Уравнения приводимые к одной функции одного аргумента

Содержание
  1. Виды дифференциальных уравнений
  2. Дифференциальные уравнения первого порядка
  3. Простейшие дифференциальные уравнения первого порядка вида y ‘ = f ( x )
  4. Дифференциальные уравнения с разделяющимися переменными вида f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x )
  5. Линейные неоднородные дифференциальные уравнения первого порядка y ‘ + P ( x ) · y = Q ( x )
  6. Дифференциальное уравнение Бернулли y ‘ + P ( x ) y = Q ( x ) y a
  7. Уравнения в полных дифференциалах P ( x , y ) d x + Q ( x , y ) d y = 0
  8. Дифференциальные уравнения второго порядка
  9. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = 0 , p , q ∈ R
  10. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = f ( x ) , p , q ∈ R
  11. Линейные однородные дифференциальные уравнения (ЛОДУ) y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x )
  12. Дифференциальные уравнения высших порядков
  13. Дифференциальные уравнения, допускающие понижение порядка
  14. Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = 0 и y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = f ( x )
  15. Линейные однородные и неоднородные дифференциальные уравнения высших порядков y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 и y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )
  16. Системы дифференциальных уравнений вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2
  17. Дифференциальные уравнения, общие понятия
  18. Дифференциальным уравнением называется равенство между функцией и ее производной или дифференциалом.
  19. Производная функции
  20. Пример 1
  21. Таким образом мы с одной стороны вроде бы просто разделили расстояние на время — задача для 3-4 класса, а с другой стороны мы определили производную функции s = f(t), соответствующим образом ее продифференцировав, а это уже задача курса алгебры, а то и высшей математики.
  22. Производная — это скорость изменения функции
  23. Пример 2
  24. Скорость изменения функции может быть разная. Чем меньше приращение аргумента функции dt, тем ближе значение среднего изменения скорости к изменению скорости функции в рассматриваемой точке.
  25. Производная функции в точке — это скорость изменения функции в рассматриваемой точке при стремлении приращения аргумента функции к нулю (Δt → 0)
  26. Дифференциал (первообразная) функции
  27. Определенный интеграл
  28. При интегрировании, как и при дифференцировании для получения более точного результата приращение аргумента функции должно стремиться к нулю (maxΔx → 0) .
  29. Если существует предел суммы, определяемой по формуле (539.20) вне зависимости от количества прямоугольников и при стремлении ширины прямоугольников к нулю, то такой предел называется определенным интегралом, а суммы, определяемые по формуле (539.20) — интегральными суммами.
  30. 📸 Видео

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

§20. РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ, ОТЛИЧАЮЩИХСЯ ОТ ПРОСТЕЙШИХ.

Как правило, решение тригонометрических уравнений сводится к решению простейших уравнений с помощью преобразований тригонометрических выражений, разложения на множители и замены переменных.

20.1. ЗАМЕНА ПЕРЕМЕННЫХ ПРИ РЕШЕНИИ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ.

Следует помнить общий ориентир, когда замена переменных может выполняться без преобразования данных тригонометрических выражений.

Если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).

Задача 1. Решите уравнение Уравнения приводимые к одной функции одного аргумента

Уравнения приводимые к одной функции одного аргумента

З а м е ч а н и е.

Записывая решения задачи 1, можно при введении замены sin x = t учесть, что | sin x | ≤1 , и записать ограничения | t | ≤ 1 , а далее заметить, что один из корней t = 3 не удовлетворяет условию | t | ≤1 , и после этого обратную замену выполнять только для t = 1/2 .

Задача 2. Решите уравнение Уравнения приводимые к одной функции одного аргумента.

К о м м е н т а р и й

В заданное уравнение переменная входит только в виде tg 2x. Поэтому
удобно ввести новую переменную tg 2x = t. После выполнения обратной
замены и решения полученных простейших тригонометрических уравнений
следует в ответ записать все полученные корни.

Уравнения приводимые к одной функции одного аргумента

При поиске плана решения более сложных тригонометрических уравнений
можно воспользоваться таким о р и е н т и р о м.

1. Пробуем привести все тригонометрические функции к одному аргументу.

2. Если удалось привести к одному аргументу, то пробуем все тригонометрические выражения привести к одной функции.

3. Если к одному аргументу удалось привести, а к одной функции — нет,
тогда пробуем привести уравнение к однородному.

4. В других случаях переносим все члены в одну сторону и пробуем получить
произведение или используем специальные приемы решения.

20.2. РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
ПРИВЕДЕНИЕМ К ОДНОЙ ФУНКЦИИ (С ОДИНАКОВЫМ
АРГУМЕНТОМ)

Задача 1 Решите уравнение соs 2x – 5 sin x – 3 = 0.

Уравнения приводимые к одной функции одного аргумента

З а м е ч а н и е.

При желании ответ можно записать в виде: Уравнения приводимые к одной функции одного аргумента

Задача 2 Решите уравнение tg x + 2 сtg x = 3.

Уравнения приводимые к одной функции одного аргумента

20.3. РЕШЕНИЕ ОДНОРОДНЫХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
И ПРИ­ВЕДЕНИЕ ТРИГОНОМЕТРИЧЕСКОГО УРАВНЕНИЯ
К ОДНОРОДНОМ

Уравнения приводимые к одной функции одного аргумента

Все одночлены, стоящие в левой части этого уравнения, имеют степень 2
(напомним, что степень одночлена uv также равна 2). В этом случае уравнение (2) (и соответственно уравнение (1)) называется однородным, и для распознавания таких уравнений и их решения можно применять такой о р и е н т и р.

Если все члены уравнения, в левой и правой частях которого стоят
многочлены от двух переменных (или от двух функций одной переменной), имеют одинаковую суммарную степень* , то уравнение называется однородным. Решается однородное уравнение делением на наибольшую степень одной из переменных.

З а м е ч а н и е.

Придерживаясь этого ориентира, приходится делить обе части уравнения на выражение с переменной. При этом можно потерять корни
(если корнями являются те числа, при которых делитель равен нулю). Чтобы избежать этого, необходимо отдельно рассмотреть случай, когда выражение, на которое мы собираемся делить обе части уравнения, равно нулю,
и только после этого выполнять деление на выражение, не равное нулю.

Задача 1 Решите уравнение Уравнения приводимые к одной функции одного аргумента

Уравнения приводимые к одной функции одного аргумента

Задача 2 Решите уравнение sin 3x = 5 соs 3x.

Уравнения приводимые к одной функции одного аргумента

Задача 3 Решите уравнение Уравнения приводимые к одной функции одного аргумента

Уравнения приводимые к одной функции одного аргумента

20.4. РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ ВИДА f (x) = 0
С ПОМОЩЬЮ РАЗЛОЖЕНИЯ НА МНОЖИТЕЛИ

Задача 1 Решите уравнение sin 7x = sin 5x.

Уравнения приводимые к одной функции одного аргумента

Задача 2 Решите уравнение sin x + sin 3x = sin 4x.

Уравнения приводимые к одной функции одного аргумента

Уравнения приводимые к одной функции одного аргумента

20.5. ОТБОР КОРНЕЙ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Если при решении тригонометрических уравнений необходимо выполнять отбор корней, то чаще всего это делается так:

находят (желательно наименьший) общий период всех тригонометрических функций, входящих в запись уравнения (конечно, если этот общий период существует); потом на этом периоде отбирают корни (отбрасывают посторонние), а те, которые остаются, периодически продолжают.

Пример Решите уравнение

Уравнения приводимые к одной функции одного аргумента

І способ решения

Уравнения приводимые к одной функции одного аргумента

З а м е ч а н и е.

При решении уравнения (1) мы не следили за равносильностью выполненых преобразований, но выполняли преобразования, не приводящие к потере корней. Тогда говорят (см. § 3), что мы пользовались
уравнениями-следствиями (если все корни первого уравнения являются
корнями второго уравнения, то второе уравнение называется следствием
первого). В этом случае мы могли получить посторонние для данного уравнения корни (то есть те корни последнего уравнения, которые не являются
корнями данного). Чтобы этого не случилось, можно пользоваться следующим о р и е н т и р о м.

Если при решении уравнения мы пользовались уравнениями-следствиями, то проверка полученных корней подстановкой в исходное уравнение является обязательной составной частью решения.

Если для решения этого же уравнения (1) мы будем использовать равносильные преобразования, то отбор корней будет организован немного иначе. А именно, нам придется учесть ОДЗ уравнения, то есть общую область
определения для всех функций, входящих в запись уравнения.

ІІ способ решения уравнения sin 4x tg x = 0.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Виды дифференциальных уравнений

Существует целый ряд задач, в которых установить прямую связь между величинами, применяемыми для описания процесса, не получается. Единственное, что можно сделать, это получить равенство, запись которого включает производные исследуемых функций, и решить его. Решение дифференциального уравнения позволяет установить непосредственную связь между величинами.

В этом разделе мы займемся разбором решений дифференциальных уравнений, неизвестная функция в которых является функцией одной переменной. Мы построили теоретическую часть таким образом, чтобы даже человек с нулевым представлением о дифференциальных уравнениях мог без труда получить необходимые знания и справиться с приведенными задачами.

Если какие-то термины окажутся для вас новыми, обратитесь к разделу «Определения и понятия теории дифференциальных уравнений». А тем временем перейдем к рассмотрению вопроса о видах дифференциальных уравнений.

Для каждого из видов дифференциальных уравнений применяется свой метод решения. В этом разделе мы рассмотрим все эти методы, приведем примеры с подробными разборами решения. После ознакомления с темой вам необходимо будет определять вид дифференциального уравнения и выбирать наиболее подходящий из методов решения поставленной задачи.

Возможно, прежде чем приступить к решению дифференциальных уравнений, вам придется освежить в памяти такие темы как «Методы интегрирования» и «Неопределенные интегралы».

Начнем ознакомление с темой мы с видов обыкновенных дифференциальных уравнений 1 -го порядка. Эти уравнения могут быть разрешены относительно производной. Затем перейдем в ОДУ 2 -го и высших порядков. Также мы уделим внимание системам дифференциальных уравнений.

Напомним, что y ‘ = d x d y , если y является функцией аргумента x .

Видео:Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Дифференциальные уравнения первого порядка

Простейшие дифференциальные уравнения первого порядка вида y ‘ = f ( x )

Начнем с примеров таких уравнений.

y ‘ = 0 , y ‘ = x + e x — 1 , y ‘ = 2 x x 2 — 7 3

Оптимальным для решения дифференциальных уравнений f ( x ) · y ‘ = g ( x ) является метод деления обеих частей на f ( x ) . Решение относительно производной позволяет нам прийти к уравнению вида y ‘ = g ( x ) f ( x ) . Оно является эквивалентом исходного уравнения при f ( x ) ≠ 0 .

Приведем примеры подобных дифференциальных уравнений:

e x · y ‘ = 2 x + 1 , ( x + 2 ) · y ‘ = 1

Мы можем получить ряд дополнительных решений в тех случаях, когда существуют значения аргумента х , при которых функции f ( x ) и g ( x ) одновременно обращаются в 0 . В качестве дополнительного решения в уравнениях f ( x ) · y ‘ = g ( x ) при заданных значениях аргумента может выступать любая функция, определенная для заданного значения х .

Наличие дополнительных решений возможно для дифференциальных уравнений x · y ‘ = sin x , ( x 2 — x ) · y ‘ = ln ( 2 x 2 — 1 )

Ознакомиться с теоретической частью и примерами решения задач таких уравнений вы можете в разделе «Простейшие дифференциальные уравнения 1 -го порядка».

Дифференциальные уравнения с разделяющимися переменными вида f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x )

Поговорим теперь об уравнениях с разделенными переменными, которые имеют вид f ( y ) d y = g ( x ) d x . Как следует из названия, к данному виду дифференциальных уравнений относятся выражения, которые содержат переменные х и у , разделенные знаком равенства. Переменные находятся в разных частях уравнения, по обе стороны от знака равенства.

Решить уравнения с разделенными переменными можно путем интегрирования обеих его частей: ∫ f ( y ) d y = ∫ f ( x ) d x

К числу дифференциальных уравнений с разделенными переменными можно отнести следующие из них:

y 2 3 d y = sin x d x , e y d y = ( x + sin 2 x ) d x

Для того, чтобы прийти от ДУ с разделяющимися переменными к ДУ с разделенными переменными, необходимо разделить обе части уравнения на произведение f 2 ( y ) ⋅ g 1 ( x ) . Так мы придем к уравнению f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x . Преобразование можно будет считать эквивалентным в том случае, если одновременно f 2 ( y ) ≠ 0 и g 1 ( x ) ≠ 0 . Если хоть одно из условий не будет соблюдаться, мы можем потерять часть решений.

В качестве примеров дифференциальных уравнений с разделяющимися переменными можно привести следующие из них: d y d x = y · ( x 2 + e x ) , ( y 2 + a r c cos y ) · sin x · y ‘ = cos x y .

К уравнениям с разделяющимися переменными мы можем прийти от ряда дифференциальных уравнений других видов путем замены переменных. Например, мы можем подставить в исходное уравнение z = a x + b y . Это позволит нам перейти к дифференциальному уравнению с разделяющимися переменными от дифференциального уравнения вида y ‘ = f ( a x + b y ) , a , b ∈ R .

Подставив z = 2 x + 3 y в уравнение y ‘ = 1 e 2 x + 3 y получаем d z d x = 3 + 2 e z e z .

Заменив z = x y или z = y x в выражениях y ‘ = f x y или y ‘ = f y x , мы переходим к уравнениям с разделяющимися переменными.

Если произвести замену z = y x в исходном уравнении y ‘ = y x · ln y x + 1 , получаем x · d z d x = z · ln z .

В ряде случаев прежде, чем производить замену, необходимо произвести преобразования исходного уравнения.

Предположим, что в условии задачи нам дано уравнение y ‘ = y 2 — x 2 2 x y . Нам необходимо привести его к виду y ‘ = f x y или y ‘ = f y x . Для этого нам нужно разделить числитель и знаменатель правой части исходного выражения на x 2 или y 2 .

Нам дано уравнение y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R .

Для того, чтобы привести исходное уравнение к виду y ‘ = f x y или y ‘ = f y x , нам необходимо ввести новые переменные u = x — x 1 v = y — y 1 , где ( x 1 ; y 1 ) является решением системы уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0

Введение новых переменных u = x — 1 v = y — 2 в исходное уравнение y ‘ = 5 x — y — 3 3 x + 2 y — 7 позволяет нам получить уравнение вида d v d u = 5 u — v 3 u + 2 v .

Теперь выполним деление числителя и знаменателя правой части уравнения на u . Также примем, что z = u v . Получаем дифференциальное уравнение с разделяющимися переменными u · d z d u = 5 — 4 z — 2 z 2 3 + 2 z .

Подробный разбор теории и алгоритмов решения задач мы привели в разделе «Дифференциальные уравнения с разделяющимися переменными».

Линейные неоднородные дифференциальные уравнения первого порядка y ‘ + P ( x ) · y = Q ( x )

Приведем примеры таких уравнений.

К числу линейных неоднородных дифференциальных уравнений 1 -го порядка относятся:

y ‘ — 2 x y 1 + x 2 = 1 + x 2 ; y ‘ — x y = — ( 1 + x ) e — x

Для решения уравнений этого вида применяется метод вариации произвольной постоянной. Также мы можем представить искомую функцию у в виде произведения y ( x ) = u ( x ) v ( x ) . Алгоритмы применения обоих методов мы привели в разделе «Линейные неоднородные дифференциальные уравнения первого порядка».

Дифференциальное уравнение Бернулли y ‘ + P ( x ) y = Q ( x ) y a

Приведем примеры подобных уравнений.

К числу дифференциальных уравнений Бернулли можно отнести:

y ‘ + x y = ( 1 + x ) e — x y 2 3 ; y ‘ + y x 2 + 1 = a r c t g x x 2 + 1 · y 2

Для решения уравнений этого вида можно применить метод подстановки z = y 1 — a , которая выполняется для того, чтобы свести исходное уравнение к линейному дифференциальному уравнению 1 -го порядка. Также применим метод представления функции у в качестве y ( x ) = u ( x ) v ( x ) .

Алгоритм применения обоих методов приведен в разделе «Дифференциальное уравнение Бернулли». Там же можно найти подробный разбор решения примеров по теме.

Уравнения в полных дифференциалах P ( x , y ) d x + Q ( x , y ) d y = 0

Если для любых значений x и y выполняется ∂ P ( x , y ) ∂ y = ∂ Q ( x , y ) ∂ x , то этого условия необходимо и достаточно, чтобы выражение P ( x , y ) d x + Q ( x , y ) d y представляло собой полный дифференциал некоторой функции U ( x , y ) = 0 , то есть, d U ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y . Таким образом, задача сводится к восстановлению функции U ( x , y ) = 0 по ее полному дифференциалу.

Выражение, расположенное в левой части записи уравнения ( x 2 — y 2 ) d x — 2 x y d y = 0 представляет собой полный дифференциал функции x 3 3 — x y 2 + C = 0

Для более подробного ознакомления с теорией и алгоритмами решения примеров можно обратиться к разделу «Уравнения в полных дифференциалах».

Видео:Показательные уравнения. 11 класс.Скачать

Показательные уравнения. 11 класс.

Дифференциальные уравнения второго порядка

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = 0 , p , q ∈ R

Линейное однородное дифференциальное уравнение с постоянными коэффициентами обычно решается достаточно просто. Нам необходимо найти корни характеристического уравнения k 2 + p k + q = 0 . Здесь возможны три варианта в зависимости от различных p и q :

  • действительные и различающиеся корни характеристического уравнения k 1 ≠ k 2 , k 1 , k 2 ∈ R ;
  • действительные и совпадающие k 1 = k 2 = k , k ∈ R ;
  • комплексно сопряженные k 1 = α + i · β , k 2 = α — i · β .

Значения корней характеристического уравнения определяет, как будет записано общее решение дифференциального уравнения. Возможные варианты:

  • y = C 1 e k 1 x + C 2 e k 2 x ;
  • y = C 1 e k x + C 2 x e k x ;
  • y = e a · x · ( C 1 cos β x + C 2 sin β x ) .

Пример 13

Предположим, что у нас есть линейное однородное дифференциальное уравнение 2 -го порядка с постоянными коэффициентами y ‘ ‘ + 3 y ‘ = 0 . Найдем корни характеристического уравнения k 2 + 3 k = 0 . Это действительные и различные k 1 = — 3 и k 2 = 0 . Это значит, что общее решение исходного уравнения будет иметь вид:

y = C 1 e k 1 x + C 2 e k 2 x ⇔ y = C 1 e — 3 x + C 2 e 0 x ⇔ y = C 1 e — 3 x + C 2

Восполнить пробелы в теоретической части и посмотреть подробный разбор примеров по теме можно в статье «Линейные однородные дифференциальные уравнения 2 -го порядка с постоянными коэффициентами».

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = f ( x ) , p , q ∈ R

Основным способом решение уравнений данного вида является нахождение суммы общего решения y 0 , которое соответствует линейному однородному дифференциальному уравнению y ‘ ‘ + p y ‘ + q y = 0 , и частного решения y

исходного уравнения. Получаем: y = y 0 + y

Способ нахождения y 0 мы рассмотрели в предыдущем пункте. Найти частное решение y

мы можем методом неопределенных коэффициентов при определенном виде функции f ( x ) , которая расположена в правой части записи исходного выражения. Также применим метод вариации произвольных постоянных.

К числу линейных неоднородных дифференциальных уравнений 2 -го порядка с постоянными коэффициентами относятся:

y ‘ ‘ — 2 y ‘ = ( x 2 + 1 ) e x ; y ‘ ‘ + 36 y = 24 sin ( 6 x ) — 12 cos ( 6 x ) + 36 e 6 x

Теоретические выкладки и подробный разбор примеров по теме можно найти в разделе «ЛНДУ 2 -го порядка с постоянными коэффициентами».

Линейные однородные дифференциальные уравнения (ЛОДУ) y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x )

Линейные однородные и неоднородные дифференциальные уравнения и постоянными коэффициентами являются частными случаями дифференциальных уравнений этого вида.

На некотором отрезке [ a ; b ] общее решение линейного однородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 представлено линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, y = C 1 y 1 + C 2 y 2 .

Частные решения мы можем выбрать из систем независимых функций:

1 ) 1 , x , x 2 , . . . , x n 2 ) e k 1 x , e k 2 x , . . . , e k n x 3 ) e k 1 x , x · e k 1 x , . . . , x n 1 · e k 1 x , e k 2 x , x · e k 2 x , . . . , x n 2 · e k 2 x , . . . e k p x , x · e k p x , . . . , x n p · e k p x 4 ) 1 , c h x , s h x

Однако существуют примеру уравнений, для которых частные решения не могут быть представлены в таком виде.

Возьмем для примера линейное однородное дифференциальное уравнение x y ‘ ‘ — x y ‘ + y = 0 .

Общее решение линейного неоднородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x ) мы можем найти в виде суммы y = y 0 + y

, где y 0 — общее решение соответствующего ЛОДУ, а y

частное решение исходного дифференциального уравнения. Найти y 0 можно описанным выше способом. Определить y

нам поможет метод вариации произвольных постоянных.

Возьмем для примера линейное неоднородное дифференциальное уравнение x y ‘ ‘ — x y ‘ + y = x 2 + 1 .

Более подробно этот раздел освещен на странице «Линейные дифференциальные уравнения второго порядка».

Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Дифференциальные уравнения высших порядков

Дифференциальные уравнения, допускающие понижение порядка

Мы можем провести замену y ( k ) = p ( x ) для того, чтобы понизить порядок исходного дифференциального уравнения F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 , которое не содержит искомой функции и ее производных до k — 1 порядка.

В этом случае y ( k + 1 ) = p ‘ ( x ) , y ( k + 2 ) = p ‘ ‘ ( x ) , . . . , y ( n ) = p ( n — k ) ( x ) , и исходное дифференциальное уравнение сведется к F 1 ( x , p , p ‘ , . . . , p ( n — k ) ) = 0 . После нахождения его решения p ( x ) останется вернуться к замене y ( k ) = p ( x ) и определить неизвестную функцию y .

Дифференциальное уравнение y ‘ ‘ ‘ x ln ( x ) = y ‘ ‘ после замены y ‘ ‘ = p ( x ) станет уравнением с разделяющимися переменными y ‘ ‘ = p ( x ) , и его порядок с третьего понизится до первого.

В уравнении, которое не содержит аргумента х и имеет вид F ( y , y ‘ , y ‘ ‘ , . . . , y ( n ) ) = 0 , порядок может быть заменен на единицу следующим образом: необходимо провести замену d y d x = p ( y ) , где p ( y ( x ) ) будет сложной функцией. Применив правило дифференцирования, получаем:

d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y )
Полученный результаты подставляем в исходное выражение. При этом мы получим дифференциальное уравнение, порядок которого на единицу меньше, чем у исходного.

Рассмотрим решение уравнения 4 y 3 y ‘ ‘ = y 4 — 1 . Путем замены d y d x = p ( y ) приведем исходное выражение к уравнению с разделяющимися переменными 4 y 3 p d p d y = y 4 — 1 .

Более подробно решения задач по теме рассмотрены в разделе «Дифференциальные уравнения, допускающие понижение порядка».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = 0 и y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = f ( x )

Решение уравнений данного вида предполагает выполнение следующих простых шагов:

  • находим корни характеристического уравнения k n + f n — 1 · k n — 1 + . . . + f 1 · k + f 0 = 0 ;
  • записываем общее решение ЛОДУ y 0 в стандартной форме, а общее решение ЛНДУ представляем суммой y = y 0 + y

— частное решение неоднородного дифференциального уравнения.

Нахождение корней характеристического уравнения подробно описано в разделе «Решение уравнений высших степеней». Для нахождения y

целесообразно использовать метод вариации произвольных постоянных.

Линейному неоднородному ДУ с постоянными коэффициентами y ( 4 ) + y ( 3 ) — 5 y ‘ ‘ + y ‘ — 6 y = x cos x + sin x соответствует линейное однородное ДУ y ( 4 ) + y ( 3 ) — 5 y ‘ ‘ + y ‘ — 6 y = 0 .

Более детальный разбор теории и примеров по теме вы можете найти на странице « Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 и y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )

Найти решение ЛНДУ высших порядков можно благодаря сумме y = y 0 + y

, где y 0 — общее решение соответствующего ЛОДУ, а y

— частное решение неоднородного дифференциального уравнения.

y 0 представляет собой линейную комбинацию линейно независимых функций y 1 , y 2 , . . . , y n , каждая из которых является частным решением ЛОДУ, то есть, обращает равенство y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 в тождество. Частные решения y 1 , y 2 , . . . , y n обычно подбираются из известных систем линейно независимых функций. Подобрать их далеко не всегда просто и возможно, в этом и заключается основная проблема.

После того, как мы найдем общее решение ЛОДУ, найти частное решение соответствующего ЛНДУ можно благодаря методу вариации произвольных постоянных. Итак, y = y 0 + y

Получить более подробную информацию по теме можно в разделе «Дифференциальные уравнения высших порядков».

Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Системы дифференциальных уравнений вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2

Данная тема подробно разобрана на странице «Системы дифференциальных уравнений». Там же приведены примеры задач с подробных разбором.

Видео:Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !

Дифференциальные уравнения, общие понятия

Дифференциальные уравнения — это отдельный вид функциональных уравнений. А значит для дифференциальных уравнений такие понятия, как функция, аргумент функции, область определения функции и т.п., также являются актуальными.

Главное отличие дифференциальных уравнений от фунцкциональных в том, что одна из переменных (как правило искомая неизвестная величина) является производной или дифференциалом функции, аргументом которой является вторая переменная, впрочем аргументов у функции может быть несколько.

В общем случае определение дифференциального уравнения может выглядеть так:

Дифференциальным уравнением называется равенство между функцией и ее производной или дифференциалом.

Дифференциальное уравнение называется обыкновенным, если искомая функция зависит от одного аргумента. Например:

у’ = f(x) (539.1)

Напомню, функциональное уравнение может иметь следующий вид:

у = f(x) (538.1)

Дифференциальное уравнение называется уравнением в частных производных, если искомая функция зависит от нескольких аргументов. Например:

у’ = f(x1,x2) или у’ = f(x,u) (539.2)

где х1, х2 или х, u — возможные обозначения для различных аргументов функции.

Порядком дифференциального уравнения считается порядок наивысшей производной, входящей в уравнение. Например уравнение (539.1) является уравнением первого порядка. Уравнение второго порядка может иметь вид:

y» = f(x) (539.3)

Решением дифференциального уравнения является функция, подставление которой вместо неизвестной функции обращает уравнение в тождество. Другими словами уравнение становится равенством.

А теперь эти общие математические понятия (кстати тут приведены далеко не все основные понятия) попробуем описать простым человеческим языком, но начать придется издалека.

Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

Производная функции

Мы живем в несовершенном, постоянно изменяющемся мире. Все течет, все изменяется, как подметил еще Гераклит. Однако в древности были и другие мыслители, которые в отличие от Гераклита пытались этот мир как-то понять и оценить. Так далеко в историю мы заглядывать не будем, хотя предпосылки к дифференциальному исчислению следует искать именно там, а ограничимся простыми и наглядными примерами:

Пример 1

Мы вышли из пункта А в пункт Б и находились в пути 4 часа, каждый час мы проходили по 2 километра. Вопрос: какое расстояние между пунктами А и Б?

Вообще это задачка для 3-4 класса начальной школы и решить ее вроде бы не сложно (потому я ее и выбрал): достаточно сложить все расстояния, пройденные за каждый час, а так как эти расстояния одинаковые, то можно еще больше упростить задачу, умножив на 4 расстояние, пройденное за один промежуток времени. Таким образом расстояние между пунктами А и Б составляет:

2 км · 4 = 8 км (539.4)

А между тем условия задачи можно рассматривать и по другому, т.е. как зависимость пройденного расстояния от времени. В этом случае у нас время -независимая переменная t или аргумент функции, а пройденное расстояние — значение функции в тот или иной момент времени или переменная s. Тогда условия задачи соответствуют следующему функциональному уравнению:

s = f(t) = 2t (539.5)

а также графику этой функции:

Уравнения приводимые к одной функции одного аргумента

Рисунок 539.1. График функции f(t) = 2t.

Так если по оси t откладывать промежутки времени Δt (ч), которое мы были в пути, а по оси s — преодоленное за эти промежутки времени расстояние Δs (км), то график указанной функции будет иметь такой вид, как показано на рисунке 539.1. В общем случае используются более привычные оси х и у, соответственно рассматриваются функции вида y = f(x), но сути дела это никак не меняет.

Решая уравнение (539.5) мы можем определить не только общее расстояние, преодоленное за 4 часа пути, но и в любой интересующий нас момент времени. Например, нас интересует, какое расстояние мы прошли за 1.5 часа. Согласно уравнению (539.5) это расстояние составит 2·1.5 = 3 километра.

А если нас интересует не расстояние, преодоленное к тому или иному моменту времени, а скорость движения? Можем ли мы определить эту скорость на основе имеющихся данных?

Оказывается можем, потому что скорость — это тоже функция, которая в свою очередь также зависит от времени.

Так как каждый час мы преодолевали по 2 км, то отсюда можно сделать вывод, что скорость нашего движения была постоянной, тогда по давно известному нам уравнению, описывающему движение с постоянной скоростью:

v = s/t = 8/4 = 2 км/ч (539.6)

В данном случае, так как скорость постоянная, не имеет значения, на каком временном промежутке мы эту скорость определяем. Тем не менее рассмотрим данную ситуацию с точки зрения математики.

Временные промежутки, когда засекалось пройденное расстояние, мы обозначим как Δt = 1, соответственно t = ΣΔt = 1 + 1 + 1 + 1 = 4. Расстояния, пройденные за эти промежутки времени обозначим как Δs = 2. На графике функции это будет выглядеть так:

Уравнения приводимые к одной функции одного аргумента

Рисунок 539.2

С точки зрения математики временные промежутки Δt — это приращение аргумента функции:

Δt = t — t0 (539.7)

Соответственно расстояния, пройденные за рассматриваемый промежуток времени — это приращение функции:

Δs = Δf(t) = f(t) — f(t0) (539.8)

А так как использовать греческую литеру Δ не всегда удобно (в частности мне для этого приходится заходить в отдельный редактор текста, а наборщикам в типографиях вставить эту литеру было еще сложнее), то часто приращение значения искомой функции и приращение аргумента функции обозначают как ds и dt.

Тогда формулу определения скорости можно записать так:

v = ds/dt (539.9)

Таким образом мы с одной стороны вроде бы просто разделили расстояние на время — задача для 3-4 класса, а с другой стороны мы определили производную функции s = f(t), соответствующим образом ее продифференцировав, а это уже задача курса алгебры, а то и высшей математики.

Возможно и не стоило это так подробно расписывать, но на мой взгляд это очень важно, чтобы показать, что в дифференциальном исчислении нет ничего трудного, если рассматривать его на соответствующих примерах.

Итак скорость v является производной функции s = f(t) = 2t. Дифференциальное уравнение в этом случае будет выглядеть так:

v = s’ = f'(t) (539.10.1)

v = (2t)’ = 2 (539.10.2)

Но и это еще не все, на основании имеющихся данных: времени в пути и расстояний, преодоленных за 1 час, мы можем определить ускорение нашего движения.

Так как скорость нашего движения оставалась постоянной, соответственно dv = 0, то само собой и ускорения никакого не было, ни положительного ни отрицательного. Другими словами ускорение нашего движения составляло а = 0 км/ч 2 .

На языке математики это будет выглядеть так:

а = v’ = dv/dt = s» = d 2 s/dt 2 (539.11.1)

a = 0/1 = (2t)» = (2)’ = 0 (539.11.2)

Т.е. в данном случае для определения ускорения нужно определить первую производную функции скорости (уравнения, выражающего зависимость скорости от времени) или вторую производную функции расстояния (уравнения, выражающего зависимость пройденного расстояния от времени).

На основании вышеизложенного мы можем дать следующее предварительное определение производной:

Производная — это скорость изменения функции

В рассмотренном выше примере скорость движения — это скорость изменения функции расстояния, а ускорение — это скорость изменения функции скорости. Если бы мы все 4 часа сидели на месте, то и расстояние, пройденное нами, было бы равно нулю, и скорость и ускорение, но даже для такого случая можно записать соответствующие дифференциальные уравнения:

Однако в жизни гораздо чаще встречаются функции, даже третьи производные которых не равны нулю.

Рассмотрим другой пример все с тем же движением, на этот раз чуть более сложный.

Пример 2

По ровной наклонной поверхности скатывается шар. Начальная скорость движения равна vo = 0. Определить пройденное шаром за 4 секунды расстояние, скорость после 1, 2, 3 и 4 секунд движения и постоянное ускорение движения, если за первую секунду шар преодолел расстояние 3 м, за вторую — 9 м, за третью — 15 м, за четвертую — 21 м.

С определением пройденного расстояния по прежнему проблем нет: достаточно сложить расстояния, которые преодолел шар за каждую секунду s = ΣΔs = 3 + 9 + 15 + 21 = 48 метров. А вот скорость и ускорение в данном случае определить не так просто. Тем не менее попробуем.

Если воспользоваться полученными раннее знаниями, то вроде бы в первый промежуток времени скорость должна быть равна:

Вот только в данном случае у нас скорость — изменяющаяся величина, зависящая от времени, поэтому результат полученный при решении уравнения (539.12) можно рассматривать лишь как среднюю скорость движения на первом участке. Тогда более правильно уравнение скорости на первом участке записать так:

v1ср = ds1/dt1 = 3/1 = 3 м/с (539.12.2)

Подобным образом мы достаточно легко можем определить среднюю скорость на всех участках пути, и она составит v2ср = 9 м/с, v3ср = 15 м/с, v4ср = 21 м/с, но в данном случае нас интересует не среднее значение функции скорости на рассматриваемом участке, а значение функции скорости во вполне определенной точке, т.е. после 1, 2, 3 и 4 секунд движения. Как это сделать?

По условиям задачи ускорение — производная от скорости — является постоянной величиной, т.е. скорость изменения скорости будет постоянной. В этом случае значение средней скорости является средним арифметическим от начальной и конечной скорости на рассматриваемом участке:

тогда при vo = 0

v1 = 3·2 = 6 м/с (539.13.2)

Соответствующим образом мы можем определить значения скорости и в остальных точках, например (6 + v2)/2 = 9, v2 = 9·2 — 6 = 12 м/с; (12 + v3)/2 = 15, v3 = 15·2 — 12 = 18 и так далее, а теперь переведем полученные данные на язык высшей математики. Мы видим, что v1 = 6·1, v2 = 6·2 = 12, v3 = 6·3 = 18, т.е. значение скорости явно зависит от времени, соответственно уравнение скорости мы можем записать следующим образом:

v = s’ = 6t (539.14)

Соответственно ускорение движения шара составит:

a = v’ = (6t)’ = 6 м/с 2 (539.15)

Между тем, если бы нам были заданы меньшие значения временных промежутков и соответственно меньшие значения пройденных расстояний за эти промежутки времени, например при dt1 = 1 секунда, ds1 = 3 м, dt2 = 0.1 секунды и ds2 = 0.63 м, то средняя скорость на рассматриваемом втором участке составила бы v2ср = ds/dt = 0.63/0.1 = 6.3 м/с, а скорость в в точке t2: v2сp = (6 + v2)/2 = 6.3, v2 = 12.6 — 6 = 6.6 м/с. Т.е. закономерность изменения значения скорости никуда не девается, тем не менее, чем меньше рассматриваемый временной промежуток dt, тем меньше разница между значением средней скорости изменения функции и скоростью изменения функции в рассматриваемой точке. Из этого можно сделать еще один очень важный вывод:

Скорость изменения функции может быть разная. Чем меньше приращение аргумента функции dt, тем ближе значение среднего изменения скорости к изменению скорости функции в рассматриваемой точке.

На основании этого можно сформулировать более полное определение производной функции:

Производная функции в точке — это скорость изменения функции в рассматриваемой точке при стремлении приращения аргумента функции к нулю (Δt → 0)

Поэтому иногда производную называют мгновенной скоростью изменения функции. В нашем случае уравнение производной будет выглядеть так:

Уравнения приводимые к одной функции одного аргумента(539.16)

На данном этапе вид формулы (539.16) нас уже не пугает (во всяком случае мне так кажется). Совсем другое дело, когда подобная формула приводится в начале темы, посвященной рассмотрению производных функции.

Видео:Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Дифференциал (первообразная) функции

С задачей определения скорости и ускорения в примере 2 мы вроде бы справились и даже составили соответствующие уравнения (539.14) и (539.15). Но иногда требуется решить и обратную задачу — например определить исходное уравнение, описывающее зависимость перемещения от времени.

Если скорость является производной функции расстояния v = s’, то расстояние при этом является первообразной (дифференциалом) функции скорости s = ∫v. Процесс нахождения первообразной функции называется интегрированием. Так, чтобы получить уравнение зависимости пройденного расстояния от времени, нам нужно проинтегрировать уравнение скорости. При этом уравнение расстояния более правильно записывать так

s = ∫vdt (539.17)

В общем случае интегрирование может быть более сложной задачей, чем дифференцирование, потому что функции бывают не только степенными, как в данном примере, но и тригонометрическими, обратными тригонометрическими и т.п., но пока нас интересует, как проинтегрировать простую степенную функцию вида f(t) = 6t.

Вообще-то мы могли сразу построить график, отражающий зависимость пройденного расстояния от времени по данным примера 2, тем не менее сделаем это сейчас, а заодно построим график для уравнений скорости и ускорения и расположим их в такой последовательности:

Уравнения приводимые к одной функции одного аргумента

Рисунок 539.3. Графики степенных функции а) а= 6, б) v = at, в) s = at 2 /2.

Как видим, график, отражающий зависимость ускорения от времени, у нас самый простой. Ускорение постоянное, а = 6 м/с 2 и от времени никак не зависит. Тем не менее, зная ускорение, мы можем определить скорость движения в любой точке времени. Так из уравнений (539.14) и (539.15) следует, что:

v = 6t = at (539.14.2)

Соответственно решая это уравнение, мы можем определить скорость в любой момент времени.

Но если рассматривать это действие с точки зрения геометрии, то мы, умножая ускорение на время, определяем площадь прямоугольника со сторонами а = 6 и t. При t = 4 площадь прямоугольника составит 6·4 = 24, точнее 24 м/с так как мы все-таки определяем скорость.

Если мы построим график, отражающий зависимость изменения скорости от времени, то увидим, что на этом графике значения скорости в той или иной момент времени соответствуют площадям прямоугольника со сторонами а = 6 и t.

Получается, что если определить площадь треугольника со сторонами v и t, то это и будет расстояние, преодоленное к тому или иному промежутку времени:

s = vt/2 = at 2 /2 = 6t 2 /2 = 3t 2 (539.18)

Уравнение (539.18) можно записать как дифференциальное:

s = ∫6tdt = 3t 2 (539.18.2)

Если график, показанный на рисунке 539.3.в) также является графиком для производной некоторой функции, то для определения первообразной этой функции нам также следовало бы найти площадь фигуры, ограниченной квадратной параболой.

Сделать это в принципе не сложно, так как площадь фигуры, очерченной квадратной параболой таким образом, как показано на рисунке 539.3.в) в 3 раза меньше площади прямоугольника со сторонами s и t, соответственно S = st/3 = 3t 2 t/3 = t 3 и эту процедуру можно повторять до бесконечности.

Почему площадь фигуры, ограниченной квадратной параболой именно в 3 раза меньше, чем площадь прямоугольника, а площадь фигуры ограниченной кубической параболой в 4 раза меньше площади прямоугольника, я здесь объяснять не буду, тем не менее такая закономерность существует и в математическом выражении выглядит так:

∫aх n dx = ax n+1 /n + C (539.19)

В данном случае С — это некоторая постоянная величина. Как мы выяснили, при дифференцировании постоянные величины обращаются в нуль, как пример — уравнение (539.11.2), соответственно решая обратную задачу, т.е. интегрируя функцию, мы допускаем, что некая постоянная величина в первообразной функции была.

Например в общем случае уравнение скорости (539.14.2) должно выглядеть так:

v = vo + at (539.14.3)

где vo — это и есть некая постоянная величина. В нашем случае по условиям задачи vo = 0, поэтому мы использовали сокращенную форму записи.

Определенный интеграл

В общем случае график функции может выглядеть как угодно, например так:

Уравнения приводимые к одной функции одного аргумента

Рисунок 539.4

В этом случае сразу определить площадь фигуры, ограниченной графиком функции, не получится. Но мы можем разбить эту фигуру на участки шириной Δх и определить среднее значение у для каждого участка. Теперь определить площади трех прямоугольников большого труда не составит, вот только суммарная площадь прямоугольников не будет равна площади фигуры, ограниченной графиком функции:

S ≈ ∑yiΔx (539.20)

Но чем больше будет у нас прямоугольников с шириной Δх, т.е, чем меньше будет значение Δх, тем точнее будет значение у, а значит и суммарная площадь прямоугольников будет ближе к площади фигуры, ограниченной графиком функции.

При интегрировании, как и при дифференцировании для получения более точного результата приращение аргумента функции должно стремиться к нулю (maxΔx → 0) .

Из этого можно сделать следующий вывод:

Если существует предел суммы, определяемой по формуле (539.20) вне зависимости от количества прямоугольников и при стремлении ширины прямоугольников к нулю, то такой предел называется определенным интегралом, а суммы, определяемые по формуле (539.20) — интегральными суммами.

Так как на рисунке 539.4 показан график непрерывной функции, то такая функция является интегрируемой и для определения дифференциала функции используется определенный интеграл. При этом 0 и 3 — это пределы интегрирования.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Категории:
  • Расчет конструкций . Уравнения, основные понятия
Оценка пользователей:10.0 (голосов: 1)Переходов на сайт:1701Комментарии:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

📸 Видео

Как построить график функции без таблицыСкачать

Как построить график функции без таблицы

Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать

Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.

Подготовка к ЕГЭ #86. Способ приведения тригонометрического уравнения к одной из функцийСкачать

Подготовка к ЕГЭ #86. Способ приведения тригонометрического уравнения к одной из функций

Как решают уравнения в России и США!?Скачать

Как решают уравнения в России и США!?

Способ приведения тригонометрического уравнения к одной из функций. Подготовка к ГВЭ11+ЕГЭ 2021 #86Скачать

Способ приведения тригонометрического уравнения к одной из функций. Подготовка к ГВЭ11+ЕГЭ 2021 #86

Метод введения вспомогательного аргумента. Видеоурок 34. Алгебра 10 классСкачать

Метод введения вспомогательного аргумента. Видеоурок 34. Алгебра 10 класс

Однородные уравнения и метод вспомогательного аргумента. Тригонометрические уравнения Часть 4 из 6.Скачать

Однородные уравнения и метод вспомогательного аргумента. Тригонометрические уравнения Часть 4 из 6.

Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Как решать однородные тригонометрические уравненияСкачать

Как решать однородные тригонометрические уравнения
Поделиться или сохранить к себе: