Уравнения с дискриминантом 8 класс задания с ответами и решением

Уравнения с дискриминантом 8 класс задания с ответами и решением

Найдите корни уравнения Уравнения с дискриминантом 8 класс задания с ответами и решением.

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

Уравнения с дискриминантом 8 класс задания с ответами и решением

Решите уравнение Уравнения с дискриминантом 8 класс задания с ответами и решением.

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

По теореме, обратной теореме Виета, сумма корней равна 1, а их произведение −6.

Тем самым, это числа −2 и 3.

Решите уравнение Уравнения с дискриминантом 8 класс задания с ответами и решением.

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

Запишем уравнение в виде Уравнения с дискриминантом 8 класс задания с ответами и решениемПо теореме, обратной теореме Виета, сумма корней равна −3, а их произведение −4.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Тренировочные задания на решение квадратных уравнений 8 класс

Квадратные уравнения 8 класс алгебра

Учитель: Федулкина Т.А.

  • Что такое квадратные уравнения. Виды уравнений.

Формула квадратного уравнения: ax 2 +bx+c=0,где a≠0, где x — переменная, a,b,c — числовые коэффициенты.

Пример полного квадратного уравнения:

3x 2 -3x+2=0
x 2 -16x+64=0

Решение полных квадратных уравнений сводится к нахождению дискриминанта:

Формула дискриминанта: D=b 2 -4aс

Если D>0, то уравнение имеет два корня и находим эти корни по формуле:

Если D=0, уравнение имеет один корень

Если D 2 -x-6=0

Записываем сначала, чему равны числовые коэффициенты a, b и c.

Коэффициент a всегда стоит перед x 2 , коэффициент b всегда перед переменной x, а коэффициент c – это свободный член.
a=1,b=-1,c=-6
D=b 2 -4ac=(-1) 2 -4∙1∙(-6)=1+24=25

Дискриминант больше нуля, следовательно, у нас два корня, найдем их:

№2 x 2 +2x+1=0
Записываем, чему равны числовые коэффициенты a,b и c.
a=1,b=2,c=1
D=b 2 -4ac=(2) 2 -4∙1∙1=4-4=0
Дискриминант равен нулю, следовательно, один корень:
x=-b/2a=-2/(2∙1)=-1

№3 7x 2 -x+2=0
Записываем, чему равны числовые коэффициенты a,b и c.
a=7,b=-1,c=2
D=b 2 -4ac=(-1) 2 -4∙7∙2=1-56=-55
Дискриминант меньше нуля, следовательно, корней нет.

Рассмотрим неполное квадратное уравнение:
ax 2 +bx=0, где числовой коэффициент c=0.

Пример как выглядят такие уравнения: x 2 -8x=0, 5x 2 +4x=0.

Чтобы решить такое уравнение необходимо переменную x вынести за скобки. А потом каждый множитель приравнять к нулю и решить уже простые уравнения.
ax 2 +bx=0 x(ax+b)=0 x1=0 x2=-b/a

№1 3x 2 +6x=0
Выносим переменную x за скобку,
x(3x+6)=0
Приравниваем каждый множитель к нулю,
x1=0 3x+6=0 3x=-6 x2=-2

№2 x 2 -x=0
Выносим переменную x за скобку,
x(x-1)=0
Приравниваем каждый множитель к нулю,
x1=0
x2=1

Рассмотрим неполное квадратное уравнение:
ax 2 +c=0, где числовой коэффициент b=0.

Чтобы решить это уравнение, нужно записать так:
x 2 =c/a , если число c/a будет отрицательным числом, то уравнение не имеет решения.
А если c/a положительное число, то решение выглядит таким образом: корень квадратного уравнения

№1 x 2 +5=0
x 2 =-5, видно, что -5 2 -12=0
3x 2 =12
x 2 =12/3
x 2 =4
x1=2

2) Тренировочные задания на решение квадратных уравнений 8 класс алгебра.

Задания для устного решения:

  1. Решите неполное квадратное уравнение:

Видео:Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью квадратных уравнений. Алгебра, 8 класс

Квадратные уравнения (8 класс)

Уравнение называют квадратным, если его можно записать в виде (ax^2+bx+c=0), где (x) неизвестная, (a), (b) и (с) коэффициенты (то есть, некоторые числа, причем (a≠0)).

В первом примере (a=3), (b=-26), (c=5). В двух других (a),(b) и (c) не выражены явно. Но если эти уравнения преобразовать к виду (ax^2+bx+c=0), они обязательно появятся.

Коэффициент (a) называют первым или старшим коэффициентом, (b) – вторым коэффициентом, (c) – свободным членом уравнения.

Видео:КВАДРАТНОЕ УРАВНЕНИЕ дискриминантСкачать

КВАДРАТНОЕ УРАВНЕНИЕ дискриминант

Виды квадратных уравнений

Если в квадратном уравнении присутствуют все три его члена, его называют полным. В ином случае уравнение называется неполным.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Как решать квадратные уравнения

В данной статье мы рассмотрим вопрос решения полных квадратных уравнений. Про решение неполных — смотрите здесь .

Итак, стандартный алгоритм решения полного квадратного уравнения:

    Преобразовать уравнение к виду (ax^2+bx+c=0).

    Выписать значения коэффициентов (a), (b) и (c).
    Пока не отработали решение квадратных уравнений до автоматизма, не пропускайте этот этап! Особенно обратите внимание, что знак перед членом берется в коэффициент. То есть, для уравнения (2x^2-3x+5=0), коэффициент (b=-3), а не (3).

    Вычислить значение дискриминанта по формуле (D=b^2-4ac).

    Решите квадратное уравнение (2x(1+x)=3(x+5))
    Решение:

    Теперь переносим все слагаемые влево, меняя знак.

    Уравнение приняло нужный нам вид. Выпишем коэффициенты.

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_2=frac<-b — sqrt>).

    Решите квадратное уравнение (x^2+9=6x)
    Решение:

    Тождественными преобразованиями приведем уравнение к виду (ax^2+bx+c=0).

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_1=frac<-b — sqrt>).

    В обоих корнях получилось одинаковое значение. Нет смысла писать его в ответ два раза.

    Решите квадратное уравнение (3x^2+x+2=0)
    Решение:

    Уравнение сразу дано в виде (ax^2+bx+c=0), преобразования не нужны. Выписываем коэффициенты.

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt>) и (x_1=frac<-b — sqrt>).

    Оба корня невычислимы, так как арифметический квадратный корень из отрицательного числа не извлекается.

    Обратите внимание, в первом уравнении у нас два корня, во втором – один, а в третьем – вообще нет корней. Это связано со знаком дискриминанта (подробнее смотри тут ).

    Также многие квадратные уравнения могут быть решены с помощью обратной теоремы Виета . Это быстрее, но требует определенного навыка.

    Пример. Решить уравнение (x^2-7x+6=0).
    Решение: Согласно обратной теореме Виета, корнями уравнения будут такие числа, которые в произведении дадут (6), а в сумме (7). Простым подбором получаем, что эти числа: (1) и (6). Это и есть наши корни (можете проверить решением через дискриминант).
    Ответ: (x_1=1), (x_2=6).

    Данную теорему удобно использовать с приведенными квадратными уравнениями, имеющими целые коэффициенты (b) и (c).

    🔍 Видео

    Дробно-рациональные уравнения. 8 класс.Скачать

    Дробно-рациональные уравнения. 8 класс.

    Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

    Как решать квадратные уравнения. 8 класс. Вебинар | Математика

    Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Алгебра 8 класс (Урок№29 - Решение задач с помощью квадратных уравнений.)Скачать

    Алгебра 8 класс (Урок№29 - Решение задач с помощью квадратных уравнений.)

    МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?Скачать

    МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?

    Формула корней квадратного уравнения. Алгебра, 8 классСкачать

    Формула корней квадратного уравнения. Алгебра, 8 класс

    Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать

    Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетитор

    Решение биквадратных уравнений. 8 класс.Скачать

    Решение биквадратных уравнений. 8 класс.

    Как решать квадратные уравнения через дискриминант. Простое объяснениеСкачать

    Как решать квадратные уравнения через дискриминант. Простое объяснение

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

    Квадратное уравнение. 8 класс.Скачать

    Квадратное уравнение. 8 класс.

    Как решать квадратные уравнения без дискриминантаСкачать

    Как решать квадратные уравнения без дискриминанта

    Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.

    МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать

    МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?

    Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать

    Решение задач с помощью рациональных уравнений. Алгебра, 8 класс

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные
    Поделиться или сохранить к себе: