Полный факторный эксперимент уравнение регрессии

Полный факторный эксперимент и расчет коэффициентов регрессии.

Планирование работы эксперимента. Различают активный и пассивный эксперимент. Пассивный – это сбор статистического материала в ходе эксплуатации оборудования, либо эксперимента с поочередным варьированием факторов. Различают несколько планов эксперимента. Один из основных – это полный фактор эксперимента (ПФЭ).

П.Ф.Э. – такое планирование эксперимента, при котором реализуются все сочетания из k факторов на выбранных уровнях.

Уровни – отдельные значения факторов, при которых проводится эксперимент.

При планировании эксперимента факторы приводятся к безразмерному виду.

Пусть требуется исследовать связь между выходом продукта в зависимости от 3-х факторов:

Z1 – температура, Z2 – давление, Z3 – время пребывания;

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии50 0 С 50 0 С

100, 200 – уровни исследования

Эксперимент проводится только на границах: на 2-х уровнях

Определяется ср. знач. интервала:

Полный факторный эксперимент уравнение регрессии(1)

Точка Полный факторный эксперимент уравнение регрессииназывается основным уровнем или центром плана.

Определяется значение подинтервала (100,150), (150,200):

Полный факторный эксперимент уравнение регрессии(2)

j – номер фактора

Полный факторный эксперимент уравнение регрессии— интервал варьирования.

Переводим к безразмерному виду фактор Полный факторный эксперимент уравнение регрессии:

Полный факторный эксперимент уравнение регрессии(3)

В центре плана все факторы = 0

На верхней границе исследования значения всех безразмерных факторов = +1, на нижней границе = -1.

После этого приступают к планированию эксперимента.

Количество опытов в П.Ф.Э. : N=q k (q – число уровней, k- количество факторов)

q=2 (опыты ставятся на верх или нижн границе)

План эксперимента (матрица эксперимента):

x0x1x2x3x1 x2x1 x3x2 x3x1 x2 x3y
+1+1+1+1+1+1+1+1y1
+1+1-1+1-1-1-1-1y2
+1-1+1+1-1-1+1-1y3
+1-1-1+1+1+1-1+1y4
+1+1+1-1+1+1-1-1y5
+1+1-1-1-1-1+1+1y6
+1-1+1-1-1-1-1+1y7
+1-1-1-1+1+1+1-1y8

Это свойство называется свойством ортогональности

3. Полный факторный эксперимент уравнение регрессии=N ; j=0…k (6)

N – число опытов

П.Ф.Э. позволяет описать область исследования уравнением регрессии, которое включает в себя как линейные эффекты, так и эффекты взаимодействия. То есть в случае 3-х факторов уравнение регрессии будет иметь след. Вид:

b1, b2, b3 – линейные эффекты, остальные – эффекты взаимодействия.

Этот план можно использовать, если объект удовлетворяет уравнению (7), (если есть квадратичные эффекты, то ПФЭ не подходит)

Поставили эксперимент, получили y1…y8.

Нужно рассчитать коэффициенты исходя из матричного уравнения (X T X)B=(X T Y)

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии

X T X= Полный факторный эксперимент уравнение регрессии

Диагональные эксперименты – квадраты ( Полный факторный эксперимент уравнение регрессии. . .)

По свойствам 1,3 :

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессииX T X = Полный факторный эксперимент уравнение регрессии— диагональная матрица

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии(X T X) -1 = Полный факторный эксперимент уравнение регрессии

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии

X T Y = Полный факторный эксперимент уравнение регрессии

bj = Полный факторный эксперимент уравнение регрессии(8)

Исходя из (8) вытекает:

1. Коэффициенты регрессии рассчитываются независимо друг от друга по формуле (8)

2. Коэффициенты регрессии не коррелированны между собой, а это значит, что они являются несмешанными оценками соответствующих генеральных коэффициентов.

bj Полный факторный эксперимент уравнение регрессииBj

(bj учитывают только фактор xj)

Пусть y1…y8 = 1…8 соответственно

Полный факторный эксперимент уравнение регрессии= -1

x0 – фиктивная переменная

Полный факторный эксперимент уравнение регрессии= 0

Так как коэффициенты регрессии не коррелированны , критерий Стьюдента рассчитывается отдельно для каждого коэффициента

Полный факторный эксперимент уравнение регрессии

Полный факторный эксперимент уравнение регрессии– ошибка коэффициента рассчитывается с учетом ковариационной матрицы X, но так как диагональные элементы ковариационной матрицы одинаковы, ошибки коэффициентов также будут одинаковы и рассчитываются по формуле

Полный факторный эксперимент уравнение регрессии(9)

Матрица планирования обладает также свойством рототабельности.

Ошибка уравнения в соответствии с законом накопленных ошибок рассчитывается по формуле:

Полный факторный эксперимент уравнение регрессии· Полный факторный эксперимент уравнение регрессии· Полный факторный эксперимент уравнение регрессии(10)

Полный факторный эксперимент уравнение регрессии= Полный факторный эксперимент уравнение регрессии=…= Полный факторный эксперимент уравнение регрессии= Полный факторный эксперимент уравнение регрессии(11)

Полный факторный эксперимент уравнение регрессии(12)

p – радиус сферы в k-мерном пространстве из (12) вытекает:

1. Ошибка ур-я увел-ся с увел-ем радиуса сферы.

2. Ошибка ур-я для эквидистантных точек, находящихся на поверхности сферы радиуса p одинаковы.

Это свойство рототабельности.

Обработка ПФЭ состоит из 3-х основных этапов:

1. Расчет коэффициентов регрессии.

2. При наличии параллельных опытов оценка значимости коэффициентов по кр. Стьюдента по сравнению с ошибкой эксперимента.

3. Проверка адекватности уравнения по кр. Фишера.

Динамические модели, временная и операторная формы представления моделей.

Видео:Выбор факторов, влияющих на результативный показательСкачать

Выбор факторов, влияющих на результативный показатель

Полный факторный эксперимент и уравнение регрессии

Перечисленные два этапа построения многофакторных моделей на практике часто решаются с помощью методики ПФЭ типа 2k. Применение этой методики позволяет достаточно просто и эффективно количественно оценить все линейные эффекты факторов и их взаимодействия («перекрестные связи»). взаимодействие возникает в том случае, если эффект одного фактора зависит от уровня, на котором находится другой фактор. Вначале рассмотрим методику получения линейной РМ.

Линейная регрессионная модель. Уравнение регрессии – это формула статистической связи между зависимыми и независимыми переменными. Если это уравнение линейное, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией, зависимость от нескольких переменных – множественной регрессией. Например, Кейнсом была предложена линейная формула зависимости частного потребления С от располагаемого дохода Полный факторный эксперимент уравнение регрессии: Полный факторный эксперимент уравнение регрессиигде Полный факторный эксперимент уравнение регрессии– величина автономного потребления, Полный факторный эксперимент уравнение регрессии– предельная склонность к потреблению.

Установление формы связи (9.2.1) начинают, как правило, с рассмотрения линейной регрессии вида

Полный факторный эксперимент уравнение регрессии. (9.4.1)

Целью исследователя является определение неизвестных коэффициентов Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессиилинейной модели (9.4.1) по результатам эксперимента (по матрице ПФЭ). Эксперимент, содержащий конечное число опытов N, позволяет получить только выборочные оценки для коэффициентов уравнения (9.4.1). Их точность и надежность зависит от свойств выборки и нуждается в статистической проверке. Как проводится такая проверка, рассмотрим далее, а пока займемся вычислением неизвестных коэффициентов

Используя для этого метод наименьших квадратов (МНК) для линейной РМ получим простую формулу

Полный факторный эксперимент уравнение регрессии(9.4.2)

где индекс Полный факторный эксперимент уравнение регрессииотносится к фиктивному фактору Полный факторный эксперимент уравнение регрессиикоторый во всех опытах принимает значение +1, т.е. Полный факторный эксперимент уравнение регрессиии вводится для удобства пользования формулой (9.4.2).

Пример.подсчитаем коэффициенты для линейной двухфакторной РМ

Полный факторный эксперимент уравнение регрессии.

Для этого воспользуемся значениями Полный факторный эксперимент уравнение регрессиииз таблицы 10 для ПФЭ типа 2 2 . По формуле (9.4.2) получим:

Полный факторный эксперимент уравнение регрессии

Коэффициент Полный факторный эксперимент уравнение регрессииесть среднее арифметическое значение параметра оптимизации, а коэффициенты Полный факторный эксперимент уравнение регрессииуказывают на силу влияния факторов xj.

Нелинейная регрессионная модель.Если при проверке гипотезы о линейности РМ устанавливается, что статистический материал (или результат ПФЭ) не может быть описан линейным уравнением, то переходят к поиску нелинейной модели. Как уже указывалось, структура нелинейной РМ может быть совершенно различной. Пользуясь результатами ПФЭ можно достаточно просто построить нелинейную модель, включающую эффекты взаимодействия («перекрестные связи») факторов: парные ( Полный факторный эксперимент уравнение регрессии), тройные ( Полный факторный эксперимент уравнение регрессии) и т.д. К сожалению, для других видов нелинейностей простой способ построения РМ на основе матрицы ПФЭ типа 2 k не проходит и следует использовать другие более сложные методы, основанные на использовании нелинейного регрессионного анализа.

Максимальное число всех возможных эффектов (всех членов уравнения регрессии, включая Полный факторный эксперимент уравнение регрессии), линейные эффекты и взаимодействия всех порядков, можно определить по формуле числа сочетаний

Полный факторный эксперимент уравнение регрессии(9.4.3)

где k – число факторов, m – число элементов во взаимодействии, N – количество опытов в эксперименте (число строк в матрице планирования ПФЭ).

Пример.для ПФЭ 2 4 число возможных парных взаимодействий равно шести:

Полный факторный эксперимент уравнение регрессии

Для определения коэффициентов в модели при парных взаимодействиях надо, пользуясь правилом перемножения столбцов, получить столбец произведения двух факторов. Для вычисления коэффициента при соответствующем эффекте взаимодействия, с новым вектор-столбцом можно обращаться так же, как с вектор-столбцом любого фактора.

В табл.13 представлена матрица планирования ПФЭ типа 2 2 с учетом перекрестных связей между факторами.

Т а б л и ц а 13

Номер опыта Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессииy
+1 +1 +1 +1+1 –1 +1 –1+1 +1 –1 –1+1 –1 –1 +1y1 y2 y3 y4

Полная нелинейная РМ в данном случае имеет следующий вид:

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии(9.4.4)

Коэффициент Полный факторный эксперимент уравнение регрессиивычисляется по прежнему алгоритму (9.4.2):

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии(9.4.5)

Для определения коэффициентов в модели при тройных взаимодействиях и взаимодействиях более высокого порядка поступают аналогично. В табл.14 приведены условия проведения ПФЭ типа 2 3 и дополнительные столбцы для расчета коэффициентов в перекрестных связях. Полная нелинейная РМ с учетом всех возможных взаимодействий в этом случае имеет вид:

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии(9.4.6)

Коэффициент Полный факторный эксперимент уравнение регрессиивычисляется с помощью таблицы 14:

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии(9.4.7)

Т а б л и ц а 14

Номер опыта Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессииy
+1 +1 +1 +1 +1 +1 +1 +1+1 –1 +1 –1 +1 –1 +1 –1+1 +1 –1 –1 +1 +1 –1 –1+1 +1 +1 +1 –1 –1 –1 –1+1 –1 –1 +1 +1 –1 –1 +1+1 –1 +1 –1 –1 +1 –1 +1+1 +1 –1 –1 –1 –1 +1 +1+1 –1 –1 +1 –1 +1 +1 –1y1 y2 y3 y4 y5 y6 y7 y8

Метод наименьших квадратов.Метод наименьших квадратов (МНК), или Least Squares Method (LS), это наиболее распространенный метод вычисления коэффициентов регрессионной модели. Как уже отмечалось, вычисление коэффициентов РМ с использованием матрицы планирования ПФЭ накладывает существенные ограничения на структуру РМ и является частным случаем МНК.

МНК минимизирует сумму квадратов отклонений наблюдений зависимой переменной от искомого уравнения регрессии (РМ). Рассмотрим суть метода на примере определения коэффициентов однофакторной линейной регрессионной модели

Полный факторный эксперимент уравнение регрессии.(9.4.8)

Для вычисления неизвестных коэффициентов Полный факторный эксперимент уравнение регрессиипроведем серию опытов в точках Полный факторный эксперимент уравнение регрессиии получим экспериментальные значения Полный факторный эксперимент уравнение регрессии. Подставив значения Полный факторный эксперимент уравнение регрессиии Полный факторный эксперимент уравнение регрессиив формулу (9.4.8), получим систему уравнений

Полный факторный эксперимент уравнение регрессииПолный факторный эксперимент уравнение регрессии(9.4.9)

где Полный факторный эксперимент уравнение регрессииразности (ошибки, невязки) между экспериментальными Полный факторный эксперимент уравнение регрессиии вычисленными по уравнению регрессии Полный факторный эксперимент уравнение регрессиизначениями параметра оптимизации у в i-ой экспериментальной точке (рис.42).

Полный факторный эксперимент уравнение регрессии
Полный факторный эксперимент уравнение регрессии

Полный факторный эксперимент уравнение регрессииПолный факторный эксперимент уравнение регрессии

Полный факторный эксперимент уравнение регрессии

Требуется найти такие коэффициенты регрессии (9.4.8), при которых невязки будут минимальными.

В МНК коэффициенты находят из условия минимума функции V

Полный факторный эксперимент уравнение регрессии(9.4.10)

Подставив (9.4.9) в (9.4.10), получим:

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии(9.4.11)

Минимум функции, если он существует, достигается при одновременном равенстве нулю частных производных по всем неизвестным, т.е.

Полный факторный эксперимент уравнение регрессии(9.4.12)

Из выражений (9.4.11) и (9.4.12) получим систему уравнений для определения искомых коэффициентов РМ (9.4.8):

Полный факторный эксперимент уравнение регрессии(9.4.13)

Решение системы (9.4.13) значительно упрощается, если использовать рассмотренные ранее свойства ПФЭ (9.2.6) – (9.2.8). В этом случае

Полный факторный эксперимент уравнение регрессии(9.4.14)

Обобщая результат для любого количества факторов, можно записать общую формулу расчета коэффициентов множественной линейной регрессии для ПФЭ типа Полный факторный эксперимент уравнение регрессиив виде (9.4.2)

Полный факторный эксперимент уравнение регрессии

Эту формулу мы уже использовали для определения коэффициентов РМ с помощью матрицы планирования ПФЭ.

Чтобы формально можно было решить поставленную задачу, то есть найти некоторый наилучший вектор параметров РМ, должно выполняться неравенство Полный факторный эксперимент уравнение регрессии. Положительная разность Полный факторный эксперимент уравнение регрессииназывается числом степеней свободы. Если число степеней свободы мало, то статистическая надежность оцениваемой формулы невысока. Обычно при оценке множественной регрессии требуется, чтобы число наблюдений (опытов) по крайней мере в три раза превосходило число оцениваемых параметров модели.

Можно показать, что система нормальных уравнений (9.4.12) МНК в матричном виде записывается следующим образом:

Полный факторный эксперимент уравнение регрессии(9.4.15)

где Полный факторный эксперимент уравнение регрессииобозначает матрицу, транспонированную по отношению к матрице Полный факторный эксперимент уравнение регрессииИз (9.4.15) получаем уравнение для определения коэффициентов в векторно-матричной форме:

Полный факторный эксперимент уравнение регрессии(9.4.16)

где Полный факторный эксперимент уравнение регрессииимеет размерность k+1, а Y – размерность N .

Проверка адекватности модели.После выбора структуры и вычисления коэффициентов регрессионной модели (РМ) встает вопрос о степени ее адекватности, т.е. о степени ее соответствия исследуемой системе. При проверке с помощью методов регрессионного анализа гипотезы об адекватности модели или о значимости входящих в РМ коэффициентов, приходится учитывать законы распределения случайных параметров.

регрессионный анализ применим при следующих предположениях.

1. Параметр оптимизации у есть случайная величина с нормальным законом распределения.

2. Дисперсия Полный факторный эксперимент уравнение регрессиине зависит от абсолютной величины у. Выполнение этого предположения проверяется с помощью критерия однородности дисперсий в разных точках факторного пространства.

3. Значения факторов xj суть неслучайные величины.

Если в рассматриваемой задаче выполняются все предположения, то можно проверять статистические гипотезы.

Для проверки гипотезы об адекватности модели можно использовать критерий Фишера (этот критерий мы уже использовали для проверки однородности дисперсий):

Полный факторный эксперимент уравнение регрессии(9.4.17)

Здесь Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии– дисперсия воспроизводимости со своим числом степеней свободы, которая вычисляется по формулам (9.2.12) или (9.2.13); Полный факторный эксперимент уравнение регрессии– дисперсия адекватности, определяемая по формуле

Полный факторный эксперимент уравнение регрессии(9.4.18)

где Полный факторный эксперимент уравнение регрессии– остаточная сумма квадратов невязок; Полный факторный эксперимент уравнение регрессии– число степеней свободы, K – число коэффициентов в РМ.

Если рассчитанное значение критерия не превышает табличного ( Полный факторный эксперимент уравнение регрессии), то с соответствующей доверительной вероятностью модель можно считать адекватной. При превышении табличного значения эту принятую гипотезу приходится отвергать.

В случае если опыты в матрице планирования дублируются, то дисперсия адекватности рассчитывается по формуле

Полный факторный эксперимент уравнение регрессии(9.4.19)

где ni – число параллельных опытов в i —ой строке матрицы планирования; Полный факторный эксперимент уравнение регрессии– среднее арифметическое из ni параллельных опытов; Полный факторный эксперимент уравнение регрессии– предсказанное по уравнению РМ значение Полный факторный эксперимент уравнение регрессиив этом опыте.

Для определения коэффициентов Полный факторный эксперимент уравнение регрессиинельзя записать универсальную расчетную формулу. Всякий раз их приходится рассчитывать разными методами, самым популярным из которых является МНК. Проиллюстрируем решение задачи получения РМ на простом примере.

Пример.В табл.15 приведена матрица планирования ПФЭ типа 2 2 с двумя параллельными опытами в каждой строке. Во втором опыте один из параллельных опытов пришлось отбросить как грубый.

При двух параллельных опытах со значениями Полный факторный эксперимент уравнение регрессиии Полный факторный эксперимент уравнение регрессиидисперсия в каждой строке матрицы табл.15 вычисляется с использованием формулы (9.2.10)

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии.

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии
+1 +1 +1 +1–1 +1 –1 +1–1 –1 +1 +14,5 3,0 2,0 0,55,5 — 2,0 1,55,0 3,0 2,0 1,04,75 3,25 2,25 0,750,25 -0,25 -0,25 0,250,0625 0,0625 0,0625 0,06250,125 0,0625 0,125 0,1250,5 — 0,5

Т а б л и ц а 15

Зададимся начальной структурой регрессионной модели (РМ) в линейной форме Полный факторный эксперимент уравнение регрессии

По результатам ПФЭ требуется определить коэффициенты РМ и доказать, что принятая модель адекватна.

Используя свойства и методику определения коэффициентов РМ с помощью матрицы планирования, по формуле (9.4.2) подсчитаем значения коэффициентов РМ.

Полный факторный эксперимент уравнение регрессии

Итак, мы получили линейную РМ:

Полный факторный эксперимент уравнение регрессии

Проверим адекватность этой модели. Вспомогательные расчеты представлены в последних шести столбцах табл.15.

Рассчитываем дисперсию воспроизводимости по формуле (9.2.13) с тремя степенями свободы:

Полный факторный эксперимент уравнение регрессии

Рассчитываем дисперсию адекватности по формуле (9.4.18) с одной степенью свободы:

Полный факторный эксперимент уравнение регрессии

Экспериментальное значение критерия Фишера рассчитаем по формуле (9.4.17): Полный факторный эксперимент уравнение регрессииТабличное значение критерия Полный факторный эксперимент уравнение регрессииУсловие Полный факторный эксперимент уравнение регрессиивыполняется, следовательно, с вероятностью 0,95 принятую РМ можно считать адекватной.

Методы упрощения уравнения регрессии.При построении РМ для целевой функции у на начальном этапе обычно стараются учесть как можно большее число факторов, влияющих на изменение у. В этом случае часто получаются неоправданно сложные модели, особенно при использовании нелинейных форм. эти модели можно значительно упростить, если выявить те факторы, которые незначительно влияют на функцию отклика, и исключить эти факторы из уравнения регрессии.

При отборе влияющих факторов используются статистические методы отбора. Так, существенного сокращения числа влияющих факторов можно достичь с помощью пошаговых процедур отбора переменных. Ни одна их этих процедур не гарантирует получения оптимального набора переменных. Однако при практическом применении они позволяют получить достаточно хорошие наборы существенно влияющих факторов.

Для анализа РМ с целью упрощения используются несколько методов. Коротко рассмотрим некоторые из них.

1. Метод всех регрессий. В этом методе функцию отклика представляют в виде комбинаций зависимостей, в которых меняют число факторов. Так для уравнения регрессии

Полный факторный эксперимент уравнение регрессии

можно записать функцию отклика в различных комбинациях:

Полный факторный эксперимент уравнение регрессии

Полный факторный эксперимент уравнение регрессии

Полный факторный эксперимент уравнение регрессии

Полный факторный эксперимент уравнение регрессии

Для каждого уравнения вычисляются коэффициенты регрессии и определяется дисперсия адекватности Полный факторный эксперимент уравнение регрессии, по наименьшему значению которой и выбирается лучшая РМ. Однако, применение этого метода связано с трудоемкими вычислениями.

2. Метод исключения переменных. Метод исключения предполагает построение РМ, включающей всю совокупность переменных, с последующим последовательным (пошаговым) сокращением числа переменных в модели до тех пор, пока не выполнится некоторое, наперед заданное, условие.

После построения РМ с целью сокращения членов в уравнении РМ и ее упрощения зачастую различными способами проводят оценку значимости коэффициентов модели. оценку значимости можно осуществить с помощью t-критерия Стьюдента.

При проверке значимости коэффициентов Полный факторный эксперимент уравнение регрессиипо t-критерию используется формула

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии(9.4.20)

Полный факторный эксперимент уравнение регрессиигде Полный факторный эксперимент уравнение регрессии–среднеквадратическое отклонение коэффициента Полный факторный эксперимент уравнение регрессии

Полный факторный эксперимент уравнение регрессии

Вычисленное значение Полный факторный эксперимент уравнение регрессиисравнивается с табличным Полный факторный эксперимент уравнение регрессиипри заданном уровне значимости α и соответствующем числе степеней свободы f и делается вывод о значимости коэффициента. Если Полный факторный эксперимент уравнение регрессии, то с доверительной вероятностью Полный факторный эксперимент уравнение регрессииможно считать рассматриваемый коэффициент незначимым и приравнять его нулю.

3. Метод включения переменных. Суть метода включения состоит в последовательном включении переменных в модель до тех пор, пока регрессионная модель не будет отвечать заранее установленному критерию качества. Последовательность включения определяется с помощью частных коэффициентов корреляции: переменные, имеющие относительно исследуемого показателя большие значения частного коэффициента корреляции, первыми включаются в регрессионное уравнение.

4. Метод анализа невязок состоит в том, что анализируется разница между значениями функции Полный факторный эксперимент уравнение регрессиии значением Полный факторный эксперимент уравнение регрессии, предсказанном по уравнению регрессии (см. рис.42). Определяя невязки

Полный факторный эксперимент уравнение регрессии

проверяют их среднее значение, которое должно быть близким к нулю:

Полный факторный эксперимент уравнение регрессии

Если это условие не выполняется, то в уравнение модели вносят дополнительные члены или принимают другую структуру РМ.

В 30-е гг. ХХ века повсеместное увлечение множественной регрессией сменилось разочарованием. Строя уравнение множественной регрессии и, стремясь включить как можно больше объясняющих переменных, исследователи все чаще сталкивались с бессмысленными результатами. Причина заключалась в том, что изолированно взятое уравнение регрессии есть не что иное, как модель «черного ящика», поскольку в ней не раскрыт механизм зависимости выходной переменной Y от входных переменных Хi , а лишь констатируется факт наличия такой зависимости.

Для проведения правильного анализа нужно знать всю совокупность связей между переменными. Одним из первых подходов к решению этой задачи является конфлюэнтный анализ, разработанный в 1934 г. Р.Фришем. Он предложил изучать иерархию регрессий между всеми сочетаниями переменных.

Значительный интерес представляет аналитический метод выбора типа уравнения регрессии, который основан на изучении материальной природы связи исследуемых признаков.

[1] Интеркорреляция – корреляция между объясняющими переменными.

Видео:Полный факторный экспериментСкачать

Полный факторный эксперимент

Лекция 7 Введение в теорию Промышленного Эксперимента

НазваниеЛекция 7 Введение в теорию Промышленного Эксперимента
Дата02.12.2020
Размер1.77 Mb.
Формат файлаПолный факторный эксперимент уравнение регрессии
Имя файлаvse_lektsii_v_odnom_fayle.docx
ТипЛекция
#156246
страница4 из 9
Подборка по базе: 9 Лекция.pdf, №1 Введение.pdf, Логопсихология_ Введение в логопсихологию лекция.ppt, 1 лекция голова шея-1.docx, НУПЗиПИУ. Модуль 2. Лекция 2.docx, Хадур Мажд — 359А — лекция 1.docx, 1. Лекция Особенности макетирования и верстки длинных документов, Медицинская статистика Лекция проф.Виноградова К.А.(1).pptx, 6 лекция Отбасы.ppt, 9-10 Лекция дуниетану.ppt

Линейное уравнение регрессии не всегда обеспечивает достаточную адекватность получаемой модели. В то же время подавляющее большинство объектов могут быть описаны с достаточной точностью уравнения регресии в виде полинома второго порядка:

Полный факторный эксперимент уравнение регрессии(3.28)

Экспериментальные наблюдения за независимыми переменными образно можно представить как лежащие в вершинах n-мерного гиперкуба, вписанного в сферу с радиусом , n – количество опытов, которые нужно включить в матрицу планов. Если рассмотреть планирование двухфакторного эксперимента, то на осях координат x1 и x2 гиперкуб может быть представлен в виде квадрата с вершинами 1, 2, 3, 4, вписанного в сферу.

Представим матрицу полного двухфакторного эксперимента, в которую желательно включить и коэффициенты при квадратах независимых переменных (табл.3.9).
Таблица 3.9. Матрица плана ПФЭ для двух факторов с квадратами

Опытz0z1z2 Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессииY
1+1-1-1+1+1y1
2+1+1-1+1+1y2
3+1-1+1+1+1y3
4+1+1+1+1+1y4

В матрице плана нарушено свойство ортогональности между z0, Полный факторный эксперимент уравнение регрессии, Полный факторный эксперимент уравнение регрессии. Свойство ортогональности заключается в том, что произведение двух любых столбцов должно быть равно нулю. Полностью применить ПФЭ невозможно, но существует возможность введения дополнительного уровня варьирования.

Можно увеличить количество факторов, но тогда оно будет катастрофически возрастать. Выходом из этой ситуации является использование в матрице планов при двухуровневом планировании центральной точки с координатами (0,0. 0) и так называемых звездных точек. Координаты звездных точек определяются как (0,0. + ,– . 0,0), т. е. как нулевые для всех остальных переменных, за исключением одной, которая может принимать значение, равное  со знаками « +» и «–».

Таким образом, к нашей матрице планов кроме основных четырех опытов добавится еще пять (табл.3.10), где опыты

9 – центральные точки (nц).
Таблица 3.10. Матрица плана ПФЭ второго порядка для двух факторов

Опытz0z1z2 Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессииY
1+1-1-1+1+1y1
2+1+1-1+1+1y2
3+1-1+1+1+1y3
4+1+1+1+1+1y4
5+1+0 20y5
6+1–0 20y6
7+10+0 2y7
8+10–0 2y8
9+10000y9

Можно определить общее количество опытов (n), которые будут состоять из количества опытов ПФЭ (nпфэ), количества звездных точек (nзв) и количества центральных точек (nц):

n= nпфэ + nзв + nц = 2 k +2k+1.(3.29)

Рассмотренные значения не приведут к ортогональности матрицы. Чтобы привести матрицу к отрогональному виду, необходимо преобразование столбцов соответствующих квадратов независимых переменных. Преобразование заключается в следующем:

Полный факторный эксперимент уравнение регрессии(3.30)

Значение зависит от количества независимых переменных k: при k=2 = 1, при k=3 = 1,215, при k=4 = 1,414 [25]. С учетом преобразования получим ортогональную матрицу плана: при k=2, = 1, С 2 =4/9, С0,67 (табл. 3.11).
Таблица 3.11. Преобразованная матрица плана ПФЭ второго порядка для двух факторов

Опытz0z1z2 Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессииY
1+1-1-10,330,33y1
2+1+1-10,330,33y2
3+1-1+10,330,33y3
4+1+1+10,330,33y4
5+1+00,33-0,67y5
6+1–00,33-0,67y6
7+10+-0,670,33y7
8+10–-0,670,33y8
9+100-0,67-0,67y9

Уравнение регрессии выглядит следующим образом:

Полный факторный эксперимент уравнение регрессии

Вычисление коэффициентов уравнения bi и проверка адекватности модели аналогична ПФЭ.

Дробный факторный эксперимент

Количество опытов в полном факторном эксперименте значительно превосходит число определяемых коэффициентов линейной модели. Другими словами, полный факторный эксперимент обладает большой избыточностью опытов. Было бы заманчивым сократить их число за счет той информации, которая не очень существенна при построении линейных моделей. При этом нужно стремиться, чтобы матрица планирования не лишилась своих оптимальных свойств. Сделать это не так просто, но все же возможно. Итак, начнем поиск путей минимизации опытов.

Минимизация числа опытов

Начнем с самого простого – полного факторного эксперимента 2 k . Запишем еще раз матрицу планирования

№ опытаx0x1x2(x3)

x1x2

y
1++y1
2++y2
3++y3
4++++y4

Пользуясь таким планированием, можно вычислить четыре коэффициента и представить результаты эксперт в виде неполного квадратного уравнения

Если имеются основания считать, что в выбранных интервалах варьирования процесс может быть описан ли­нейной моделью, то достаточно определить три коэффи­циента: b0, b1и b2. Остается одна степень свободы. Упот­ребим ее для минимизации числа опытов. При линейном приближении и вектор-столбец x1x2 можно использовать для нового фактора x3. Поставим этот фактор в скобках над взаимодействием x1x2 и посмотрим, каковы будут оценки коэффициентов. Здесь уже не будет тех раздельных оценок, которые мы имели в полном факторном эксперименте 2 k . Оценки смешаются следующим образом:

Но нас это не должно огорчать. Ведь мы постулируем линейную модель, и, следовательно, все парные взаимодей­ствия незначимы. Главное, мы нашли средство минимизировать число опытов: вместо 8 опытов для изучения трех факторов оказывается можно поставить четыре! При этом матрица планирования не теряет своих оптимальных свойств (ортогональность, ротатабельность и т.п.). Найденное правило можно сформулировать так: чтобы сократить число опытов, нужно новому фактору присвоить вектор-столбец матрицы, принадлежащий взаимодействию, которым можно пренеб­речь. Тогда значение нового фактора в условиях опытов определяется знаками этого столбца.

Поставив четыре опыта для оценки влияния трех факторов, мы воспользовались половиной полного факторного эксперимента 2 3 или «полурепликой». Если бы мы х3 приравняли к –x1x2, то получили бы вторую по­ловину матрицы 2 3 . В этом случае , , . При реализации обеих полуреп­лик можно получить раздельные оценки для линейных эффектов и эффектов взаимодействия, как и в полном факторном эксперименте 2 3 . Объединение этихдвух полуреплик и есть полный факторный эксперимент 2 3 . Матрица из восьми опытов для четырех факторного планирования будет полурепликой от полного фактор­ного эксперимента 2 4 , а для пятифакторного планиро­вания – четверть-репликой от 2 5 . В последнем случае два линейных эффекта приравниваются к эффектам взаимо­действия. Для обозначения дробных реплик, в которых p линейных эффектов приравнены к эффектам взаимо­действия, удобно пользоваться условным обозначением 2 k p . Так, полуреплика от 2 3 запишется в виде 2 3-1 а четвертьреплика от 2 5 – в виде 2 5-2 .
Постановка полного факторного

эксперимента в условиях временного дрейфа

Можно заметить, что с увеличением факторов растет число опытов в матрице плана эксперимента. Это количество можно уменьшить, если при планировании использовать дробные реплики. Если заменяется один фактор, тогда исполнительная часть матрицы составляет 1/2 от матрицы ПФЭ (n = 2 k –1 ), если заменяются два фактора – 1/4 от ПФЭ (n = 2 k –2 ), если заменяются три фактора – 1/8 от ПФЭ (n = 2 k –3 ).

Допустим, нужно получить коэффициенты линейной модели в трехфакторном эксперименте, используя при этом четыре опыта вместо восьми. Тогда необходимо ввести одну так называемую дробную реплику. Введение реплики обеспечивается генерирующим соотношением. Эффект z3 может быть заменен эффектом парного взаимодействия z1·z2. Это возможно, если мы хотим ограничиться линейной моделью и предполагаем, что для исследуемого объекта влияние этих двух факторов несущественно. При этом найденный нами коэффициент уравнения регрессии будет отражать суммарное влияние фактора 3 и парного взаимодействия факторов 1 и 2:

Неточность этого эксперимента есть результат платы за уменьшение количества опытов.

Основные идеи дробного факторного эксперимента используются при планировании в условиях временного дрейфа, который представляет собой изменение наблюдаемой величины с течением времени, не зависящее от факторов, которыми мы варьируем. Это объясняется тем, что в реальных условиях на исследуемую переменную у оказывают влияние неуправляемые факторы, такие как колебания состава сырья, изменение внешней нагрузки, старение оборудования и т.д. Действие их вызывает нестационарное изменение у, называемое временным дрейфом у. Обычно предполагают, что дрейф не взаимодействует с факторами xi, варьируемыми в эксперименте. Такой дрейф можно интерпретировать как смещение математической модели.

При экспериментировании на таком объекте выход его представляет сумму функции отклика, временного дрейфа и некоторого шума с нулевым средним и ограниченной дисперсией:

Полный факторный эксперимент уравнение регрессии(6.28)

Сам дрейф – изменение выходного параметра при постоянных значениях факторов xi = constможет быть представлен в виде дискретного процесса или некоторой непрерывной функции времени. Рассмотрим наиболее простой характерный случай описания временного дрейфа линейной зависимостью. Влияние такого дрейфа на параметры математической модели можно практически устранить, разбивая серию опытов на отдельные блоки так, чтобы эффект от временного дрейфа оказался смешанным с произведениями факторов, для которых коэффициенты регрессии достаточно малы. Такое планирование эксперимента будет ортогональным к линейному дрейфу.

Допустим, необходимо устранить влияние временного дрейфа на параметры уравнения регрессии, полученного в результате ПФЭ 2 3 (например, исследование эффекта вложения средств в рекламу в условиях инфляции). С этой целью разобьем матрицу планирования на два блока и введем новую независимую переменную zд, характеризующую дрейф. Положим Полный факторный эксперимент уравнение регрессии. В один из блоков отберем опыты, для которых Полный факторный эксперимент уравнение регрессии = + 1, а в другой – опыты с Полный факторный эксперимент уравнение регрессии= -1. Формально это планирование можно рассмотреть как дробный факторный эксперимент типа 2 4–1 с генерирующим соотношением Полный факторный эксперимент уравнение регрессии. Будем считать, что в первом блоке все результаты опытов завышены вследствие временного дрейфа на величину , а во втором занижены на эту величину. Впишем данные в матрицу планов (табл. 6.9).
Таблица 6.9. Матрица ПФЭ в условиях временного дрейфа

Y

Номер

блока

Время

реализации

Номер

опыта

z0z1z2z3z1z2z2z3z1z3z1z2z3
1t11++++y1 +
t2 = t1 + t2++++y2 +
t3= t2 + t3++++y3 +
t4= t3 + t4++++++++y4 +
2t5= t4 + t5++++y5
t6= t5 + t6++++y6
t7= t6 + t7++++y7
t8= t7 + t8++++y8

Количество плюсов и минусов в каждом столбце должно быть одинаково  это свойство ортогональности матрицы. Уравнение регрессии имеет вид

Полный факторный эксперимент уравнение регрессии.

Можно доказать, что коэффициенты регрессии являются следующими оценками b:

Полный факторный эксперимент уравнение регрессии

Полный факторный эксперимент уравнение регрессии; Полный факторный эксперимент уравнение регрессии;

Полный факторный эксперимент уравнение регрессии

Полный факторный эксперимент уравнение регрессии Полный факторный эксперимент уравнение регрессии

Таким образом, введенная переменная исключается в оценке коэффициента b1, т.к. суммируется одинаковое количество этих переменных со знаками плюс и минус. Аналогично вычисляются оценки коэффициентов b1, b2, b3, b12 , b23 , b13. В коэффициенте b123, определяющем взаимное влияние трех факторов, будет участвовать во всех восьми опытах со знаком плюс. Таким образом, этот коэффициент связан с влиянием факторов. Если в регрессионной модели мы пренебрегаем этим коэффициентом, то остальные коэффициенты мы получим независимо от дрейфа при проведении опытов в фиксированные моменты времени ti, для которых y=yi yi-1= const. В случае, когда дрейф представляет более нелинейную функцию времени, то ее можно свести к линейной зависимости соответствующими преобразованиями.

Задача планирования и обработка результатов эксперимента сводятся к следующему:

1. Определение величины интервала t и последовательности во времени проведения опытов t1 ,t2 ,…,tn. t должно быть таким, чтобы составляющая дрейфа от опыта к опыту изменялась на одну и ту же величину y = const.

2. Выявление влияющих факторов xi и построение матрицы плана.

3. Проведение эксперимента в соответствии с матрицей плана и в определенные в п. 1 моменты времени. Следует учитывать, что дублирование опытов невозможно.

4. Вычисление коэффициентов (производится аналогично расчетам в разд. 6.2 и 6.3).

5. Проверка адекватности модели.

Пример 6.4. Пусть y производительность труда работника. В начале рабочего дня она высокая. Варьируя моментами времени, можно устранить влияние временного фактора. Для этого необходимо ввести постоянную величину на характеристики временной зависимости t и определить момент времени, в который будет проводиться очередной опыт. Это позволяет получить оценки коэффициентов регрессии независимо от влияния временного фактора. Обработка эксперимента аналогична примеру 6.2.

🎬 Видео

Планирование и оптимизация экспериментаСкачать

Планирование и оптимизация эксперимента

Метод наименьших квадратов. Регрессионный анализ.Скачать

Метод наименьших квадратов. Регрессионный анализ.

Математика #1 | Корреляция и регрессияСкачать

Математика #1 | Корреляция и регрессия

Корреляционно-регрессионный анализ многомерных данных в ExcelСкачать

Корреляционно-регрессионный анализ многомерных данных в Excel

Дробный факторный экспериментСкачать

Дробный факторный эксперимент

ММХ. Модуль 8. Основы планирования многофакторного экспериментаСкачать

ММХ. Модуль 8. Основы планирования многофакторного эксперимента

Множественная регрессия в ExcelСкачать

Множественная регрессия в Excel

РЕГРЕССИОННЫЙ АНАЛИЗ STATISTICA #12Скачать

РЕГРЕССИОННЫЙ АНАЛИЗ STATISTICA #12

Множественная степенная регрессияСкачать

Множественная степенная регрессия

Анализ производительности ПО при помощи математического планирования экспериментаСкачать

Анализ производительности ПО при помощи математического планирования эксперимента

Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать

Уравнение линейной регрессии. Интерпретация стандартной таблички

design of experiments (DOE) примерСкачать

design of experiments (DOE)  пример

Регрессия в ExcelСкачать

Регрессия в Excel

Центральные композиционные планыСкачать

Центральные композиционные планы

Лекция 7 Свойство полного и дробного МЕТСкачать

Лекция 7 Свойство полного и дробного   МЕТ

Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Планированный трехфакторный экспериментСкачать

Планированный трехфакторный эксперимент

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.
Поделиться или сохранить к себе: