его скорость движения при прохождении положения равновесия составляла $v$?

Решение. Сделаем рисунок.

Вывести уравнение колебаний физического маятника из закона сохранения энергии

Пусть ноль потенциальной энергии шарика в его положении равновесия (точка 0).В этой точке скорость шарика максимальна и равна по условию задачи $v$. В точке максимального подъема шарика над положением равновесия (точка A), скорость шарика равна нулю, потенциальная энергия максимальна. Запишем закон сохранения энергии для рассмотренных двух положений шарика:

Из уравнения (1.1) найдем искомую высоту:

Ответ. $h=frac$

Задание. Каково ускорение силы тяжести, если математический маятник имеющий длину $l=1 м$, совершает колебания с периодом равным $T=2 с$? Считайте колебания математического маятника малыми.textit

Решение. За основу решения задачи примем формулу для вычисления периода малых колебаний:

Выразим из нее ускорение:

Проведем вычисления ускорения силы тяжести:

Ответ. $g=9,87 frac$

📸 Видео

Физика - импульс и закон сохранения импульсаСкачать

Физика - импульс и закон сохранения импульса

ЛР 1.05 Изучение колебаний физического маятникаСкачать

ЛР 1.05 Изучение колебаний физического маятника

Тема 3. Пружинный и математический маятники. Превращения энергии при гармонических колебанияхСкачать

Тема 3. Пружинный и математический маятники. Превращения энергии при гармонических колебаниях
Поделиться или сохранить к себе: