- Калькулятор квадратных уравнений
- Введите данные:
- Округление:
- Уравнение:
- Дискриминант:
- Корни квадратного уравнения:
- Решение по теореме Виета
- Преобразование в приведённый вид
- Разложение на множители
- График функции y = x²-8x+12
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение иррациональных уравнений и неравенств.
- Немного теории.
- Решение иррациональных уравнений и неравенств
- 1. Иррациональные уравнения
- 2. Иррациональные неравенства
- Калькулятор Уравнений. Решение Уравнений Онлайн
- 💡 Видео
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Калькулятор квадратных уравнений
Введите данные:
Округление:
Уравнение:
(a * x^ + b * x + c) = (1 * x^ — 8 * x + 12) = 0
Дискриминант:
(D = b^ — 4 * a * c) = ((-8)^ — 4 * 12) = (64 — 48) = 16
Корни квадратного уравнения:
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Решение по теореме Виета
Преобразование в приведённый вид
Наше уравнение уже является приведенным так как коэффициент a = 1
Итого, имеем приведенное уравнение:
(x^ -8 * x + 12 = 0)
Теорема Виета выглядит следующим образом:
(x_*x_=c)
(x_+x_=-b)
Мы получаем следующую систему уравнений:
(x_*x_=12)
(x_+x_=8)
Методом подбора получаем:
(x_ = 6)
(x_ = 2)
Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Разложение на множители
Разложение происходит по формуле:
(a*(x-x_)*(x-x_) = 0)
То есть у нас получается:
(1*(x-6)*(x-2) = 0)
Видео:🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
График функции y = x²-8x+12
Интервалы задаются через точку с запятой (; ). При задании интервалов и шага можно использовать математические выражения (прим. -4pi; (5/6)pi) или слово «авто» или оставить поля пустыми (эквивалентно «авто»)
Видео:🔴 Найдите корень уравнения (x-8)^2=(x-2)^2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать
Калькулятор онлайн.
Решение иррациональных уравнений и неравенств.
Этот математический калькулятор онлайн поможет вам решить иррациональное уравнение или неравенство. Программа для решения иррациональных уравнений и неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> sqrt(x) — квадратный корень x
x^(1/n) — корень степени n
Введите иррациональное уравнение или неравенство
Решить уравнение или неравенство
Видео:№8 Линейное уравнение x/12+x/8+x=-29/6 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать
Немного теории.
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Решение иррациональных уравнений и неравенств
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
1. Иррациональные уравнения
Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень. Для таких уравнений ищут, как правило, только действительные корни.
Основной метод решения иррациональных уравнений — метод возведения обеих частей уравнения в одну и ту же степень. При этом следует иметь в виду, что возведение обеих частей уравнения в одну и ту же нечётную степень есть равносильное преобразование уравнения, а в чётную — НЕравносильное. Значит, основные принципиальные трудности связаны с возведением обеих частей уравнения в одну и ту же чётную степень, когда из-за неравносильности преобразования могут появиться посторонние корни, а потому обязательна проверка всех найденных корней.
ПРИМЕР 1.
( sqrt[Large6normalsize] = sqrt[Large6normalsize] )
Возведя обе части уравнения в шестую степень, получим:
( x^2-5x = 2x-6 Rightarrow )
( x^2-7x +6= 0 Rightarrow )
( x_1=1, ; x_2=6 )
Проверка. «Хорошие» корни можно проверить непосредственной подстановкой в исходное уравнение. При x = 1 заданное уравнение принимает вид ( sqrt[Large6normalsize] = sqrt[Large6normalsize] ), во множестве действительных чисел такое «равенство» не имеет смысла. Значит, 1 — посторонний корень, он появился по причине расширения ОДЗ уравнения после возведения в шестую степень. При х = 6 заданное уравнение принимает вид ( sqrt[Large6normalsize] = sqrt[Large6normalsize] ) — это верное равенство.
Итак, уравнение имеет единственный корень: х = 6.
Ответ: х = 6
Введя новую переменную ( u=x^2-x), получим существенно более простое иррациональное уравнение:
( sqrt+sqrt = sqrt ).
Возведём обе части уравнения в квадрат:
( (sqrt+sqrt)^2 = (sqrt)^2 Rightarrow )
( u+2 +2sqrtsqrt +u+7 = 2u+21 Rightarrow )
( sqrt = 6 Rightarrow )
( u^2+9u+14=36 Rightarrow )
( u^2+9u-22=0 Rightarrow )
( u_1=2, ; u_2=-11 )
Проверка найденных значений их подстановкой в уравнение ( sqrt+sqrt = sqrt ) показывает, что ( u_1=2 ) — корень уравнения, а ( u_2=-11 ) — посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение ( x^2-x=2 Rightarrow x^2-x-2=0 ), решив которое находим два корня: ( x_1=2, ; x_2=-1 )
Ответ: 2; -1.
Уединение корня и возведение обеих частей уравнения в квадрат привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, можно заметить, что уравнение легко сводится к квадратному. Действительно, умножим обе его части на 2:
( 2x^2 +6 -2sqrt = 3x+12 Rightarrow )
( 2x^2 -3x +2 -2sqrt -8 = 0 Rightarrow )
Введя новую переменную ( y=sqrt ), получим: ( y^2-2y-8=0 ), откуда ( y_1=4, ; y_2=-2 ). Значит, исходное уравнение равносильно следующей совокупности уравнений:
( left[begin sqrt =4 \ sqrt = -2 endright. )
Из первого уравнения этой совокупности находим: ( x_1=35; ; x_2=-2 ). Второе уравнение корней не имеет.
Проверка. Так как совокупность уравнений равносильна исходному уравнению, причём второе уравнение этой совокупности корней не имеет, то найденные корни можно проверить подстановкой в уравнение ( sqrt =4). Эта подстановка показывает, что оба найденных значения x являются корнями этого уравнения, а значит, и исходного уравнения.
Ответ: 3,5; -2.
Областью определения уравнения является луч ( [5; ; +infty) ). В этой области выражение ( sqrt ) можно представить следующим образом: ( sqrt = sqrtsqrt ). Теперь уравнение можно переписать так:
( x+x -5 +2sqrtsqrt +2sqrt +2sqrt -48 = 0 Rightarrow ) ( (sqrt)^2 +2sqrtsqrt +(sqrt)^2 +2(sqrt+sqrt) -48 = 0 Rightarrow ) ( (sqrt +sqrt)^2 +2(sqrt+sqrt) -48 = 0 )
Введя новую переменную ( y= sqrt +sqrt ), получим квадратное уравнение ( y^2+2y-48=0 ), из которого находим: ( y_1=6, ; y_2=-8 ). Таким образом, задача свелась к решению совокупности уравнений:
( left[begin sqrt +sqrt =6 \ sqrt +sqrt = -8 endright. )
Из первого уравнения совокупности находим ( x= left( frac right)^2 ), второе уравнение совокупности решений явно не имеет.
Проверка. Нетрудно проверить (подстановкой), что ( x= left( frac right)^2 ) — является корнем уравнения ( sqrt +sqrt =6 ). Но это уравнение равносильно исходному уравнению, значит, ( x= left( frac right)^2 ) — является корнем и исходного уравнения.
Ответ: ( x= left( frac right)^2 )
Иногда при решении иррациональных уравнений оказывается удобным ввести две новые переменные.
ПРИМЕР 5.
( sqrt[Large4normalsize] + sqrt[Large4normalsize] =2 )
Введём новые переменные: ( left<begin u=sqrt[Large4normalsize] \ v=sqrt[Large4normalsize] endright. )
Тогда уравнение примет вид (u+v=2). Но для нахождения значений двух новых переменных одного уравнения недостаточно. Возведя в четвёртую степень обе части каждого из уравнений системы, получим:
( left<begin u^4=1-x \ v^4= 15+x endright. )
Сложим уравнения последней системы: (u^4 +v^4 =16). Таким образом, для нахождения u, v мы имеем следующую симметрическую систему уравнений:
( left<begin u+v=2 \ u^4 +v^4 =16 endright. )
Решив её, находим: ( left<begin u_1=0 \ v_1 =2; endright. ) ( left<begin u_2=2 \ v_2 =0 endright. )
Таким образом, исходное уравнение свелось к следующей совокупности систем уравнений: ( left<begin sqrt[Large4normalsize] =0 \ sqrt[Large4normalsize] =2; endright. ) ( left<begin sqrt[Large4normalsize] =2 \ sqrt[Large4normalsize] =0 endright. )
Решив эту совокупность, находим: (x_1=1, ; x_2=-15 )
Проверка. Проще всего проверить найденные корни непосредственной подстановкой в заданное уравнение. Проделав это, убеждаемся, что оба значения являются корнями исходного уравнения.
Ответ: 1; -15.
ПРИМЕР 6.
( sqrt[Large3normalsize] + sqrt[Large3normalsize] = sqrt[Large3normalsize] )
Возведём обе части уравнения в куб:
( 2x+1 + 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] + 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] +6x+1 = 2x-1 Rightarrow ) ( 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] cdot (3sqrt[Large3normalsize] + sqrt[Large3normalsize] ) = -6x-3 )
Воспользовавшись исходным уравнением, заменим сумму ( sqrt[Large3normalsize] + sqrt[Large3normalsize] ) на выражение ( sqrt[Large3normalsize] ):
( 3sqrt[Large3normalsize] cdot sqrt[Large3normalsize] cdot sqrt[Large3normalsize] = -6x-3 Rightarrow )
( 3sqrt[Large3normalsize] = -2x-1 )
Возведём обе части в куб:
( (2x+1)(6x+1)(2x-1) = -(2x+1)^3 Rightarrow )
( (2x+1)((6x+1)(2x-1) + (2x+1)^2) =0 Rightarrow )
( 16x^2(2x+1) =0 Rightarrow )
( x_1= -05; ; x_2=0 )
Проверка. Подстановкой найденных значений x в исходное уравнение убеждаемся, что его корнем является только x = -0,5.
Ответ: -0,5.
Видео:СЛОЖИТЕ ДВА КОРНЯСкачать
2. Иррациональные неравенства
Рассмотрим иррациональное неравенство вида ( sqrt 0 ). Осталось лишь заметить, что при одновременном выполнении указанных выше условий обе части заданного иррационального неравенства неотрицательны, а потому их возведение в квадрат представляет собой равносильное преобразование неравенства.
Таким образом, иррациональное неравенство ( sqrt 0 \ f(x) 0 \ x^2-x-12 0 \ x > -12 endright. )
Получаем: ( x geqslant 4)
Ответ: ( x geqslant 4)
Рассмотрим теперь неравенство вида ( sqrt > g(x) ).
Ясно, во-первых, что его решения должны удовлетворять условию ( f(x) geqslant 0 ).
Во-вторых, замечаем, что при ( g(x) g(x) ) не вызывает сомнений.
В-третьих, замечаем, что если ( g(x) geqslant 0 ), то можно возвести в квадрат обе части заданного иррационального неравенства.
Таким образом, иррациональное неравенство ( sqrt > g(x) ) равносильно совокупности систем неравенств:
( left<begin f(x) geqslant 0 \ g(x) (g(x))^2 endright. )
Во второй системе первое неравенство является следствием третьего, его можно не писать.
Данное неравенство равносильно совокупности систем неравенств:
( left<begin x^2-x-12 geqslant 0 \ x 0 )
Преобразуем неравенство к виду ( x^2+3x-10 +3sqrt >0 ) и введём новую переменную ( y= sqrt ). Тогда последнее неравенство примет вид ( y^2+3y-10 >0 ), откуда находим, что либо (y 2).
Таким образом, задача сводится к решению совокупности двух неравенств:
( left[begin sqrt 2 endright. )
Первое неравенство не имеет решений, а из второго находим:
( x^2+3x >4 Rightarrow )
( (x+4)(x-1) >0 Rightarrow )
( x 1 )
Ответ: ( x 1 ).
Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
Калькулятор Уравнений. Решение Уравнений Онлайн
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
💡 Видео
Математика 5 класс. Уравнение. Корень уравненияСкачать
АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать
Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ. §12 алгебра 8 классСкачать
Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители ДелениеСкачать
§19 Логарифмические уравненияСкачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Свойства квадратного корня. Уравнение х2=а, 8 классСкачать