Уравнения с дискриминантом 8 класс задания с ответами и решением

Уравнения с дискриминантом 8 класс задания с ответами и решением

Найдите корни уравнения Уравнения с дискриминантом 8 класс задания с ответами и решением.

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

Уравнения с дискриминантом 8 класс задания с ответами и решением

Решите уравнение Уравнения с дискриминантом 8 класс задания с ответами и решением.

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

По теореме, обратной теореме Виета, сумма корней равна 1, а их произведение −6.

Тем самым, это числа −2 и 3.

Решите уравнение Уравнения с дискриминантом 8 класс задания с ответами и решением.

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

Запишем уравнение в виде Уравнения с дискриминантом 8 класс задания с ответами и решениемПо теореме, обратной теореме Виета, сумма корней равна −3, а их произведение −4.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Тренировочные задания на решение квадратных уравнений 8 класс

Квадратные уравнения 8 класс алгебра

Учитель: Федулкина Т.А.

  • Что такое квадратные уравнения. Виды уравнений.

Формула квадратного уравнения: ax 2 +bx+c=0,где a≠0, где x — переменная, a,b,c — числовые коэффициенты.

Пример полного квадратного уравнения:

3x 2 -3x+2=0
x 2 -16x+64=0

Решение полных квадратных уравнений сводится к нахождению дискриминанта:

Формула дискриминанта: D=b 2 -4aс

Если D>0, то уравнение имеет два корня и находим эти корни по формуле:

Если D=0, уравнение имеет один корень

Если D 2 -x-6=0

Записываем сначала, чему равны числовые коэффициенты a, b и c.

Коэффициент a всегда стоит перед x 2 , коэффициент b всегда перед переменной x, а коэффициент c – это свободный член.
a=1,b=-1,c=-6
D=b 2 -4ac=(-1) 2 -4∙1∙(-6)=1+24=25

Дискриминант больше нуля, следовательно, у нас два корня, найдем их:

№2 x 2 +2x+1=0
Записываем, чему равны числовые коэффициенты a,b и c.
a=1,b=2,c=1
D=b 2 -4ac=(2) 2 -4∙1∙1=4-4=0
Дискриминант равен нулю, следовательно, один корень:
x=-b/2a=-2/(2∙1)=-1

№3 7x 2 -x+2=0
Записываем, чему равны числовые коэффициенты a,b и c.
a=7,b=-1,c=2
D=b 2 -4ac=(-1) 2 -4∙7∙2=1-56=-55
Дискриминант меньше нуля, следовательно, корней нет.

Рассмотрим неполное квадратное уравнение:
ax 2 +bx=0, где числовой коэффициент c=0.

Пример как выглядят такие уравнения: x 2 -8x=0, 5x 2 +4x=0.

Чтобы решить такое уравнение необходимо переменную x вынести за скобки. А потом каждый множитель приравнять к нулю и решить уже простые уравнения.
ax 2 +bx=0 x(ax+b)=0 x1=0 x2=-b/a

№1 3x 2 +6x=0
Выносим переменную x за скобку,
x(3x+6)=0
Приравниваем каждый множитель к нулю,
x1=0 3x+6=0 3x=-6 x2=-2

№2 x 2 -x=0
Выносим переменную x за скобку,
x(x-1)=0
Приравниваем каждый множитель к нулю,
x1=0
x2=1

Рассмотрим неполное квадратное уравнение:
ax 2 +c=0, где числовой коэффициент b=0.

Чтобы решить это уравнение, нужно записать так:
x 2 =c/a , если число c/a будет отрицательным числом, то уравнение не имеет решения.
А если c/a положительное число, то решение выглядит таким образом: корень квадратного уравнения

№1 x 2 +5=0
x 2 =-5, видно, что -5 2 -12=0
3x 2 =12
x 2 =12/3
x 2 =4
x1=2

2) Тренировочные задания на решение квадратных уравнений 8 класс алгебра.

Задания для устного решения:

  1. Решите неполное квадратное уравнение:

Видео:КВАДРАТНОЕ УРАВНЕНИЕ дискриминантСкачать

КВАДРАТНОЕ УРАВНЕНИЕ дискриминант

Квадратные уравнения (8 класс)

Уравнение называют квадратным, если его можно записать в виде (ax^2+bx+c=0), где (x) неизвестная, (a), (b) и (с) коэффициенты (то есть, некоторые числа, причем (a≠0)).

В первом примере (a=3), (b=-26), (c=5). В двух других (a),(b) и (c) не выражены явно. Но если эти уравнения преобразовать к виду (ax^2+bx+c=0), они обязательно появятся.

Коэффициент (a) называют первым или старшим коэффициентом, (b) – вторым коэффициентом, (c) – свободным членом уравнения.

Видео:Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью квадратных уравнений. Алгебра, 8 класс

Виды квадратных уравнений

Если в квадратном уравнении присутствуют все три его члена, его называют полным. В ином случае уравнение называется неполным.

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Как решать квадратные уравнения

В данной статье мы рассмотрим вопрос решения полных квадратных уравнений. Про решение неполных — смотрите здесь .

Итак, стандартный алгоритм решения полного квадратного уравнения:

    Преобразовать уравнение к виду (ax^2+bx+c=0).

    Выписать значения коэффициентов (a), (b) и (c).
    Пока не отработали решение квадратных уравнений до автоматизма, не пропускайте этот этап! Особенно обратите внимание, что знак перед членом берется в коэффициент. То есть, для уравнения (2x^2-3x+5=0), коэффициент (b=-3), а не (3).

    Вычислить значение дискриминанта по формуле (D=b^2-4ac).

    Решите квадратное уравнение (2x(1+x)=3(x+5))
    Решение:

    Теперь переносим все слагаемые влево, меняя знак.

    Уравнение приняло нужный нам вид. Выпишем коэффициенты.

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_2=frac<-b — sqrt>).

    Решите квадратное уравнение (x^2+9=6x)
    Решение:

    Тождественными преобразованиями приведем уравнение к виду (ax^2+bx+c=0).

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_1=frac<-b — sqrt>).

    В обоих корнях получилось одинаковое значение. Нет смысла писать его в ответ два раза.

    Решите квадратное уравнение (3x^2+x+2=0)
    Решение:

    Уравнение сразу дано в виде (ax^2+bx+c=0), преобразования не нужны. Выписываем коэффициенты.

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_1=frac<-b — sqrt>).

    Оба корня невычислимы, так как арифметический квадратный корень из отрицательного числа не извлекается.

    Обратите внимание, в первом уравнении у нас два корня, во втором – один, а в третьем – вообще нет корней. Это связано со знаком дискриминанта (подробнее смотри тут ).

    Также многие квадратные уравнения могут быть решены с помощью обратной теоремы Виета . Это быстрее, но требует определенного навыка.

    Пример. Решить уравнение (x^2-7x+6=0).
    Решение: Согласно обратной теореме Виета, корнями уравнения будут такие числа, которые в произведении дадут (6), а в сумме (7). Простым подбором получаем, что эти числа: (1) и (6). Это и есть наши корни (можете проверить решением через дискриминант).
    Ответ: (x_1=1), (x_2=6).

    Данную теорему удобно использовать с приведенными квадратными уравнениями, имеющими целые коэффициенты (b) и (c).

    🌟 Видео

    Алгебра 8 класс (Урок№29 - Решение задач с помощью квадратных уравнений.)Скачать

    Алгебра 8 класс (Урок№29 - Решение задач с помощью квадратных уравнений.)

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

    Как решать квадратные уравнения. 8 класс. Вебинар | Математика

    Формула корней квадратного уравнения. Алгебра, 8 классСкачать

    Формула корней квадратного уравнения. Алгебра, 8 класс

    МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?Скачать

    МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?

    Как решать квадратные уравнения через дискриминант. Простое объяснениеСкачать

    Как решать квадратные уравнения через дискриминант. Простое объяснение

    Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать

    Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетитор

    Решение биквадратных уравнений. 8 класс.Скачать

    Решение биквадратных уравнений. 8 класс.

    Квадратное уравнение. 8 класс.Скачать

    Квадратное уравнение. 8 класс.

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

    МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать

    МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?

    Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.

    Как решать квадратные уравнения без дискриминантаСкачать

    Как решать квадратные уравнения без дискриминанта

    Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать

    Решение задач с помощью рациональных уравнений. Алгебра, 8 класс

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные
    Поделиться или сохранить к себе: