Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Прямая линия. Уравнение прямой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 — прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой , заданной уравнением

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,

проходящей через эти точки:

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Дробь Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3= k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

и обозначить Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3, то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 31, α2), компоненты которого удовлетворяют условию

Аα1 + Вα2 = 0 называется направляющим вектором прямой.

Пример. Найти уравнение прямой с направляющим вектором Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3(1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3или Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3, где

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3, а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3, которое называется

нормирующем множителем, то получим

xcosφ + ysinφ — p = 0 – нормальное уравнение прямой.

Видео:Видеоурок "Уравнение прямой с угловым коэффициентом"Скачать

Видеоурок "Уравнение прямой с угловым коэффициентом"

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Общее уравнение прямой 4x — 3y + 12 = 0 представить в виде: 1) с угловым коэффициентом; 2) в отрезках на осях и 3) в нормальном виде. Построить эту прямую.

1) Уравнение прямой с угловым коэффициентом имеет вид y = kx + b. Чтобы заданное уравнение преобразовать к этому виду, разрешим его относительно y: 3y = 4x + 12, Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3.

Сравнивая с уравнением y = kx + b, видим, что здесь угловой коэффициент прямой Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3, а величина отрезка, отсекаемого прямой на оси ординат, b = 4 (если уравнение прямой дано в общем виде Ax + By + C = 0, то ее угловой коэффициент легко получить, если разделить коэффициент при x на коэффициент при y и взять полученное частное с обратным знаком Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3).

2) В отрезках на осях уравнение прямой имеет вид

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3 Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3(1)

Чтобы определить величины отрезков, отсекаемых заданной прямой 4x — 3y + 12 = 0, поступим так: в уравнении прямой положим y = 0. Получаем 4x + 12 = 0, а x = -3. Значит, наша прямая пересекает ось Ox в точке с координатами (-3, 0) и в уравнении (1) величина отрезка a = -3.

Полагая в нашем уравнении x = 0, определим ординату точки пересечения прямой с осью ординат. Будем иметь

Точка пересечения прямой с осью ординат имеет координаты (0, 4), и в уравнении (1) величина отрезка b = 4.

Таким образом, наше уравнение в отрезках на осях будет иметь вид

Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Глава 1. Уравнение прямой (стр. 1 )

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Видео:Задание 7 | ЕГЭ 2024 Математика (база) | Графики и производнаяСкачать

Задание 7 | ЕГЭ 2024 Математика (база) | Графики и производная

Глава 1. Уравнение прямой

Геометрия развивается по многим направлениям. Возникновение компьютеров привело к появлению такой области математики как вычислительная геометрия. При создании современных приложений часто требуется разработка эффективных алгоритмов для определения взаиморасположения различных объектов на плоскости, вычисления расстояний между ними, вычисления площадей фигур и др.

В данной главе излагается материал, частично известный вам из курса математики. Мы рассмотрим методы решения геометрических задач, которые эффективно реализуются с помощью компьютера, что позволит вам по другому взглянуть на вопросы, изучаемые в рамках школьного курса геометрии. Для этого придется воспользоваться аналитическим представлением геометрических объектов.

1. 1. Формы записи уравнения прямой

В задачах часто приходится задавать на плоскости различные геометрические объекты. Простейшими геометрическими фигурами на плоскости являются точка и прямая. Точка задается указанием своих координат, например A(15; –5), B(x1; y1). Прямую можно задавать с помощью уравнения прямой. Существуют различные формы записи уравнения прямой. Выбор какой-то конкретной зависит от исходных данных, задающих прямую на плоскости. (Могут быть заданы координаты двух точек, через которые проводится прямая, или коэффициенты при неизвестных в линейном уравнении).

В декартовых координатах каждая прямая определяется уравнением первой степени. Уравнение вида

называется общим уравнением прямой.

Если в общем уравнении прямой коэффициент при y не равен нулю, то уравнение можно разрешить относительно y:

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Обозначая k = Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3и b = Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3,

получаем уравнение вида y = kx + b. Если же B = 0, то уравнение имеет вид

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Уравнение y = kx + b называется уравнением прямой с угловым коэффициентом; k – угловой коэффициент, b – величина отрезка, который отсекает прямая на оси Oy, считая от начала координат (рис. 1).

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Уравнение yy0 = k(xx0) – это уравнение прямой с угловым коэффициентом k, которая проходит через точку с координатами (x0; y0).

Рассмотрим две точки с координатами (x1; y1) и (x2; y2), лежащие на прямой y = kx + b. Их координаты удовлетворяют уравнению прямой:

Вычитая из второго равенства первое, имеем y2 – y1 = k(x2 – x1), или

k = Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Пусть точка с координатами (x; y) – произвольная точка на прямой, проходящей через точки с координатами (x1; y1) и (x2; y2) ( рис. 2 ). Тогда, с учетом того факта, что она имеет тот же коэффициент наклона, получаем

k = Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3= Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3или Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3= Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3= Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

является уравнением прямой, которая проходит через точки с координатами (x1; y1) и (x2; y2). Недостатком этой формулы является ее неопределенность при x1 = x2 и (или) y1 = y2. Поэтому ее лучше использовать в виде

Алгоритм для определения значений коэффициентов A, B, C общего уравнения прямой, проходящей через точки (x1; y1) и (x2; y2), будет следующим [1] :

C:= – x1*(y2 – y1)+y1*(x2 – x1)

Рассмотрим пример: x1 = 0, y1 = 0, x2 = 1, y2 = 2. Уравнение прямой, проходящей через точки (x1; y1) и (x2; y2) будет следующим:

C = –x1 * (y2 – y1) + y1 * (x2 – x1) = 0 * 2 + 0 * 1 = 0. ЌСледовательно, уравнение прямой будет иметь вид 2ху = 0.

1. 2. Положение точек относительно прямой

Множество точек прямой, проходящей через две точки с координатами (x1; y1) и (x2; y2), удовлетворяет уравнению

Это значит, что если имеется точка с координатами (x0; y0) и (x0x1) * (y2 – y1) – (y0y1) * (x2 – x1) = 0, то эта точка лежит на прямой. B дальнейшем, вместо выражения (xx1) * (y2 – y1) – (yy1) * (x2 – x1) мы иногда будем использовать для краткости обозначение Ax + By + C или f(x1, y1, x2, y2, x, y).

Прямая Ax + By + C = 0, проходящая через две заданные точки с координатами (x1; y1) и (x2; y2), разбивает плоскость на две полуплоскости. Рассмотрим возможные значения выражения Ax + By + C.

1) Ax + By + C = 0 – определяет геометрическое место точек, лежащих на прямой.

Запишем алгоритм для определения, лежит ли точка с координатами (x3; y3) на прямой, проходящей через точки (x1; y1) и (x2; y2). Переменная P – переменная логического типа, которая имеет значение «истина», если точка лежит на прямой и «ложь» в противном случае.

если (x3 – x1)*(y2 – y1) – (y3 – y1)*(x2 – x1)=0

2) Ax + By + C > 0 – определяет геометрическое место точек, лежащих по одну сторону от прямой.

3) Ax + By + C рис. 3 точки (x3; y3) и (x4; y4) лежат по одну сторону от прямой, точки (x3; y3) и (x5; y5) по разные стороны от прямой, а точка (x6; y6) лежит на прямой.

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Рассмотрим пример: x1 = 1, y1 = 2, x2 = 5, y2 = 6. Уравнение прямой, проходящей через точки (x1; y1) и (x2; y2), будет следующим:

Следовательно, уравнение прямой будет иметь вид 4х – 4у + 4 = 0 или xy + 1 = 0. Подставим координаты точек (3; 4), (1; 1), (2; 0), (0; 2) в уравнение прямой. Получим:

1 * 3 – 1 * 4 + 1 = 0, 1 * 2 – 1 * 0 + 1 > 0,

1 * 1 – 1 * 1 + 1 > 0, 1 * 0 – 1 * 2 + 1 L:=»по одну»

Z1:=(x3 – x1)*(y2 – y1) – (y3 – y1)*(x2 – x1)

Z2:=(x4 – x1)*(y2 – y1) – (y4 – y1)*(x2 – x1)

½ то L:=»по разные» (1. 3)

1.3. Взаимное расположение двух отрезков

Пусть нам необходимо определить взаимное расположение двух отрезков. Отрезки на плоскости заданы координатами своих концевых точек. Предположим, что концевые точки одного из отрезков имеют координаты (x1; y1) и (x2; y2), а концевые точки другого – (x3; y3) и (x4; y4). Пусть общее уравнение первой прямой, проходящей через точки (x1;y1) и (x2;y2), имеет вид A1x + B1y + C1 = 0, а второй прямой, проходящей через точки (x3;y3) и (x4;y4), A2x + B2y + C2 = 0.

Определим расположение точек (x3; y3) и (x4; y4) относительно первой прямой. Если они расположены по одну сторону от прямой, то отрезки не могут пересекаться. Аналогично можно определить положение точек (x1; y1) и (x2; y2) относительно другой прямой.

Таким образом, если значения пары выражений Z1 = A1x3 + B1y3 + C1 и Z2 = A1x4 + B1y4 + C1 имеют разные знаки или Z1*Z2 = 0, а также пары Z3 = A2x1 + B2y1 + C2 и Z4 = A2x2 + B2y2 + C2 имеют разные знаки или Z3*Z4 = 0, то отрезки пересекаются. Если же значения пар выражений Z1 и Z2, или Z3 и Z4, имеют одинаковые знаки, то отрезки не пересекаются.

Различные случаи расположения отрезков показаны на рис. 4 .

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

На этом рисунке отрезки с концами в точках (x1; y1), (x2; y2) и (x4; y4), (x5; y5) пересекаются, отрезки с концами в точках (x1; y1), (x2; y2) и (x3; y3), (x4; y4) не пересекаются, а отрезки с концами в точках (x3; y3), (x4; y4) и (x4; y4) и (x5; y5) имеют общую вершину, что можно считать частным случаем пересечения.

Алгоритм для определения, пересекаются ли два отрезка с концами в точках (x1; y1), (x2; y2) и (x3; y3), (x4; y4) будет следующим:

Z1:=(x3 – x1)*(y2 – y1) – (y3 – y1)*(x2 – x1)

Z2:=(x4 – x1)*(y2 – y1) – (y4 – y1)*(x2 – x1)

Z3:=(x1 – x3)*(y4 – y3) – (y1 – y3)*(x4 – x3)

Z4:=(x2 – x3)*(y4 – y3) – (y2 – y3)*(x4 – x3)

Приведенный фрагмент алгоритма не учитывает крайней ситуации, когда два отрезка лежат на одной прямой. В этом случае (x3x1) * (y2 – y1) – (y3y1) * (x2 – x1) = 0 и (x4x1) * (y2 – y1) – (y4y1) * (x2 – x1) = 0.

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

На рис. 5 отрезки, лежащие на одной прямой не пересекаются, а на рис. 6 – отрезки пересекаются.

Для того, чтобы определить взаимное расположение таких отрезков, поступим следующим образом. Обозначим

Здесь k1 является левой, а k2 – правой точкой проекции первого отрезка (отрезка, заданного координатами (x1; y1), (x2; y2)) на ось Ox. Аналогично k3 является левой, а k4 – правой точкой проекции второго отрезка (отрезка, заданного координатами (x3; y3), (x4; y4)) на ось Ox. Аналогично ищем преокции на ось OY.

Отрезки, лежащие на одной прямой будут пересекаться тогда, когда их проекции на каждую ось пересекаются. (Следует заметить, что если проекции двух произвольных отрезков пересекаются, то это не значит, что и сами отрезки пересекаются, что видно на рис. 7 ).

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Для определения взаимного расположения проекций на ось OX воспользуемся следующим фактом (см. рис. 5 и рис. 6 ): координата левой точки пересечения проекций Lx равна max(k1; k3), т. е. максимальной из координат левых точек проекций. Рассуждая аналогично для правых точек проекций, получим, что координата правой точки Rx пересечения равна min(k2; k4). Для того, чтобы отрезки пересекались, необходимо, чтобы левая координата пересечения проекций была не больше правой координаты пересечения отрезков (такой случай имеет место на рис. 5 , когда Lx = х3, а Rx = х2). Поэтому условием пересечения проекций является выполнение неравенства Lx £ Rx. Аналогично можно вычислить величины и , беря соответствующие проекции на ось Оу.

Следует отметить, что длина пересечения проекций в этом случае равна величине LxRx (если LxRx = 0, то проекции имеют только общую точку).

1.4. Точка пересечения отрезков

Для определения места пересечения отрезков (если известно, что они пересекаются), достаточно определить точку пересечения прямых, на которых эти отрезки лежат.

Пусть A1x + B1y + C1 = 0 является уравнением прямой, проходящей через концевые точки первого отрезка, а A2x + B2y + C2 = 0 является уравнением прямой, проходящей через концевые точки второго отрезка.

Тогда для определения точки пересечения отрезков достаточно решить систему уравнений

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Домножив первое уравнение на A2, а второе уравнение на A1, получим

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Вычитая из первого уравнения второе, можно найти значение y:

y = Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Аналогично можно вычислить значение x:

x = Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Это справедливо в случае, если выражение A2 * B1 – A1 * B2 ¹ 0. Но мы уже знаем, что отрезки пересекаются и не лежат на одной прямой. А это невозможно, если A2 * B1 – A1 * B2 = 0.

2.1 Расстояния между точками. Расстояние от точки до прямой

Расстояние между точками M1(x1; y1) и M2(x2; y2) на плоскости ( рис. 8 ) определяется по формуле

D = Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3.

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Расстояние от точки до прямой на плоскости определяется как длина отрезка перпендикуляра, опущенного из точки на прямую. Уравнение вида

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3,

где T = Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3, причем С £ 0 (чего можно достигнуть изменением знака выражения), называется нормальным уравнением прямой. Это уравнение обладает тем свойством, что при подстановке координат произвольной точки в выражение (Ax + By + C)/T получается значение, по абсолютной величине равное расстоянию от точки до прямой ( рис. 9 ).

Запишем алгоритм для определения расстояния от точки (x3; y3) до прямой, проходящей через точки (x1; y1) и (x2; y2).

C:= – x1*(y2 – y1)+y1*(x2 – x1) (1. 5)

Рассмотрим пример: x1 = 0, y1 = 0, x2 = 3, y2 = 4 x3 = –1, y3 = 7. Уравнение прямой, проходящей через точки (x1; y1) и (x2; y2), будет следующим:

Т = Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3= Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3= Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3= 5,

D = Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3= Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3= 5.

2.2. Расстояние между точкой и отрезком

Для определения расстояния между точкой и отрезком необходимо выяснить, пересекает ли перпендикуляр, опущенный из данной точки на прямую, проходящую через концы отрезка, сам отрезок. Если перпендикуляр пересекает отрезок, то расстояние между точкой и отрезком равно расстоянию между точкой и прямой, проходящей через отрезок. (Эту задачу вы уже умеете решать.)

Если перпендикуляр не пересекает отрезок, то расстояние между точкой и отрезком равно минимальному из расстояний между точкой и одним из концов отрезка.

Для определения взаимного расположения отрезка и перпендикуляра поступим следующим образом.

Рассмотрим треугольник, образованный тремя точками, две из которых (x1; y1) и (x2; y2) являются концами данного отрезка, а третья – данная точка с координатами (x3; y3) (см. рис. 10 , б, в). Конечно, может оказаться, что все точки лежат на одной прямой и такого треугольника не существует. В этом случае, однако, мы будем полагать, что треугольник существует, правда он вырожденный (особый). В вырожденном треугольнике длины сторон могут быть равными 0 (см. рис. 10 , а).

Более того, мы будем полагать, что данный отрезок является основанием рассматриваемого треугольника (см. рис. 10 , б, в).

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

При таких предположениях для решения исходной задачи нам достаточно определить, является ли один из углов при основании тупым или нет. Действительно, если один из углов при основании является тупым, то перпендикуляр, опущенный из вершины, соответствующей исходной точке, не попадает на основание (отрезок). Иначе перпендикуляр, опущенный из вершины, соответствующей исходной точке, попадает на основание (отрезок).

Для решения последней задачи воспользуемся следующим свойством. Пусть a, b, c – длины сторон треугольника, причем с – длина основания. Тогда треугольник является тупоугольным при основании, если

Поэтому, вычислив значения квадратов длин сторон, нетрудно определить, пересекает ли перпендикуляр, опущенный из точки (x3; y3) на прямую, отрезок с концами в точках (x1; y1) и (x2; y2). И если не пересекает, то расстояние от точки до отрезка равно минимуму из величин a, b. Если же пересекает, то необходимо воспользоваться свойством нормального уравнения прямой .

§ 3. Многоугольники

3.1. Виды многоугольников

Ломаной называется фигура, которая состоит из точек A1, A2, . An и соединяющих их отрезков A1A2, A2A3, . An – 1An ( рис. 11 , а). Точки называются вершинами ломаной, а отрезки – звеньями. Наиболее распространенным способом задания ломаной является использование таблицы, элементы которой соответствуют координатам вершин ломаной в порядке ее обхода из одного конца в другой. Длиной ломаной называется сумма длин ее звеньев.

Многоугольником называется замкнутая ломаная линия без самопересечений (рис. 11, б).

Плоским многоугольником называется конечная часть плоскости, ограниченная многоугольником (рис. 11, в).

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Обход плоского многоугольника называется положительным, если при обходе область расположена по левую руку, и отрицательным, если область остается по правую руку.

Расстояние между фигурами на плоскости определяется как длина минимального отрезка, один конец которого принадлежит одной фигуре, а второй конец – другой фигуре.

3.2. Выпуклость многоугольников

Многоугольник является выпуклым, если для каждой прямой, проходящей через любую его сторону, все остальные вершины лежат в одной полуплоскости относительно прямой. Проверим для каждой прямой, проходящей через вершины (x1; y1) и (x2; y2), (x2; y2) и (x3; y3), . (xn – 1; yn – 1) и (xn; yn), (xn; yn) и (x1; y1) взаимное расположение вершин многоугольника. Если они каждый раз расположены в одной полуплоскости относительно проведенной прямой, то многоугольник выпуклый. Если же найдется прямая, проходящая через одну из сторон, и пара вершин многоугольника, лежащих по разные стороны относительно проведенной прямой, то многоугольник не является выпуклым. Случаи выпуклого и невыпуклого многоугольников изображены на рис. 12.

Установите соответствие между общим уравнением прямой и ее угловым коэффициентом 5x 7y 3

Можно заметить, что для каждой прямой, проходящей через вершины (x1; y1) и (x2; y2), (x2; y2) и (x3; y3), . (xn – 1; yn – 1) и (xn; yn), (xn; yn) и (x1; y1) достаточно ограничится определением взаимного расположения вершин многоугольника (xn; yn) и (x3; y3), (x1; y1) и (x4; y4), . (xn – 2; yn – 2) и (x1; y1), (xn – 1; yn – 1) и (x2; y2), соответственно. Если они каждый раз расположены в одной полуплоскости относительно проведенной прямой, то многоугольник выпуклый. Если же найдется прямая и пара вершин многоугольника, лежащих по разные стороны относительно проведенной прямой, то многоугольник не является выпуклым. Поэтому для определения, является ли многоугольник выпуклым, достаточно воспользоваться алгоритмом

нц для i от 1 до n

½ j:= mod( i, n +1 ) : номер вершины после вершины i

½ k:= mod (j, n +1) : номер вершины после вершины j

½½ то m:=n : номер вершины перед вершиной i

📸 Видео

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Угловой коэффициент прямойСкачать

Угловой коэффициент прямой

Угловой коэффициент прямой. Решение задач.Скачать

Угловой коэффициент прямой.  Решение задач.

Задание 10 и 23 Угловой коэффициент прямойСкачать

Задание 10 и 23 Угловой коэффициент прямой

Установите соответствие между графиками функций ... | ОГЭ 2017 | ЗАДАНИЕ 5 | ШКОЛА ПИФАГОРАСкачать

Установите соответствие между графиками функций ... | ОГЭ 2017 | ЗАДАНИЕ 5 | ШКОЛА ПИФАГОРА

Как найти угловой коэффициент прямой по графику. Подготовка к ЕГЭ по математике (базовая)Скачать

Как найти угловой коэффициент прямой по графику. Подготовка к ЕГЭ по математике (базовая)

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

7 класс - Алгебра - Определение углового коэффициентаСкачать

7 класс - Алгебра - Определение углового коэффициента

Установите соответствие между графиками функций ... | ОГЭ 2017 | ЗАДАНИЕ 5 | ШКОЛА ПИФАГОРАСкачать

Установите соответствие между графиками функций ... | ОГЭ 2017 | ЗАДАНИЕ 5 | ШКОЛА ПИФАГОРА

Уравнение прямой с угловым коэффициентомСкачать

Уравнение прямой с угловым коэффициентом

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Задание 5 из пробника ОГЭ от ФИПИСкачать

Задание 5 из пробника ОГЭ от ФИПИ

Составление уравнения прямой с угловым коэффициентом по графикуСкачать

Составление уравнения прямой с угловым коэффициентом по графику

Как найти угловой коэффициент прямой. На что влияет угловой коэффициент. Урок 7. Геометрия 8-9 классСкачать

Как найти угловой коэффициент прямой. На что влияет угловой коэффициент. Урок 7. Геометрия 8-9 класс

[ОГЭ] Установите соответствие между графиками функций и формулами, которые их задаютСкачать

[ОГЭ] Установите соответствие между графиками функций и формулами, которые их задают

Составление уравнения прямой с угловым коэффициентомСкачать

Составление уравнения прямой с угловым коэффициентом

Угловой коэффициент прямой. Пример 3Скачать

Угловой коэффициент прямой. Пример 3
Поделиться или сохранить к себе: