Уравнения с неизвестными в двух частях

Решение уравнений с двумя неизвестными

В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

Видео:Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»

Определение

Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

Ниже приведены несколько примеров:

Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

Видео:Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!Скачать

Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!

Решение задач

Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

Для наглядности объяснений подберем корни для выражения: y-x = 6.

При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

Приведем исходное равенство к следующему виду:

В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

Оба равенства равносильны.

Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

Оба уравнения также равносильны.

Уравнения с неизвестными в двух частях

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Система уравнений с двумя неизвестными

Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

Решить подобные системы уравнений можно, применяя следующие методы.

Метод подстановки

  1. Выражаем неизвестное из любого равенства через вторую переменную.
  2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
  3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

Метод сложения

  1. Приводим к равенству модули чисел при каком-либо неизвестном.
  2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
  3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

Графический метод

  1. Выражаем в каждом равенстве одну переменную через другую.
  2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
  3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
  4. Делаем проверку, подставив полученные значения в исходную систему равенств.

При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

Видео:Путешествуя вглубь космического пространстваСкачать

Путешествуя вглубь космического пространства

Видео

Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Решение простых линейных уравнений

Уравнения с неизвестными в двух частях

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Видео:Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Уравнения с неизвестными в двух частях

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Уравнения с неизвестными в двух частях

Видео:Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать

Уравнение с двумя переменными и его график. Алгебра, 9 класс

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Уравнения с неизвестными в двух частях

  1. Уравнения с неизвестными в двух частях
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Видео:Уравнения с модулемСкачать

Уравнения с модулем

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Уравнения с неизвестными в двух частях

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Видео:Вселенная от начала до черных дыр.Скачать

Вселенная от начала до черных дыр.

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Уравнения с неизвестными в двух частях

Вернем получившееся равенство Уравнения с неизвестными в двух частяхв первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Уравнения с неизвестными в двух частях

Пример 4. Рассмотрим равенство Уравнения с неизвестными в двух частях

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Уравнения с неизвестными в двух частях

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Уравнения с неизвестными в двух частях

Видео:✓ Суперсложная экономическая задача | В интернете кто-то неправ #031 | Проφиматика и Борис ТрушинСкачать

✓ Суперсложная экономическая задача | В интернете кто-то неправ #031 | Проφиматика и Борис Трушин

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Уравнения с неизвестными в двух частях

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Уравнения с неизвестными в двух частях

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

Уравнения с неизвестными в двух частях

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Уравнения с неизвестными в двух частях

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Уравнения с неизвестными в двух частях

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Уравнения с неизвестными в двух частях

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Уравнения с неизвестными в двух частях

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Уравнения с неизвестными в двух частях

Чтобы выразить число 3 мы поступили следующим образом:

Уравнения с неизвестными в двух частях

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Уравнения с неизвестными в двух частях

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Уравнения с неизвестными в двух частях

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

Уравнения с неизвестными в двух частях

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Уравнения с неизвестными в двух частях

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства Уравнения с неизвестными в двух частяхпозволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Уравнения с неизвестными в двух частях

Отсюда Уравнения с неизвестными в двух частях.

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Уравнения с неизвестными в двух частях

Отсюда Уравнения с неизвестными в двух частях.

Вернемся к четвертому примеру из предыдущей темы, где в равенстве Уравнения с неизвестными в двух частяхтребовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Уравнения с неизвестными в двух частях

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве Уравнения с неизвестными в двух частяхвместо числа 15 располагается переменная x

Уравнения с неизвестными в двух частях

В этом случае переменная x берет на себя роль неизвестного делимого.

Уравнения с неизвестными в двух частях

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства Уравнения с неизвестными в двух частях. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве Уравнения с неизвестными в двух частяхвместо числа 5 располагается переменная x .

Уравнения с неизвестными в двух частях

В этом случае переменная x берет на себя роль неизвестного делителя.

Уравнения с неизвестными в двух частях

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства Уравнения с неизвестными в двух частях. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Уравнения с неизвестными в двух частях

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Видео:Уравнение с X и Y #shortsСкачать

Уравнение с X и Y #shorts

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Уравнения с неизвестными в двух частях

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Уравнения с неизвестными в двух частях

Компонентами умножения являются множимое, множитель и произведение

Уравнения с неизвестными в двух частях

Компонентами деления являются делимое, делитель и частное

Уравнения с неизвестными в двух частях

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение Уравнения с неизвестными в двух частях

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

Уравнения с неизвестными в двух частях

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Уравнения с неизвестными в двух частях

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Уравнения с неизвестными в двух частях

Вычислим правую часть получившегося уравнения:

Уравнения с неизвестными в двух частях

Мы получили новое уравнение Уравнения с неизвестными в двух частях. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

Уравнения с неизвестными в двух частях

При этом переменная x является не просто множителем, а неизвестным множителем

Уравнения с неизвестными в двух частях

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Уравнения с неизвестными в двух частях

Вычислим правую часть, получим значение переменной x

Уравнения с неизвестными в двух частях

Для проверки найденный корень отправим в исходное уравнение Уравнения с неизвестными в двух частяхи подставим вместо x

Уравнения с неизвестными в двух частях

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Уравнения с неизвестными в двух частях

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Уравнения с неизвестными в двух частях

Отсюда x равен 2

Уравнения с неизвестными в двух частях

Видео:Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Уравнения с неизвестными в двух частях

Согласно порядку действий, в первую очередь выполняется умножение:

Уравнения с неизвестными в двух частях

Подставим корень 2 во второе уравнение 28x = 56

Уравнения с неизвестными в двух частях

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение Уравнения с неизвестными в двух частях

Вычтем из обеих частей уравнения число 10

Уравнения с неизвестными в двух частях

Приведем подобные слагаемые в обеих частях:

Уравнения с неизвестными в двух частях

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Уравнения с неизвестными в двух частях

Отсюда Уравнения с неизвестными в двух частях.

Вернемся к исходному уравнению Уравнения с неизвестными в двух частяхи подставим вместо x найденное значение 2

Уравнения с неизвестными в двух частях

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Уравнения с неизвестными в двух частяхмы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение Уравнения с неизвестными в двух частях. Корень этого уравнения, как и уравнения Уравнения с неизвестными в двух частяхтак же равен 2

Уравнения с неизвестными в двух частях

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Уравнения с неизвестными в двух частях

Вычтем из обеих частей уравнения число 12

Уравнения с неизвестными в двух частях

Приведем подобные слагаемые в обеих частях уравнения:

Уравнения с неизвестными в двух частяхВ левой части останется 4x , а в правой части число 4

Уравнения с неизвестными в двух частях

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Уравнения с неизвестными в двух частях

Отсюда Уравнения с неизвестными в двух частях

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Уравнения с неизвестными в двух частях

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Уравнения с неизвестными в двух частях

Пример 3. Решить уравнение Уравнения с неизвестными в двух частях

Раскроем скобки в левой части равенства:

Уравнения с неизвестными в двух частях

Прибавим к обеим частям уравнения число 8

Уравнения с неизвестными в двух частях

Приведем подобные слагаемые в обеих частях уравнения:

Уравнения с неизвестными в двух частях

В левой части останется 2x , а в правой части число 9

Уравнения с неизвестными в двух частях

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Уравнения с неизвестными в двух частях

Отсюда Уравнения с неизвестными в двух частях

Вернемся к исходному уравнению Уравнения с неизвестными в двух частяхи подставим вместо x найденное значение 4,5

Уравнения с неизвестными в двух частях

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Уравнения с неизвестными в двух частяхмы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение Уравнения с неизвестными в двух частях. Корень этого уравнения, как и уравнения Уравнения с неизвестными в двух частяхтак же равен 4,5

Уравнения с неизвестными в двух частях

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Уравнения с неизвестными в двух частях

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Уравнения с неизвестными в двух частях

Получается верное равенство. Значит число 2 действительно является корнем уравнения Уравнения с неизвестными в двух частях.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Уравнения с неизвестными в двух частях

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Уравнения с неизвестными в двух частях

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Уравнения с неизвестными в двух частях

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Уравнения с неизвестными в двух частях

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Уравнения с неизвестными в двух частях

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение Уравнения с неизвестными в двух частях

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Уравнения с неизвестными в двух частях

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Уравнения с неизвестными в двух частях

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

Уравнения с неизвестными в двух частях

В результате останется простейшее уравнение

Уравнения с неизвестными в двух частях

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Уравнения с неизвестными в двух частях

Вернемся к исходному уравнению Уравнения с неизвестными в двух частяхи подставим вместо x найденное значение 4

Уравнения с неизвестными в двух частях

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение Уравнения с неизвестными в двух частях. Корень этого уравнения, как и уравнения Уравнения с неизвестными в двух частяхравен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение Уравнения с неизвестными в двух частях, мы умножили обе части на множитель 8 и получили следующую запись:

Уравнения с неизвестными в двух частях

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения Уравнения с неизвестными в двух частяхна множитель 8 желательно переписать следующим образом:

Уравнения с неизвестными в двух частях

Пример 2. Решить уравнение Уравнения с неизвестными в двух частях

Умнóжим обе части уравнения на 15

Уравнения с неизвестными в двух частях

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Уравнения с неизвестными в двух частях

Перепишем то, что у нас осталось:

Уравнения с неизвестными в двух частях

Раскроем скобки в правой части уравнения:

Уравнения с неизвестными в двух частях

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Уравнения с неизвестными в двух частях

Приведем подобные слагаемые в обеих частях, получим

Уравнения с неизвестными в двух частях

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Уравнения с неизвестными в двух частях

Отсюда Уравнения с неизвестными в двух частях

Вернемся к исходному уравнению Уравнения с неизвестными в двух частяхи подставим вместо x найденное значение 5

Уравнения с неизвестными в двух частях

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения Уравнения с неизвестными в двух частяхравен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение Уравнения с неизвестными в двух частях

Умнóжим обе части уравнения на 3

Уравнения с неизвестными в двух частях

В левой части можно сократить две тройки, а правая часть будет равна 18

Уравнения с неизвестными в двух частях

Останется простейшее уравнение Уравнения с неизвестными в двух частях. Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Уравнения с неизвестными в двух частях

Отсюда Уравнения с неизвестными в двух частях

Вернемся к исходному уравнению Уравнения с неизвестными в двух частяхи подставим вместо x найденное значение 9

Уравнения с неизвестными в двух частях

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение Уравнения с неизвестными в двух частях

Умнóжим обе части уравнения на 6

Уравнения с неизвестными в двух частях

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Уравнения с неизвестными в двух частях

Сократим в обеих частях уравнениях то, что можно сократить:

Уравнения с неизвестными в двух частях

Перепишем то, что у нас осталось:

Уравнения с неизвестными в двух частях

Раскроем скобки в обеих частях уравнения:

Уравнения с неизвестными в двух частях

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Уравнения с неизвестными в двух частях

Приведем подобные слагаемые в обеих частях:

Уравнения с неизвестными в двух частях

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Уравнения с неизвестными в двух частях

Вернемся к исходному уравнению Уравнения с неизвестными в двух частяхи подставим вместо x найденное значение 4

Уравнения с неизвестными в двух частях

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение Уравнения с неизвестными в двух частях

Раскроем скобки в обеих частях уравнения там, где это можно:

Уравнения с неизвестными в двух частях

Умнóжим обе части уравнения на 15

Уравнения с неизвестными в двух частях

Раскроем скобки в обеих частях уравнения:

Уравнения с неизвестными в двух частях

Сократим в обеих частях уравнения, то что можно сократить:

Уравнения с неизвестными в двух частях

Перепишем то, что у нас осталось:

Уравнения с неизвестными в двух частях

Раскроем скобки там, где это можно:

Уравнения с неизвестными в двух частях

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Уравнения с неизвестными в двух частях

Приведем подобные слагаемые в обеих частях уравнения:

Уравнения с неизвестными в двух частях

Найдём значение x

Уравнения с неизвестными в двух частях

В получившемся ответе можно выделить целую часть:

Уравнения с неизвестными в двух частях

Вернемся к исходному уравнению и подставим вместо x найденное значение Уравнения с неизвестными в двух частях

Уравнения с неизвестными в двух частях

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Уравнения с неизвестными в двух частях

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Уравнения с неизвестными в двух частях

Значение переменной А равно Уравнения с неизвестными в двух частях. Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно Уравнения с неизвестными в двух частях, то уравнение будет решено верно

Уравнения с неизвестными в двух частях

Видим, что значение переменной B , как и значение переменной A равно Уравнения с неизвестными в двух частях. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Уравнения с неизвестными в двух частях

Подставим найденное значение 2 вместо x в исходное уравнение:

Уравнения с неизвестными в двух частях

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Уравнения с неизвестными в двух частях

Выполним сокращение в каждом слагаемом:

Уравнения с неизвестными в двух частях

Перепишем то, что у нас осталось:

Уравнения с неизвестными в двух частях

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Уравнения с неизвестными в двух частях

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Уравнения с неизвестными в двух частях

Этим методом мы тоже будем пользоваться часто.

Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение Уравнения с неизвестными в двух частях. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Уравнения с неизвестными в двух частях

Приведем подобные слагаемые:

Уравнения с неизвестными в двух частях

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения Уравнения с неизвестными в двух частях. Это есть произведение минус единицы и переменной x

Уравнения с неизвестными в двух частях

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение Уравнения с неизвестными в двух частяхна самом деле выглядит следующим образом:

Уравнения с неизвестными в двух частях

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

Уравнения с неизвестными в двух частях

или разделить обе части уравнения на −1 , что еще проще

Уравнения с неизвестными в двух частях

Итак, корень уравнения Уравнения с неизвестными в двух частяхравен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Уравнения с неизвестными в двух частях

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения Уравнения с неизвестными в двух частяхна минус единицу:

Уравнения с неизвестными в двух частях

После раскрытия скобок в левой части образуется выражение Уравнения с неизвестными в двух частях, а правая часть будет равна 10

Уравнения с неизвестными в двух частях

Корень этого уравнения, как и уравнения Уравнения с неизвестными в двух частяхравен 5

Уравнения с неизвестными в двух частях

Значит уравнения Уравнения с неизвестными в двух частяхи Уравнения с неизвестными в двух частяхравносильны.

Пример 2. Решить уравнение Уравнения с неизвестными в двух частях

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение Уравнения с неизвестными в двух частях. Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения Уравнения с неизвестными в двух частяхна −1 можно записать подробно следующим образом:

Уравнения с неизвестными в двух частях

либо можно просто поменять знаки всех компонентов:

Уравнения с неизвестными в двух частях

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения Уравнения с неизвестными в двух частяхна −1 , мы получили уравнение Уравнения с неизвестными в двух частях. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Уравнения с неизвестными в двух частях

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение Уравнения с неизвестными в двух частях

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Уравнения с неизвестными в двух частях

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Уравнения с неизвестными в двух частях

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: Уравнения с неизвестными в двух частях

Видео:Как решают уравнения в России и США!?Скачать

Как решают уравнения в России и США!?

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение Уравнения с неизвестными в двух частях. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Уравнения с неизвестными в двух частях

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Уравнения с неизвестными в двух частях

Приведем подобные слагаемые в левой части:

Уравнения с неизвестными в двух частях

Прибавим к обеим частям 77 , и разделим обе части на 7

Видео:Уравнение с двумя неизвестными. Решить в целых числах. ЗадачаСкачать

Уравнение с двумя неизвестными. Решить в целых числах. Задача

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении Уравнения с неизвестными в двух частяхмы произведение 10 делили на известный сомножитель 2

Уравнения с неизвестными в двух частях

Но если в уравнении Уравнения с неизвестными в двух частяхобе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Уравнения с неизвестными в двух частях

Уравнения вида Уравнения с неизвестными в двух частяхмы решали выражая неизвестное слагаемое:

Уравнения с неизвестными в двух частях

Уравнения с неизвестными в двух частях

Уравнения с неизвестными в двух частях

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении Уравнения с неизвестными в двух частяхслагаемое 4 можно перенести в правую часть, изменив знак:

Уравнения с неизвестными в двух частях

Уравнения с неизвестными в двух частях

Далее разделить обе части на 2

Уравнения с неизвестными в двух частях

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда Уравнения с неизвестными в двух частях.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

Уравнения с неизвестными в двух частях

В случае с уравнениями вида Уравнения с неизвестными в двух частяхудобнее делить произведение на известный сомножитель. Сравним оба решения:

Уравнения с неизвестными в двух частях

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

Уравнения с неизвестными в двух частях

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение Уравнения с неизвестными в двух частях

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Уравнения с неизвестными в двух частях

Подставляем по-очереди найденные значения в исходное уравнение Уравнения с неизвестными в двух частяхи убеждаемся, что при этих значениях левая часть равняется нулю:

Уравнения с неизвестными в двух частях

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение Уравнения с неизвестными в двух частях

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Уравнения с неизвестными в двух частях

Пример 2. Решить уравнение Уравнения с неизвестными в двух частях

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение Уравнения с неизвестными в двух частяхне имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть Уравнения с неизвестными в двух частях. Тогда уравнение примет следующий вид

Уравнения с неизвестными в двух частях

Пусть Уравнения с неизвестными в двух частях

Уравнения с неизвестными в двух частях

Пример 2. Решить уравнение Уравнения с неизвестными в двух частях

Раскроем скобки в левой части равенства:

Уравнения с неизвестными в двух частях

Приведем подобные слагаемые:

Уравнения с неизвестными в двух частях

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Уравнения с неизвестными в двух частях

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Уравнения с неизвестными в двух частях

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения Уравнения с неизвестными в двух частяхопределить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения Уравнения с неизвестными в двух частяхна t

Уравнения с неизвестными в двух частях

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Уравнения с неизвестными в двух частях

В получившемся уравнении левую и правую часть поменяем местами:

Уравнения с неизвестными в двух частях

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения Уравнения с неизвестными в двух частяхопределить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

Уравнения с неизвестными в двух частях

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Уравнения с неизвестными в двух частях

В получившемся уравнении v × t = s обе части разделим на v

Уравнения с неизвестными в двух частях

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

Уравнения с неизвестными в двух частях

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение Уравнения с неизвестными в двух частяхпримет следующий вид

Уравнения с неизвестными в двух частях

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

Уравнения с неизвестными в двух частях

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Уравнения с неизвестными в двух частях

Затем разделить обе части на 50

Уравнения с неизвестными в двух частях

Пример 2. Дано буквенное уравнение Уравнения с неизвестными в двух частях. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Уравнения с неизвестными в двух частях

Разделим обе части уравнения на b

Уравнения с неизвестными в двух частях

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Уравнения с неизвестными в двух частях

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение Уравнения с неизвестными в двух частях. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Уравнения с неизвестными в двух частях

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

Уравнения с неизвестными в двух частях

В левой части вынесем за скобки множитель x

Уравнения с неизвестными в двух частях

Разделим обе части на выражение a − b

Уравнения с неизвестными в двух частях

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Уравнения с неизвестными в двух частях

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Уравнения с неизвестными в двух частях

Уравнения с неизвестными в двух частях

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Уравнения с неизвестными в двух частях

Пример 4. Дано буквенное уравнение Уравнения с неизвестными в двух частях. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Уравнения с неизвестными в двух частях

Умнóжим обе части на a

Уравнения с неизвестными в двух частях

В левой части x вынесем за скобки

Уравнения с неизвестными в двух частях

Разделим обе части на выражение (1 − a)

Уравнения с неизвестными в двух частях

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Уравнения с неизвестными в двух частях

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение Уравнения с неизвестными в двух частяхпримет вид Уравнения с неизвестными в двух частях.
Отсюда Уравнения с неизвестными в двух частях.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Поделиться или сохранить к себе: