Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.
Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.
Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.
Прежде всего вспомним, что
Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)
- Слева модуль, справа число
- Переменная как под модулем, так и вне модуля
- Квадратные уравнения с заменой |x| = t
- Модуль равен модулю
- Два или несколько модулей
- Модуль в модуле
- Уравнения_с_модулями материал для подготовки к егэ (гиа) по алгебре (10 класс) на тему
- Скачать:
- Предварительный просмотр:
- По теме: методические разработки, презентации и конспекты
- Уравнения с модулем
- Что такое уравнение с модулем
- Способы решения уравнений с модулями для 10 и 11 классов
- Примеры решения задач с объяснением
- Задачи для самостоятельного решения
- 🔍 Видео
Видео:ЕГЭ. Математика. Уравнения с модулем. Системы уравнений. ПрактикаСкачать
Слева модуль, справа число
Это самый простой случай. Решим уравнение
Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:
Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.
Видео:Уравнения с модулем | ЕГЭ по математике-2020Скачать
Переменная как под модулем, так и вне модуля
Здесь приходится раскрывать модуль по определению. . . или соображать!
Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:
Решение первой системы: . У второй системы решений нет.
Ответ: 1.
Первый случай: x ≥ 3. Снимаем модуль:
Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.
Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:
Значит, больше трёх и потому является корнем исходного уравнения
Стало быть, годятся лишь и .
Ответ:
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Квадратные уравнения с заменой |x| = t
Поскольку , удобно сделать замену |x| = t. Получаем:
Видео:Как раскрыть модуль. Неравенство и график с модулем ЕГЭСкачать
Модуль равен модулю
Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:
Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:
Остаётся решить каждое из уравнений совокупности и записать ответ.
Видео:Контрольная работа. Уравнения с МОДУЛЕМСкачать
Два или несколько модулей
Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.
Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)
Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.
Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:
Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.
Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:
Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.
Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:
Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.
Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:
Ничего нового. Мы и так знаем, что x = 1 является решением.
Видео:Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать
Модуль в модуле
Начинаем с раскрытия внутреннего модуля.
1) x ≤ 3. Получаем:
Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.
1.1) Получаем в этом случае:
Это значение x не годится, так как не принадлежит рассматриваемому промежутку.
1.2) . Тогда:
Это значение x также не годится.
Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.
Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:
Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.
Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.
Читайте также о том, как решать неравенства с модулем.
Видео:Уравнения с модулемСкачать
Уравнения_с_модулями
материал для подготовки к егэ (гиа) по алгебре (10 класс) на тему
Элективный курс по математике для учащихся 10-11 классов
Видео:Модуль в математике. Уравнения и неравенства | Математика ЕГЭ | УмскулСкачать
Скачать:
Вложение | Размер |
---|---|
20295_uravneniya_s_modulyami.rar | 306.42 КБ |
Видео:№14 с модулем за 3 минуты. ЕГЭ 2022 по профильной математикеСкачать
Предварительный просмотр:
Занятие 1. Алгебраические уравнения с модулем.
Чтобы решить уравнение, содержащее переменную под знаком модуля, следует освободиться от знака модуля, воспользовавшись его определением:
При решении таких уравнений обычно поступают следующим образом:
- находят те значения переменной, при которых выражения, стоящие под знаком модуля, обращаются в нуль;
- область допустимых значений переменной разбивается на промежутки, на каждом из которых выражения, стоящие под знаком модуля, сохраняют знак;
- на каждом из найденных промежутков решается уравнение без знака модуля.
Совокупность решений на указанных промежутках составляет решение исходного уравнения.
Пример 1 . Решите уравнение: .
Найдем те значения переменной, при которых выражение, стоящее под знаком модуля, обращаются в нуль: х – 2 = 0, х = 2.
— +
Рассмотрим решение уравнения на промежутках: х (2; ).
1. Если х , то 2 – х = 5; — х = 3; х = — 3; — 3
2. Если : х (2; ), то х – 2 = 5; х = 7; 7 (2; ).
Пример 2 . Решите уравнение: = х + 2.
В левой части уравнения стоит неотрицательное число, следовательно
х + 2 0., т.е. х — 2. Раскроем модуль с учетом, что х — 2, получим:
х + 2 = х +2, решением уравнения является любое число х .
Пример 3. Решите уравнение: .
Найдем те значения переменной, при которых выражения, стоящие
под знаком модуля, обращаются в нуль: 2х + 1+ 0; х = — 0,5; х – 4 =0; х = 4.
— — + — + +
Рассмотрим решение уравнения на промежутках: х (4;+ ).
1. Если х , то -2х – 1 = — х + 4; -х = 5; х = — 5;
2. Если х , то 2х + 1 = — х +4; 3х = 3; х = 1.
3. Если х (4; + ), то 2х + 1 = х – 4; х = — 5;
Пример 4. Решите уравнение: 0,6 = х 2 + 0,27.
Найдем то значения переменной, при котором выражение, стоящее под знаком модуля, обращаются в нуль: х – 0,3 = 0; х = 0,3.
— +
0,3 х
0,6(0,3 – х) = х 2 + 0,27;
0,18 – 0,6х = х 2 + 0,27;
х 2 + 0,6х + 0,09 = 0;
2. Если х (0,3; + ), то
0,6(х — 0,3) = х 2 + 0,27;
0,6 х – 0,18 = х 2 + 0,27;
х 2 – 0,6х + 0,45 = 0;
D = 0,36 – 1,8 = — 1,44, т.к. D
Пример 5 . Решите уравнение: х 2 + 4 — 7х + 11 = 0.
Найдем то значения переменной, при котором выражение, стоящее под знаком модуля, обращаются в нуль: х – 3 = 0; х = 3.
— +
3 х
х 2 – 4(х – 3) – 7х + 11 = 0;
х 2 – 4х + 12 – 7х + 11 = 0;
х 2 – 11х + 23 = 0;
х 2 + 4х — 12 – 7х + 11 = 0;
1. = -2. Ответ: пустое множество;
2. = 5. Ответ: — 7; 3.
3. = 11. Ответ: — 4; 7.
4. = х. Ответ: пустое множество.
5. = 5 – 4х. Ответ: 1.
8. . Ответ: — 3,5; 3,5.
9. = + 2. Ответ: — 7; — 1.
.
Видео:Система уравнений с модулем. ЕГЭ математикаСкачать
По теме: методические разработки, презентации и конспекты
Методические рекомендации по теме: «Решение уравнений с модулем в курсе математики 7-8 класса»
Методические рекомендации по теме: «Решение уравнений с модулем в курсе математики 7-8 класса». В работе представлены способы решения уравнений с модулем. Даны карточки заданий: с применением классифи.
презентация уравнения с модулем
Данная презентация предназначена для использования на уроках алгеьбры и начал анализа в старшей школе при обобщении темы «Уравнения с модулем и способы их решения». Также презентацию можно использоват.
Решение дробно — рациональных уравнений с модулем.
Данная презентация разработана для подготовки учащихся 10 классса к КДР, может быть полезна для подготовки учащихся 11 класса к ЕГЭ.
Урок — семинар в 11 классе «Решение показательных и логарифмических уравнений с модулем»
Данный урок — семинар рекомендуется для работы в профильном классе, а также материал этого занятия можно использовать на факультативном занятии. Здесь предложен конспект урока, презентация, разадаточн.
Презентация к уроку»Графики уравнений с модулями»
Методическая разработка для повышения наглядности и качества усвоения материала по теме:»Графики уравнений с модулями».Основная цель-познакомить учащихся с основными приёмами построения графиков уравн.
Презентация «Уравнения с модулем»
Урок обобщения и систематизации знаний по теме: «Решение уравнений с модулем».
Решение уравнений, содержащих модуль.
Конспект урока для элективного занятия в 9 классе.
Видео:МодульСкачать
Уравнения с модулем
Видео:Уравнения с модулем. Разбор 22 задания из ОГЭ | Математика 9 класс | TutorOnlineСкачать
Что такое уравнение с модулем
Модуль числа — абсолютная величина, демонстрирующая удаленность точки от начала координат.
В том случае, когда число является отрицательным, его модуль соответствует числу, ему противоположному. Для неотрицательного числа модуль равен этому числу.
| x | = x , x ≥ 0 — x , x 0
Уравнения с модулем являются такими уравнениями, в составе которых имеется переменная, заключенная в знак модуля.
Самое простое уравнение с модулем |f(x)|=a является равносильным совокупности
Здесь a>0. При а отрицательном у такого уравнения отсутствует решение.
Уравнения с модулем могут быть предложены в качестве самостоятельного задания. Кроме того, подобные выражения нередко образуются в процессе решения других видов уравнений, к примеру, квадратных или иррациональных.
Разберем подробное решение квадратного уравнения:
Заметим, что справа имеется квадрат числа 4:
На первый взгляд, нужно избавиться от квадратов, чтобы получить линейное уравнение. С другой стороны, существует правило:
Вычисления следует продолжить с учетом записанной формулы. Тогда получим уравнение с модулем:
x 2 = 4 2 ⇔ x 2 = 4 2 ⇔ x = 4
Рассмотрим для тренировки пример, когда уравнения с модулем появляются при решении иррациональных уравнений. Например, дано уравнение:
2 x — 1 2 = 9 x 2 + 12 x + 4
Согласно стандартному алгоритму действий, в этом случае потребуется выполнить действия:
- перенос слагаемых;
- приведение подобных;
- решение квадратного уравнения, например, с помощью дискриминанта.
Второй вариант решения предусматривает использование формулы сокращенного умножения квадрат суммы:
9 x 2 + 12 x + 4 = 3 x + 2 2
Преобразуем сложное уравнение:
2 x — 1 2 = 3 x + 2 2
На первый взгляд, можно избавиться от квадратов и решить линейное уравнение. Однако:
В результате получим:
2 x — 1 2 = 3 x + 2 2 ⇔ 2 x — 1 = 3 x + 2 .
При решении уравнений, которые содержат модуль, необходимо помнить свойства модуля:
- Модуль числа является неотрицательным числом: x ≥ 0 , x = 0 ⇔ x = 0 .
- Противоположные числа равны друг другу по модулю: — x = x .
- Произведение пары или более чисел по модулю равно произведению модулей этих чисел: x · y = x · y .
- Частное пары чисел по модулю равно частному модулей этих чисел: x y = x y , y ≠ 0 .
- Сумма чисел по модулю в любом случае меньше или равна сумме модулей данных чисел: x + y ≤ x + y .
- Постоянный множитель, который больше нуля, допустимо вынести за знак модуля: c x = c · x при c > 0 .
- Квадрат какого-то числа по модулю равен квадрату данного числа: x 2 = x 2 .
Пример 3
Руководствуясь перечисленными свойствами модуля, рассмотрим решение уравнения:
Заметим, что x равен x при x больше либо равно нулю. Значение –x возможно, когда x является отрицательным числом. Таким образом:
x = 7 ⇔ x = 7 , п р и x ≥ 0 — x = 7 , п р и x 0 ⇔ x = 7 x = — 7
Рассмотрим несколько иное уравнение:
В этом случае логика такая же, как в предыдущем примере:
x = — 7 ⇔ x = — 7 , при x ≥ 0 — x = — 7 , при x 0 ⇔ x = — 7 x ≥ 0 ⇒ р е ш е н и я н е т x = 7 x 0 ⇒ р е ш е н и я н е т
Видео:ЕГЭ 2017. Уравнение. Модуль. Раскрытие модуля. Задание 13.Скачать
Способы решения уравнений с модулями для 10 и 11 классов
Существует три основных вида уравнений с модулем, которые предусматривают определенные подходы к решению:
- Уравнения x = a . x = a ⇔ x = a , п р и x ≥ 0 — x = a , п р и x 0 ⇔ x = a x = — a .
- Уравнения вида x = y . x = y ⇔ y ≥ 0 x = y x = — y
Видео:✓ Четыре способа решить параметр с модулем | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать
Примеры решения задач с объяснением
Уравнения, которые содержат модуль и имеют вид |x| = |a|, решают с помощью определения модуля.
Рассмотрим в качестве примера:
Определим x . Когда x ≥ 0 , значение равно х . Если x – х . Таким образом:
x = 5 ⇔ x = 5 при x ≥ 0 — x = 5 при x 0 ⇔ x = 5 x = — 5 .
Получим, что решением уравнения являются -5; 5.
Рассмотрим следующее задание, в рамках которого необходимо решить уравнение:
Воспользуемся стандартным алгоритмом:
x = — 3 ⇔ x = — 3 при x ≥ 0 — x = — 3 при x 0 ⇔ x = — 3 x ≥ 0 ⇒ решений нет x = 3 x 0 ⇒ решений нет
Согласно первому свойству модуля:
x ≥ 0 , то есть модуль в любом случае не является отрицательным числом.
Можно обобщить рассмотренные действия и записать правило для решения уравнений, которые имеют вид x = a . Данное правило можно использовать в работе:
x = a ⇒ a ≥ 0 x = a x = — a .
Используя данное правило, решим уравнение:
По сравнению с предыдущим примером, здесь под знаком модуля записано иное выражение. Однако суть решения от этого не меняется. Зная правило, выполним замену:
x — 5 = 3 ⇔ 3 ≥ 0 x — 5 = 3 x — 5 = — 3 ⇒ x = 8 x = 2
Решим следующее уравнение:
Воспользуемся правилом и получим:
3 x — 5 = 3 ⇔ 3 ≥ 0 3 x — 5 = 3 3 x — 5 = — 3 ⇒ x = 8 3 x = 2 3
Далее рассмотрим решение уравнений, которые записаны в виде | x | = | y | .
При раскрытии модулей, согласно определению, возникнет необходимость во множестве проверок. Например, потребуется определить, какое число является положительным, а какое будет отрицательным. Полученную в результате систему в дальнейшем необходимо упростить.
Второй вариант решения подразумевает изначально краткую запись вычислений. Вспомним, что по свойству модуля:
Применим это свойство к нашему примеру и исключим знаки модулей из уравнения:
x = y ⇔ x 2 = y 2 ⇔ x 2 = y 2 ⇔ x 2 — y 2 = 0 ⇔
⇔ x — y x + y = 0 ⇔ x = y x = — y .
Рассмотрим еще несколько примеров.
Воспользуемся рассмотренным правилом применения свойства модуля, получим:
x + 1 = 2 x — 1 ⇔ x + 1 = 2 x — 1 x + 1 = — 2 x — 1 ⇔ x = 2 x = 0 .
Решение выполняем по аналогии с предыдущими заданиями:
2 x — 9 = 3 — x ⇔ 2 x — 9 = 3 — x 2 x — 9 = x — 3 ⇔ 3 x = 12 x = 6 ⇔ x = 4 x = 6 .
Разберем на примере, как решать уравнения вида | x | = y .
Заметим, что справа записана переменная, которая может быть положительным или отрицательным числом. Исходя из того, что модуль не может быть отрицательным числом, убедимся в том, что эта переменная также не является отрицательным числом:
x = y ⇔ y ≥ 0 x = y x = — y
Воспользуемся стандартным алгоритмом:
x + 1 = 1 — 2 x ⇔ 1 — 2 x ≥ 0 x + 1 = 1 — 2 x x + 1 = 2 x — 1 ⇔ x ≤ 1 2 x = 0 x = 2 ⇔ x = 0 .
Заметим, что без проверки на положительность части уравнения, которая записана с правой стороны, существуют риски появления посторонних корней в решении. К примеру, проверим x=2 путем подстановки в начальное уравнение x + 1 = 1 — 2 x :
2 + 1 = 1 — 2 · 2 ⇔ 3 = — 3 не является верным.
При решении уравнений с модулем также применяют метод интервалов. Данный способ следует применять в тех случаях, когда уравнение содержит более двух модулей.
Рассмотрим пример такого выражения:
x + 3 — 2 x — 1 = 1
Первый модуль имеет вид:
Согласно определению модуля, при раскрытии знака выражение под ним сохраняется без изменений, если:
После раскрытия знака модуля получим противоположный знак, когда:
x + 3 = x + 3 , если x + 3 ≥ 0 — x — 3 , если x + 3 0 .
По аналогии выполним преобразования второго модуля:
2 x — 1 = 2 x — 1 , если 2 x — 1 ≥ 0 1 — 2 x , если 2 x — 1 0 .
Сложность заключается в том, что требуется проанализировать много вариантов, то есть по два варианта для каждого из модулей. Всего получится четыре уравнения. А в том случае, когда модулей три, потребуется рассмотреть восемь уравнений. Возникает необходимость в сокращении числа вариантов.
Заметим, что в нашем примере не предусмотрено одновременное выполнение всех условий:
Данные условия противоречивы относительно друг друга. В связи с этим, нецелесообразно раскрывать второй модуль со знаком плюс, когда первый модуль раскрыт со знаком минус. В результате получилось избавиться от одного уравнения.
Обобщая эту информацию, можно записать алгоритм действий. В первую очередь следует вычислить корни выражений, заключенных под знаком модуля. В результате получаются такие х , при которых выражения принимают нулевые значения:
x + 3 = 0 ⇒ x = — 3 2 x — 1 = 0 ⇒ x = 1 2
С помощью стандартного способа интервалов можно отметить на координатной прямой корни выражений, которые находятся под модулями, и расставить знаки. Далее для каждого из полученных интервалов нужно составить и решить уравнение.
В этом случае оба модуля раскрываются со знаком минус:
— x + 3 + 2 x — 1 = 1 ⇔ — x — 3 + 2 x — 1 = 1 ⇔ x = 5 > — 3 является сторонним корнем.
В данном выражении первый модуль раскроется со знаком плюс, а второй — со знаком минус:
x + 3 + 2 x — 1 = 1 ⇔ x + 3 + 2 x — 1 = 1 ⇔ x = — 1 3 полученный корень соответствует своему интервалу.
Теперь для обоих модулей будет записан знак плюс:
x + 3 — 2 x — 1 = 1 ⇔ x + 3 — 2 x + 1 = 1 ⇔ x = 3 данный корень также подходит для решения.
Выполним проверку корней. В первом случае корень посторонний:
x = 5 : 5 + 3 — 2 · 5 — 1 = 8 — 9 = — 1 ≠ 1
Второй корень является решением:
x = — 1 3 : — 1 3 + 3 — 2 · — 1 3 — 1 = 8 3 — 5 3 = 1 .
Третий корень также является решением:
x = 3 : 3 + 3 — 2 · 3 — 1 = 6 — 5 = 1 .
Таким образом, запишем ответ: — 1 3 ; 3 .
Существует ряд уравнений, в которых модуль расположен под знаком модуля. К примеру:
В этом случае следует раскрывать модули поочередно. Проанализируем два варианта решения.
Первое решение подразумевает вычисления для уравнения, которое имеет вид:
f x = a ⇔ f x = a f x = — a
Здесь f x является подмодульным выражением. Применительно к нашей задаче, это:
x — 5 = 3 ⇔ x — 5 = 3 x — 5 = — 3 ⇔ x = 8 x = 2
Получена пара простейших уравнений аналогичного вида, то есть:
x = 8 x = — 8 x = 2 x = — 2
Данные четыре числа являются решениями. Проверить это можно путем подстановки ответов в исходное уравнение.
Второй вариант решения является универсальным и позволяет справиться с нестандартными задачами.
Раскроем сначала внутренние модули:
Начальное уравнение будет записано, как пара уравнений:
x ≥ 0 x — 5 = 3 x 0 — x — 5 = 3
Видео:УРАВНЕНИЕ ПО МОДУЛЮ 😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Задачи для самостоятельного решения
Найти корни уравнения:
Здесь нужно возвести в квадрат все части выражения, сохраняя знак плюса справа. Тогда получится система:
Найдем корни квадратного уравнения:
3 x 2 — 18 x + 24 = 0
В процессе потребуется сократить уравнение на 3:
D = ( — 6 ) 2 — 4 · 1 · 8 = 36 — 32 = 4
Заметим, что D>0. В таком случае у уравнения есть пара решений, которые можно определить так:
x 1 , 2 = — b ± D 2 a ⇒ x 1 , 2 = 6 ± 4 2 · 1 ⇒ x 1 , 2 = 6 ± 2 2 ⇒ x 1 = 4 , x 2 = 2
Заметим, что оба корня больше единицы. Это соответствует условию. В результате начальное уравнение обладает двумя решениями:
x 1 = 4 и x 2 = 2
Ответ: x 1 = 4 , x 2 = 2
Найти корни уравнения:
Здесь требуется возвести в квадрат обе части уравнения:
( 3 x — 1 ) 2 = ( x + 5 ) 2
9 x 2 — 6 x + 1 = x 2 + 10 x + 25
8 x 2 — 16 x — 24 = 0
Заметим, что получившееся равенство можно сократить на число 8:
Используя теорему Виета, определим корни уравнения. Предположим, что x 1 и x 2 являются в данном случае решениями, тогда:
x 1 + x 2 = 2 , а x 1 · x 2 = — 3 ⇒ x 1 = 3 и x 2 = — 1 . .
Ответ: x 1 = 3 , x 2 = — 1
Нужно решить уравнение:
| x + 1 | + | x — 5 | = 20
Воспользуемся методом интервалов. Определим х , при которых модули принимают нулевые значения:
x + 1 = 0 ⇒ x = — 1 ; x — 5 = 0 ⇒ x = 5
С помощью данных точек координатная прямая будет поделена на три интервала:
Далее необходимо решить уравнение в каждом случае:
Корень соответствует определенному ранее промежутку.
Этот промежуток не имеет корней.
Этот корень соответствует определенному ранее интервалу.
Ответ: x 1 = — 8 , x 2 = 12
3 x + 1 = 1 — 2 x ⇔ 3 x + 3 = 1 — 2 x 3 x + 3 = 2 x — 1 ⇔ 5 x = — 2 x = — 4 ⇔ x = — 2 5 x = — 4 .
Ответ: x = — 2 5 , x = — 4
Найти корни уравнения:
2 x — 9 = 3 — x ⇔ 3 — x ≥ 0 2 x — 9 = 3 — x 2 x — 9 = x — 3
x ≤ 3 3 x = 12 x = 6 ⇔ x ≤ 3 x = 4 x = 6 ⇔ x ∈ ∅ .
Найти корни уравнения:
— 2 x + 4 = 3 — 4 x ⇔ 2 x + 8 = 4 x — 3 ⇔ ;
4 x — 3 ≥ 0 2 x + 8 = 4 x — 3 2 x + 8 = 3 — 4 x ⇔ x ≥ 3 4 x = 11 2 x = — 5 6 ⇔ x = 11 2 .
Найти корни уравнения:
2 x 2 — 15 = x ⇔ x ≥ 0 2 x 2 — x — 15 = 0 1 2 x 2 + x — 15 = 0 2
Найдем корни квадратных уравнений:
Заметим, что они обладают идентичным дискриминантом:
D = 1 + 4 · 2 · 15 = 121 = 11 2 .
1 : x 1 , 2 = 1 ± 11 4 ⇔ x = 3 x = — 5 2
2 : x 1 , 2 = — 1 ± 11 4 ⇔ x = — 3 x = 5 2
Таким образом, начальное уравнение можно записать в виде системы:
2 x 2 — 15 = x ⇔ x ≥ 0 x = 3 x = — 5 2 x = — 3 x = 5 2 ⇔ x = 3 x = 5 2
Найти корни уравнения:
x + 2 — 3 x — 1 + 4 — x = 3
x + 2 — 3 x — 1 + 4 — x = 3 x + 2 = 0 ⇒ x = — 2 3 x — 1 = 0 ⇒ x = 1 3 4 — x = 0 ⇒ x = 4
— x + 2 + 3 x — 1 + 4 — x = 3
x = 2 > — 2 ⇒ — этот корень является посторонним.
x + 2 + 3 x — 1 + 4 — x = 3 ⇔
3 x = — 2 ⇔ x = — 2 3 ∈ — 2 ; 1 3 этот корень удовлетворяет условиям.
x + 2 — 3 x — 1 + 4 — x = 3 ⇔ — 3 x = — 4 ⇔ x = 4 3 ∈ 1 3 ; 4 этот корень удовлетворяет условиям.
x + 2 — 3 x — 1 — 4 — x = 3 ⇔ x = 4 ⇔ x = — 4 4 — корень посторонний
Ответ: — 2 3 ; 4 3 .
Найти корни уравнения:
3 x — 5 + 3 + 2 x = 2 x + 1
3 x — 5 + 3 + 2 x = 2 x + 1 ⇔ 3 x — 5 + 3 + 2 x — 2 x + 1 = 0 .
3 x — 5 = 0 ⇒ x = 5 3 3 + 2 x = 0 ⇒ x = — 3 2 x + 1 = 0 ⇒ x = — 1
— 3 x — 5 — 3 + 2 x + 2 x + 1 = 0 ⇔
— 3 x = — 4 ⇔ x = 4 3 > — 3 2 ⇒ — корень является посторонним
— 3 x — 5 + 3 + 2 x + 2 x + 1 = 0 ⇔
x = — 10 — 1 ⇒ — корень является посторонним
— 3 x — 5 + 3 + 2 x — 2 x + 1 = 0 ⇔
— 3 x = — 6 ⇔ x = 2 > 5 3 ⇒ — корень является посторонним
3 x — 5 + 3 + 2 x — 2 x + 1 = 0 ⇔
3 x = 4 ⇔ x = 4 3 5 3 ⇒ — корень является посторонним
В результате на рассмотренных интервалах графика координатной прямой отсутствуют корни. В таком случае уравнение не имеет решений.
🔍 Видео
УРАВНЕНИЕ С МОДУЛЯМИ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать
✓ Параметр с модулями | ЕГЭ-2021. Задание 17. Математика. Профильный уровень | Борис ТрушинСкачать
Уравнения с модулямиСкачать
ЕГЭ-2024 ПРОФИЛЬ. МОДУЛЬСкачать
Метод промежутков. Уравнения с Модулем Часть 2 из 3Скачать