Уравнения и неравенства конспект кратко

Алгебра и начала математического анализа. 10 класс
Содержание
  1. Уравнения и неравенства
  2. Уравнения и неравенства
  3. Уравнения и неравенства в математике с примерами решения и образцами выполнения
  4. Выражение
  5. Уравнение
  6. Равносильность
  7. Неравенство
  8. Параметр
  9. Примеры решения уравнений
  10. Приближенные методы вычисления корней
  11. Неравенства с одним неизвестным
  12. Примеры решения неравенств
  13. Способ подстановки
  14. Симметричные системы
  15. Линейные системы
  16. Тождества
  17. Доказательство неравенств
  18. Алгебраические уравнения
  19. Уравнения, тождества, неравенства: определения и классификация
  20. Уравнения и неравенства первой степени с одним неизвестным
  21. Два свойства уравнений
  22. Понятие о равносильности уравнений
  23. О некоторых преобразованиях уравнения, которые могут привести к потере или приобретению решений
  24. О числе решений уравнения первой степени с одним неизвестным
  25. Уравнения, содержащие неизвестное в знаменателе
  26. Решение задач при помощи уравнений. Понятие об исследовании задачи
  27. Применение уравнений к решению задач в общем виде
  28. Понятие о неравенстве
  29. Решение неравенств первой степени с одним неизвестным
  30. 💥 Видео
Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №19. Равносильные уравнения и неравенства

Перечень вопросов, рассматриваемых в теме

1) понятие равносильного уравнения;

2) понятие равносильного неравенства;

3) понятие уравнения-следствия;

4) основные теоремы равносильности.

Глоссарий по теме

Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Определение. Два уравнения с одной переменной

f(х) = g(х) и р(х) = h(х) называют равносильными, если множества их корней совпадают.

Иными словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

1) Уравнения Уравнения и неравенства конспект краткоравносильны, т.к. каждое из них имеет только один корень х=3.

2) Уравнения Уравнения и неравенства конспект краткотакже равносильны, т.к. у них одни и те же корни Уравнения и неравенства конспект кратко.

3) А вот уравнения Уравнения и неравенства конспект кратконе равносильны, потому что у первого уравнения корень х=2, а у второго уравнения два корня х=2 и х=-2.

Из определения равносильности следует, что два уравнения равносильны, если каждый корень первого уравнения является корнем второго уравнения, и наоборот.

Решение уравнения осуществляется в три этапа.

Первый этап — технический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3)→ (4) → . и находят корни последнего (самого простого) уравнения указанной цепочки.

Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этап — проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.

Реализация этого плана связана с поисками ответов на четыре вопроса.

  • Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?
  • Какие преобразования могут перевести данное уравнение в уравнение-следствие?
  • Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?
  • В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

Из курса средней школы мы знаем, что можно сделать следующие преобразования уравнений: любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Обе части уравнения можно умножить или разделить на одной и то же число, не равное нулю.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Из этого определения и определения равносильности уравнений следует, что:

  1. если ва уравнения равносильны, то каждое из них является следствием другого;
  2. если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.

При решении уравнений главное- не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.

Стоит отметить, что посторонние корни могут получиться при умножении обеих частей уравнения на выражение, содержащее неизвестное; а вот потеря корней может произойти при делении обеих частей уравнения на выражение, содержащее неизвестное.

Итак, сформулируем основные теоремы, которые используются при решении равносильных уравнений:

Определение. Областью определения уравнения f(х) = g(х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и туже нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение Уравнения и неравенства конспект кратко(где а > 0, a≠1)

равносильно уравнению f(x) = g(х).

Теорема 4. Если обе части уравнения f(x) = g(х) умножить на одно и то же выражение h(х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(х)

б) нигде в этой области не обращается в 0, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному в его ОДЗ.

Следствием теоремы 4: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f(x)=g(х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение Уравнения и неравенства конспект краткоравносильное данному в его ОДЗ.

Краткая запись теорем 4, 5.

4. f(x) = g(x) ⇔h(x)f(x) = h(x)g(x), где h(x) ≠0

и h(x) имеет смысл в ОДЗ данного уравнения.

5. f(x) = g(x) ⇔ Уравнения и неравенства конспект кратко, где f(x)≥0, g(x)≥0

и n=2k (чётное число).

Например, х – 1 = 3; х = 4

Умножим обе части на (х – 2):

(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень⇒ проверка!

Равносильность неравенств с неизвестным определяется аналогично.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Разбор решения заданий тренировочного модуля

Решим уравнение: Уравнения и неравенства конспект кратко

Возведем в квадрат обе части уравнения, получим:

Уравнения и неравенства конспект кратко, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня Уравнения и неравенства конспект кратко, а у первоначального уравнения только один корень х=4.

  1. Неравенства Уравнения и неравенства конспект краткои x-3 x-1 не равносильны, так как решениями первого являются числа x 1, а решениями второго- числа x>-1. При решении неравенств обычно данное неравенство преобразуется в ему равносильное.

Видео:Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать

Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)

Уравнения и неравенства

Уравнения и неравенства

Один из основных вопросов, который «занимает» математиков — решение различных рода и типа уравнений или неравенств, систем уравнений (неравенств) или, как говорят математики, исследование уравнений на их разрешимость . Это выражение включает множество смежных аспектов — вывод уравнения (неравенства), нахождение решения, выяснение его однозначности, единственности и т.д. Нас будут интересовать два основных вопроса (как «нематематика») — вывод уравнения (неравенства) и нахождение его решения (хотя другие вопросы иногда могут оказаться не менее значимыми, интересными и сложными).

Уравнением называется некоторое определенное равенство, связывающее хотя бы один неизвестный объект (из некоторого, заранее определенного множества объектов) хотя бы с одним известным объектом из этого (чаще всего) или из другого множества.Если эти объекты — числового происхождения, то уравнение называется числовым (скалярным). Если объекты — векторы, то уравнение называется векторным. Если объекты — матрицы, то уравнение называется матричным и т.д.

Решением уравнения называется любое конкретное значение неизвестного объекта, которое при подстановке в уравнение превращает его в верное (истинное) равенство, то есть в тождество . Если такой допустимый объект не существует, то уравнение не имеет решения или неразрешимо в данном множестве объектов. Множество допустимых значений неизвестного объекта называется допустимым множеством решений или областью определения уравнения .

Количество известных и неизвестных объектов уравнения существенно влияет на разрешимость уравнения.

Пример. Уравнение 2x+3=7 — простое скалярное уравнение, относительно неизвестного числа x . Уравнение 2x+3y=z — также скалярное, но уже относительно трех неизвестных. Это уравнение — несравнимо более сложное и в общем виде не имеющее решения (то есть не имеющее метода, алгоритма поиска неизвестных x, y, z ).

Если решается уравнение вида f(x)=0 и найдено его решение x=a (иначе говоря, f(a)=0 ), то x=a называют нулем функции f(x) .

Неравенство — некоторое соотношение, связывающее неизвестный объект (неизвестные объекты) с известными объектами с помощью знаков неравенства (знаков Уравнения и неравенства конспект кратко, Уравнения и неравенства конспект кратко, Уравнения и неравенства конспект кратко, , > ).

Неравенства, как и уравнения, могут быть различного типа: скалярные, векторные и т.д.

Решение системы уравнений (неравенств) должно обращать в тождество каждое уравнение ( неравенство ) системы. Для решения системы уравнений (неравенств) необходимо решить каждое уравнение ( неравенство ), найти множества решений каждого уравнения (неравенства) и взять их пересечение (то есть подмножество , где каждое уравнение или неравенство обращается в верное числовое равенство или неравенство ).

Решить уравнение ( неравенство ) означает найти все допустимые объекты, превращающие уравнение (неравенство) в истинное равенство (неравенство). Решением уравнения (неравенства) называют часто также и сам процесс нахождения таких объектов.

Пример. Получим (как говорят математики, «выведем») и затем решим скалярное уравнение (уравнение с числовым неизвестным) по следующим исходным данным ( по следующей содержательной постановке задачи): расстояние между станциями A и B по железной дороге равно 96 км, при этом первый поезд, идущий со средней скоростью на 12 км/час больше, чем второй, проходит это расстояние на 40 мин. быстрее, чем второй; необходимо найти скорости обоих поездов. Для получения уравнения проанализируем условие задачи и выпишем содержательно связь между параметрами (элементами) задачи, то есть выпишем содержательное уравнение вида (Время на AB второго поезда) — (Время на AB первого поезда) = 40 мин .

Теперь видно, что для нахождения неизвестных объектов (времени) этого уравнения необходимо ввести неизвестное — скорость (так как путь известен). Итак, обозначим через x (км/час) — скорость первого поезда, тогда скорость второго поезда будет по условию задачи равна x-12 (км/час). Из содержательно и не формализованно записанного соотношения, получаем уже формализованное, алгебраическое уравнение вида

Уравнения и неравенства конспект кратко

Решаем это уравнение. Для этого приводим к общему знаменателю: Уравнения и неравенства конспект кратко.

Отбрасывая затем один из неподходящих двух корней ( x=-36 ), получаем скорость первого поезда — 48 км/час, а скорость второго поезда (находим по условию задачи) — 36 км/час.

Особый класс уравнений и неравенств образуют уравнения и неравенства, связывающие текущие координаты точки на прямой , плоскости, пространстве и описывающие геометрические свойства, геометрическую (топологическую) структуру множества точек, удовлетворяющих такому соотношению, то есть решений таких уравнений или неравенств. Такие уравнения часто называют уравнениями линий, поверхностей (фигур, тел).

Рассмотрим некоторые основные, простые (канонические, как говорят в математике) типы таких уравнений и неравенств. Отметим попутно, что уравнения, определяющие линии на плоскости, часто в каноническом виде представлять не удается.

Окружность — это геометрическое место точек плоскости, отстоящих от некоторой фиксированной точки M(x0; y0) (называемой центром окружности) на одинаковом расстоянии r (называемой радиусом окружности). Задается неявным уравнением (x-x0) 2 +(y-y0) 2 =r 2 .

Пример. Уравнение окружности с центром в начале координат и радиусом, равным 3 единицы масштаба координатной системы, можно изобразить как на рис. 6.1.

Эллипс — это геометрическое место (рис. 6.2) точек M(x;y) , сумма расстояний от каждой из которых до двух данных точек F1 и F2 , называемых фокусами, есть величина постоянная.

Выведем уравнение эллипса. Пусть, согласно определению эллипса, r1+r2= | F2M | + | F1M | =2a .

Уравнения и неравенства конспект кратко

Легко проверить ( по известной из школы формуле расстояния между двумя точками), что верны следующие равенства:

Уравнения и неравенства конспект кратко

Поэтому из равенства r1+r2=2a получаем:

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Это уравнение называется каноническим уравнением эллипса, величины r1 и r2 — фокальные радиусы точки M(x;y) , F1, F2 — фокусы эллипса, x=0 , y=0 — оси симметрии , величина 2a — большая ось, 2b — малая ось, 2c=| F1F2 | — фокусное расстояние , величина Уравнения и неравенства конспект кратко— эксцентриситет эллипса.

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Уравнения и неравенства в математике с примерами решения и образцами выполнения

Уравнение — это самая простая и самая распространенная форма математической задачи. Заканчивая школьный курс, вы накопили богатый опыт решения разнообразных уравнений. Наступил момент, когда нужно привести свои знания в порядок, разобраться в тех приемах и рассуждениях, которые вы обычно проводили при решении уравнений, часто не обращая внимания на их смысл.

Мы начнем повторение с понятия «выражение».

Уравнения и неравенства конспект кратко

Видео:Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |Скачать

Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |

Выражение

Выражение — это числа и буквы, соединенные знаками разнообразных операций.

В начальной школе вы познакомились с простейшими арифметическими операциями — сложением, вычитанием, умножением, делением — и с их помощью составляли выражения такого, например, типа:

Уравнения и неравенства конспект кратко

Появление новых операций — возведение в степень, логарифмирование, вычисление синуса, тангенса и т. д. — расширило возможности в составлении выражений. Теперь можно составить более сложные выражения, например такие:

Уравнения и неравенства конспект кратко

Числа и буквы, входящие в состав выражения, имеют разный смысл. Число, как бы оно ни было записано, например Уравнения и неравенства конспект кратко0,5; 0,4999… или как-то иначе, всегда конкретно, постоянно Буква же обозначает переменную, меняющуюся величину, которая может принимать разнообразные значения. Мы будем подставлять в выражения вместо букв только числа. При подстановке в выражение вместо букв каких-то чисел мы будем получать так называемые числовые выражения. Так, числовое выражение Уравнения и неравенства конспект краткополучено из выражения Уравнения и неравенства конспект краткоподстановкой в него значений х = 3, у = 5.

Подставляя в выражение определенные значения букв, мы можем получить числовые выражения, не имеющие смысла. Бессмысленные числовые выражения получаются прежде всего тогда, когда это выражение содержит невыполнимые операции над числами, например деление на нуль, логарифмирование отрицательного числа, арксинус числа, большего единицы, тангенс числа Уравнения и неравенства конспект краткои т. п. Другой причиной, приводящей к не имеющим смысла числовым выражениям, является подстановка вместо букв чисел, не входящих в область допустимых значений этих букв. Например, если в выражении для производительности труда участвует буква а, обозначающая число землекопов в бригаде, то, подставляя значение Уравнения и неравенства конспект кратко(«два землекопа и две трети»), мы получим бессмысленное числовое выражение, хотя все операции над входящими в выражение числами формально осуществимы.

Областью допустимых значений (ОДЗ) выражения обычно называют множество всех значений букв, при подстановке которых выражение имеет смысл, т. е. превращается в осмысленное числовое выражение.

Заметим, что если выражение содержит одну букву, то его ОДЗ — это числовое множество, т. е. какое-то подмножество точек числовой прямой. Если же букв, например, две, то ОДЗ выражения — это множество пар чисел и его можно изобразить в виде области, расположенной на координатной плоскости.

Возьмем какое-либо осмысленное числовое выражение и проделаем все указанные в выражении операции над входящими в него числами. Получим одно число — значение числового выражения. Возьмем буквенное выражение и подставим в него вместо букв числа из ОДЗ (т. е. такие числа, чтобы выражение превратилось в осмысленное числовое выражение). Вычислим значение получившегося числового выражения. Это число называют значением выражения при выбранных значениях букв. Возможность однозначно вычислить значение выражения при любых допустимых значениях входящих в него букв позволяет определить функцию. Вот почему говорят, что выражение можно рассматривать как способ вычисления значений некоторой функции. Поэтому понятие выражения и понятие функции близки между собой.

Два выражения считаются тождественно равными, если равны их числовые значения при любых допустимых значениях букв, входящих в это выражение. Тождество — это два тождественно равных выражения, соединенные знаком равенства.

Уравнения и неравенства конспект кратко

Во всех приведенных тождествах ОДЗ выражений, стоящих слева и справа, совпадают. Часто используют тождества, соединяющие выражения, имеющие разные ОДЗ. В этом случае имеется в виду, что тождество выполняется на общей части ОДЗ выражений, стоящих справа и слева. Поэтому без дополнительных оговорок считаются тождествами следующие равенства выражений:

Уравнения и неравенства конспект кратко

Иногда искусственно (какими-либо дополнительными условиями) уменьшается ОДЗ выражений, составляющих некоторое равенство. Тогда можно говорить о тождестве, выполняющемся на некотором множестве. Так, если [х] обозначает целую часть числа х, то равенство Уравнения и неравенства конспект краткоявляется тождеством на множестве целых чисел (но, разумеется, не является тождеством в обычном смысле слова). Приведем более содержательные примеры.

Уравнения и неравенства конспект кратко

Тождественное преобразование выражения — это переход от одного выражения к тождественно равному выражению.

Самые «безобидные» тождественные преобразования — например, приведение подобных членов, сокращение дробей, использование свойств степени и т. п.— могут привести к выражению, у которого ОДЗ больше или меньше, чем у исходного выражения. Это может оказаться существенным при решении уравнений, поэтому информацию об изменении ОДЗ при тождественных преобразованиях полезно хранить в памяти (собственной-, машинной или просто в тетради).

Видео:Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Уравнение

Возьмем два числовых выражения и поставим между ними знак равенства. Мы получим числовое равенство. Оно будет верным или неверным в зависимости от того, равны или не равны значения взятых числовых выражений. Классическими примерами являются равенства 2 ⋅ 2 = 4 и «2 ⋅ 2 = 5».

Отметим еще раз, что, когда мы говорим «равенство двух числовых выражений», мы вовсе не утверждаем, что эти два выражения действительно равны. Соединить два числовых выражения A и В знаком « = » и говорить о получившемся равенстве А =В можно независимо от того, верно или неверно сформулированное нами утверждение А = В.

Возьмем два буквенных выражения и соединим их знаком равенства. Получим уравнение. Таким образом, уравнение в первом приближении можно понимать как равенство двух буквенных выражений.

Равенство числовых выражений иногда называют «безусловным» равенством, т. е. равенством или безусловно верным, или безусловно неверным. Уравнение с этой точки зрения можно считать «условным равенством» — при одних условиях ( т. е. при одних значениях букв) оно может оказаться верным, при других — неверным. Тождество — это равенство, верное при всех допустимых значениях букв. Его тоже можно считать частным случаем уравнения.

Уравнение — это не просто формальное равенство двух выражений. Главное в понятии уравнения — это постановка вопроса о его решении. Можно сказать, что уравнение — это равенство двух выражений вместе с призывом найти его решения. Опишем более точно, что же значит решить уравнение.

Буквы, входящие в состав уравнения (т. е. в состав выражений, образующих уравнение), называются неизвестными. Если такая буква одна, то говорят, что мы имеем дело с уравнением с одним неизвестным. Аналогично можно говорить об уравнении с двумя, тремя и любым другим числом неизвестных.

Рассмотрим уравнение с одним неизвестным. Значение неизвестного, при подстановке которого уравнение превращается в верное числовое равенство, называется корнем уравнения.

Решить уравнение с одним неизвестным — значит найти все его корни.

Возьмем уравнение с числом неизвестных, большим чем одно. Например, рассмотрим уравнение с двумя неизвестными. Чтобы получить из него числовое равенство, надо каждому неизвестному придать определенное числовое значение, т. е. взять пару чисел. Решить уравнение с двумя неизвестными — значит найти все пары чисел, удовлетворяющих этому уравнению, т. е. такие, при подстановке которых уравнение превращается в верное числовое равенство. Одну такую пару тоже можно было бы назвать корнем уравнения, но обычно так не говорят, а вводят понятие «решение уравнения».

Уравнения и неравенства конспект кратко

Винер Норберт

(1894—1964) — американский математик, создатель кибернетики как «науки об управлении и связи в живом организме и машине». Работы Винера являются основополагающими для применения вычислительных машин в различных сферах человеческой деятельности. Норберту Винеру принадлежит высказывание: «Вычислительная машина ценна ровно настолько, насколько ценен использующий ее человек».

Решение уравнения с двумя неизвестными — это пара чисел, удовлетворяющих этому уравнению.

Разумеется, и в случае уравнения с одним неизвестным можно вместо слов «корень уравнения» говорить «решение уравнения». Путаница может возникнуть из-за разного употребления слова «решение». Можно сказать о решении уравнения как его корне. При таком употреблении этого слова имеют смысл такие фразы, как «уравнение имеет одно решение», «уравнение имеет три решения», «уравнение не имеет решений». В речи часто используют словосочетание «решение уравнения» как процесс нахождения его корней (решений). Можно сказать так: «Уравнение имеет сложное решение», «Я не смог найти путь решения этого уравнения». В процессе решения уравнения может обнаружиться, что оно совсем не имеет корней (решений). В этом случае мы скажем, что мы уравнение решили: доказали, что у него решений нет.

Что означает найти корни уравнения? В школьной практике при решении уравнений принято записывать ответ как результат знакомых операций над числами, например:

Уравнения и неравенства конспект кратко

В то же время при решении прикладных задач бывает необходимо представить ответ в десятичной записи с определенным числом знаков после запятой. Такой ответ можно получить, используя калькулятор или другое вычислительное устройство.

Мы условились понимать под уравнением равенство, составленное из двух выражений. Мы уже говорили о том, что выражение можно рассматривать как способ задания некоторой функции. Поэтому уравнение можно понимать как равенство, соединяющее две функции. Пусть даны две функции от переменной х, например y = f(x) и y = g<x). Составим уравнение f<x) = g(х). Оно получено приравниванием выражений f (х) и g (х). Пусть D1 =D (f) и D2 = D (g) — области определений функций f и g. Тогда D1 и D2 можно понимать как области допустимых значений выражений f (х) и g (х). Общая часть областей D1 и D2, т. е. множество Уравнения и неравенства конспект кратко, является ОДЗ уравнения f(x) = g(x).

Полезно вспомнить, что подставлять в уравнение можно любое значение х. При каком-то значении х может получиться бессмысленное числовое выражение, а при х из ОДЗ получится осмысленное числовое равенство. Если при этом оно окажется еще и верным, то взятое число х является корнем уравнения.

Вернемся к вопросу о решении уравнения. Начнем с уравнения с одним неизвестным х. В какой форме рекомендуется записывать его ответ?

Уравнение может иметь один корень, например x=5. Тогда ответ проще всего записать именно в этой форме: х=5.

Уравнение может иметь несколько (конечное число) корней. Ответ удобно записать в виде перечисления всех корней, давая каждому значению х свой номер. Например, х1 = — 1, x2 = 0, xз=1. Полезно корни располагать в порядке возрастания.

Уравнение может вовсе не иметь корней. В таком случае нагляднее всего это и указать в ответе словами: корней нет.

Тригонометрические уравнения (и вообще уравнения с периодическими функциями) часто имеют бесконечно много корней, которые можно записать в виде одной или нескольких последовательностей. Скажем, возможна такая запись ответа:

Уравнения и неравенства конспект кратко

Встречаются уравнения, решения которых заполняют один или несколько промежутков, которые и указываются в ответе, например: 0 ≤ x ≤ 1 или х —- любое число.

Все корни (решения) уравнения образуют множество корней. Слово «множество» не означает, что корней очень много («великое множество»). Если множество корней обозначить одной буквой, скажем X, то ответ может быть записан иначе. Примеры записи ответов с употреблением теоретико-множественных обозначений: Х=; Х = ; Х= ∅ (пустое множество, т. е. корней нет; не надо путать знак пустого множества с обозначением нуля);

Уравнения и неравенства конспект кратко

Множество решений уравнения с двумя неизвестными состоит из пар значений этих неизвестных. Важно помнить, что одна пара, скажем х=1, у = 5,— это одно решение (а не два).

Равносильность

Если идет дождь, то мы открываем зонт. Можно сказать, что открывание зонта является следствием того, что идет дождь. Если число делится на 6, то оно четно. Так же как и в первом случае, можно сказать, что четность числа является следствием его делимости на 6.

Пусть даны два уравнения Лий. Если каждый корень уравнения А является корнем уравнения В, то говорят, что уравнение В является следствием уравнения А, и записывают так: А ⇒ В (читается: «Из А следует В», или «В является следствием A», или «Если А, то В»),

На языке теории множеств можно сказать короче: уравнение В является следствием уравнения А, если множество корней уравнения А содержится в множестве корней уравнения В, т. е. если XA ⊂ ХВ, где ХА и Хв — упомянутые множества корней.

Переходя от одного уравнения к его следствию, мы не потеряем корней исходного уравнения, но возможно приобретем лишние. Основой получения разнообразных следствий является следующее простое соображение. Пусть а = b — числовое равенство, a f — функция, определенная в точках а и b. Тогда равенство f(a) = f(b) является следствием равенства а = b, т. е. если равенство а — b верно, то верно и равенство f(a) = f(b) (если оно имеет смысл).

Возьмем теперь уравнение, полученное приравниванием двух выражений. Если функция f определена при всех значениях этих выражений, то, вычислив значения функции f от обеих частей уравнения, получим новое уравнение, являющееся следствием исходного. Это правило особенно удобно, если функция f определена при любых числовых значениях переменных.

Приведем примеры. Возьмем уравнение

Уравнения и неравенства конспект кратко

Следующие уравнения являются его следствиями (рядом записана применяемая функция, а буквой z обозначен ее аргумент):

Уравнения и неравенства конспект кратко

Все функции f определены при любом z, поэтому получение указанных следствий было формальной операцией.

Уравнения и неравенства конспект кратко

В случаях 5—8 функции уже определены не при всех х. Однако во всех случаях новые уравнения являются следствиями исходного. Этот вывод уже не является формальным. Примеры 5—7 разберите самостоятельно. Пример 8 является существенно более трудным и требует дополнительных сведений о корнях исходного уравнения (докажите, что все его корни лежат на отрезке [0; 1]).

Два уравнения называются равносильными, если каждое из них является следствием другого, т. е. если каждый корень одного из них является корнем другого. Пусть уравнение А имеет множество корней ХА, а уравнение В — множество Хв. Равносильность уравнений А и В обозначается так: А ⇔ В. По определению равносильность означает выполнение двух условий: А ⇒ В (уравнение В является следствием уравнения А) и В ⇒ А (наоборот, уравнение А является следствием уравнения В). На языке теории множеств равносильность означает равенство ХА = ХВ.

Итак, у равносильных уравнений корни одни и те же. Поэтому основным способом решения уравнения является следующий: с помощью перехода от одного уравнения к равносильному стараются прийти к уравнению, решения которого находятся легко.

Основной способ получения следствия нам известен — вычисление значений какой-либо функции от обеих частей уравнения.

Чтобы этот переход сохранял равносильность, надо, чтобы возможен был обратный переход. Это всегда выполняется, если новое уравнение получено с помощью функции, имеющей обратную. На этом соображении основаны теоремы о равносильности, позволяющие утверждать равносильность пар уравнений, получающихся друг из друга с помощью взаимно обратных функций. Сформулируем несколько таких теорем.

Запишем уравнение в символической форме:

□ = Δ,

где □ и Δ —два выражения, составляющие уравнение.

Теоремы помещены в левой колонке таблицы. В правой колонке указаны взаимно обратные функции, с помощью которых эти теоремы доказываются.

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Во всех этих случаях не было трудностей с областями определения применяемых функций. Использование таких распространенных операций, как возведение в квадрат, умножение и деление на некоторую функцию, нахождение обратной величины и т. д., в общем виде не гарантирует равносильности. Например, возводя в квадрат обе части уравнения, мы получаем следствие:

Уравнения и неравенства конспект кратко

Вообще говоря, обратный переход неверен. Однако если из последующего решения уравнения □2= Δ2 мы узнаем, что для его корней выражения □ и Δ имеют одинаковый знак, то можно будет поставить стрелку в обратном направлении и найти корни исходного уравнения:

□2 = Δ2 ⇒ □ = Δ, если □ и Δ одного знака.

Остановимся подробнее на некоторых полезных преобразованиях уравнений.

1) Тождественное преобразование одной из частей уравнения и перенос членов из одной части уравнения в другую с противоположным знаком приводят к равносильному уравнению, если при этом не происходит изменения ОДЗ. Например, уравнение

Уравнения и неравенства конспект кратко

x 2 — Зх + 2 = 0.

В то же время уравнения

Уравнения и неравенства конспект кратко

не являются равносильными (корни первого: х1 = — 8, x2 = 4; корень второго: x = 4), так как логарифмирование произведения уменьшило ОДЗ.

2) Переход к совокупности уравнений. Рассмотрим задачу, в которой требуется решить несколько уравнений, а затем объединить их корни. Можно сказать, что идет речь о решении совокупности уравнений. Обычно совокупность обозначается с помощью прямой скобки.

Пусть ОДЗ выражений □ и ∆ совпадают. Тогда уравнение □ • ∆ = 0 равносильно совокупности

Уравнения и неравенства конспект кратко

Оговорка про совпадение ОДЗ не случайна. Так, уравнение cos x • tg x = 0 не равносильно совокупности

Уравнения и неравенства конспект кратко

3) Переход к системе уравнений. Рассмотрим задачу, в которой надо решить несколько уравнений и взять их общие корни (или иначе найти числа, удовлетворяющие каждому из уравнений системы). В систему можно объединять не только уравнения, но и различные условия, ограничения, неравенства. Например, решить систему

Уравнения и неравенства конспект кратко

означает, что надо решить первое уравнение и взять только те его корни, для которых выполняется неравенство х+1;>0.

Использование переходов от уравнения к совокупностям и системам позволяет разнообразить схемы равносильных переходов. Покажем некоторые из них:

Уравнения и неравенства конспект кратко

Различные переходы от уравнения к совокупностям и системам изображены на схеме XV.

Видео:Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать

Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)

Неравенство

Почти все, что было выше сказано об уравнении, можно дословно перенести и на неравенство. Прежде всего отметим, что знаков неравенства четыре: > (больше), Уравнения и неравенства конспект кратко

Приведем основные правила преобразования неравенств, используя знак следствия ⇒ и равносильности ⇔.

Уравнения и неравенства конспект кратко

Основой техники преобразования неравенств является следующее общее соображение: пусть функция f монотонна на промежутке, содержащем числа а и b. Тогда а f (b) если f строго убывает.

Указанные выше свойства 3—6 получаются применением этого правила к функциям y = cz и Уравнения и неравенства конспект кратко.

Аналогично для функций y = z2 и у = 2z можно записать:

Уравнения и неравенства конспект кратко

Неравенство с одним неизвестным получается, когда соединяют знаком неравенства два выражения, содержащие одну букву, или, что близко по смыслу, две функции от одной и той же переменной. Аналогично можно рассматривать неравенства с двумя и более неизвестными.

Ограничимся неравенствами с одним неизвестным. Область допустимых значений (ОДЗ) неравенства—это множество значений неизвестного, при подстановке которых получается осмысленное числовое неравенство. Решение неравенства — это такое значение неизвестного, при подстановке которого получается верное числовое неравенство. Решить неравенство — это значит найти, описать множество его решений. Два неравенства называются равносильными, если множества их решений совпадают. Одно неравенство является следствием другого, если множество его решений содержит в себе множество решений второго. Ясно, что каждое из равносильных неравенств является следствием другого. Технику решения неравенств с помощью переходов, сохраняющих равносильность.

Параметр

Посмотрим на знакомое уравнение аx 2 + bх+с = 0. Выражение, стоящее в его левой части, содержит четыре буквы — х, а, b, с. Хотя все эти четыре буквы равноправны, мы смотрим на это уравнение как на квадратное уравнение относительно неизвестного х, считая а, b, с буквенными коэффициентами, параметрами. Необходимость рассматривать уравнения с буквенными коэффициентами возникает часто. Прежде всего это полезно тогда, когда формулируются некоторые общие свойства, присущие не одному конкретному уравнению, а целому классу уравнений. Так, мы можем сформулировать свойства корней квадратного уравнения, показательного уравнения ах = b, тригонометрического уравнения sin ωх=а в зависимости от параметров a, b, ω.

Разумеется, то, что в уравнении одни буквы мы считаем неизвестными, а другие — параметрами, в значительной степени условно. В реальной практике из одного и того же соотношения между переменными приходится выражать одни переменные через другие, т. е. решать уравнение относительно одной буквы, считая ее обозначением неизвестного, а другие буквы параметрами.

По традиции неизвестные обозначаются последними буквами латинского алфавита — х, у, z, а параметры — первыми — а, b, с или вообще буквами другого алфавита (например, греческими).

При решении уравнений и неравенств с параметрами чаще всего встречаются две задачи:

  1. Найти формулы для решений уравнения (неравенства), выражающие эти решения как функции от параметров. Типичный пример — формула корней квадратного уравнения.
  2. Исследовать решения уравнения (неравенства) в зависимости от изменения значений параметров. Скажем, встречается такая задача: найти число корней уравнения в зависимости от параметра или определить, при каких значениях параметра уравнение не имеет корней. Очень часто исследование корней в зависимости от параметра можно провести, не вычисляя самих корней.

Пример:

Дано уравнение x 2 + 2x + а = 0 относительно неизвестного х с параметром а.

  • 1) При каких значениях а уравнение имеет два корня?
  • 2) При каких значениях а уравнение имеет два корня, причем один из них больше единицы, а другой меньше?
  • 3) При каких значениях а сумма квадратов корней меньше шести?

Решите этот пример самостоятельно.

Укажем ответы: 1) а Уравнения с одним неизвестным

В простейших случаях решение уравнения с одним неизвестным распадается на два шага — преобразование уравнения к стандартному и решение стандартного уравнения. Второй шаг осуществляется по известным формулам, которые всегда можно восстановить в памяти с помощью справочников. Есть они и в справочных материалах в нашем учебнике.

Перечислим стандартные уравнения, которые были нами изучены.

  1. Линейное уравнение ах+b = 0.
  2. Квадратное уравнение аx 2 + bх + с=0.
  3. Простейшее степенное уравнение хп = а.
  4. Показательное уравнение а’ = b.
  5. Логарифмическое уравнение logax = b.
  6. Простейшие тригонометрические уравнения sin x = a, cos x=a, tg х=а, ctg x — a.

Преобразование уравнения к одному из стандартных является основным шагом в решении уравнения. Полностью алгоритмизировать процесс преобразования нельзя, однако полезно запомнить некоторые наиболее употребительные приемы, общие для всех типов уравнений.

1) Разложение на множители. Если уравнение равносильными преобразованиями удается привести к виду □ • ∆ =0, то, как мы уже отмечали, исходное уравнение равносильно совокупности двух более простых уравнений Уравнения и неравенства конспект кратко, при условии сохранения ОДЗ.

Этот прием часто применяется при решении алгебраических уравнений степени выше второй, при решении тригонометрических уравнений. Соответствующие примеры будут приведены ниже.

2) Введение нового неизвестного. Посмотрите, не решая, на следующий набор уравнений:

Уравнения и неравенства конспект кратко

В каждом из этих уравнений отметим присутствие выражения x 2 +Зх. Если заменить его буквой у, т. е. положить у = x 2 +3x то получим более простые уравнения относительно у:

Уравнения и неравенства конспект кратко

Найдя из этих уравнений значения у, подставим их в соотношение у = x 2 + 3х и вычислим корн и исходного уравнения.

3) Графический метод. Рассмотрим уравнение с одним неизвестным f(x) = g(x).

Уравнения и неравенства конспект кратко

Изобразим на одном рисунке графики функций y = f(x) и y = g(х) (рис. 139). Точкам пересечения графиков этих функций соответствуют те значения аргумента х, при которых совпадают значения функций, т. е. корни данного уравнения.

Итак, абсциссы точек пересечения графиков функций y = f(x) и y = g(x) являются корнями уравнения f(x) = g(x).

Например, для уравнения x 2 = х+2 такими точками будут Р1 (—1; 1) и Р2 (2; 4), т. е. x1 = -1, x2 = 2.

Если уравнение имеет вид f (х) = 0, то в качестве функции, стоящей в правой части, выступает функция у = 0. Графиком ее будет ось х, поэтому корнями уравнения f(x) = 0 будут абсциссы точек пересечения графика функции y=f(x) с осью х.

Графическая иллюстрация решения уравнения указывает на первый взгляд и способ решения уравнения: строят в системе координат две кривые и находят их точки пересечения. Действительно, если выбрать масштаб и построить графики достаточно аккуратно, то можно приближенно найти точки пересечения и их абсциссы — корни уравнения. Но для того чтобы найти координаты точек пересечения точно, как раз и нужно решить соответствующее уравнение! В то же время графическая иллюстрация часто дает некоторые качественные ответы, число корней, а также грубо указывает отрезки на числовой оси, где эти корни могут находиться. Рассмотрим в качестве примера уравнение

Уравнения и неравенства конспект кратко

Построим графики функций, стоящих в левой и правой частях.

Уравнения и неравенства конспект кратко

Из рисунка 140 можно заключить, что уравнение имеет два корня, один из которых находится в интервале (0; 1), а другой — в интервале (2; 3). Можно указывать эти интервалы и более точно: (0; 0,5) и (2; 2,5), еще более точно: (0,2; 0,3) и (2,2; 2,3). (Действительно, нетрудно проверить, что при х = 0,2 имеем Уравнения и неравенства конспект кратко, а при х = 0,3 уже Уравнения и неравенства конспект кратко; точно так же при x = 2,2 левая часть уравнения больше правой, а при х = 2,3 меньше.)

Уравнения и неравенства конспект кратко

Вообще, вычисляя и сравнивая значения левой и правой частей уравнения, можно найти корни с любой степенью точности.

Корни уравнения пятой степени х5—Зх + 1= 0 вообще нельзя записать с помощью радикалов, но, построив достаточно точный график функции у = х5-Зх+1 (рис. 141), можно определить, что уравнение имеет три корня в интервалах (—1,5; —1,3), (0; 0,5) и (1; 1,3).

Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 класс

Примеры решения уравнений

1) Алгебраическое уравнение x (x+ 1) (x + 2) (x + 3)= 120.

Если раскрыть скобки и привести подобные члены, то получится уравнение четвертой степени. Общий прием решения уравнения четвертой степени нам неизвестен, поэтому не будем торопиться раскрывать скобки.

Первый способ. Воспользуемся симметрией левой части. Перемножим первый и четвертый множители, а также второй и третий. Получим ( x 2 + Зх) ( x 2 + Зх + 2) = 120. Теперь видно, что после замены x 2 + 3х = у уравнение сводится к квадратному y (y+ 2)= 120.

Второй способ. Симметрией можно воспользоваться иначе. Заметим, что числа х, х+l. х+2, х + З расположены на числовой оси симметрично относительно числа Уравнения и неравенства конспект кратко. Сделаем заменуУравнения и неравенства конспект кратко=у. Тогда x = y —Уравнения и неравенства конспект кратко, х+ 1 =у-Уравнения и неравенства конспект кратко, х + 2 = у + Уравнения и неравенства конспект кратко,

,x + 3 = у +Уравнения и неравенства конспект кратко. Уравнение превращается в такое:

Уравнения и неравенства конспект кратко

Теперь преобразования более очевидны: Уравнения и неравенства конспект кратко

Это так называемое биквадратное уравнение, приводящееся к
квадратному заменой y2 = z
Третий способ. Перемножив все скобки, получим уравнение

Уравнения и неравенства конспект кратко

Попробуем подобрать корень.

Легко догадаться, что 2 • 3 • 4 • 5= 120, поэтому х=2 является корнем. Разделим левую часть уравнения на х — 2:

Уравнения и неравенства конспект кратко

Теперь подбираем корень уравнения x3 + 8x 2 + 27x + 60 = 0. Можно угадать х= — 5 (так как ( — 5) • ( — 4) • ( — 3) • ( — 2)= 120). Выделим множитель x+ 5:

Уравнения и неравенства конспект кратко

У оставшегося квадратного трехчлена x 2 + Зx+12 вещественных корней нет.

Четвертый способ. Он основан на тождестве х(х+ 1)(х + 2)(х + 3)+1 =( x 2 + 3x+1) 2 (см. задачу 3 в конце главы). Получаем:

Уравнения и неравенства конспект кратко

2) Уравнение с модулем | x 2 + 2x|+ x 2 + x = 5.

Уравнение равносильно совокупности двух систем:

Уравнения и неравенства конспект кратко

Рекомендуем сначала решить квадратное неравенство

Уравнения и неравенства конспект кратко

Ответ: Уравнения и неравенства конспект кратко

3) Иррациональное уравнение Уравнения и неравенства конспект кратко

Уравнение равносильно системе Уравнения и неравенства конспект краткоЗаметим, что указывать ОДЗ (х + 2 ≥ 0) нет надобности, так как всякое решение уравнения, полученного после возведения в квадрат, автоматически попадет в ОДЗ: ведь если верно, что x + 2 = x 2 , то x + 2>0, так как x 2 ≥ 0. Наоборот, пропуск условия х ≥ 0 нарушает равносильность.

4) Показательное уравнение Уравнения и неравенства конспект кратко

Замена Уравнения и неравенства конспект кратко= у немедленно приводит его к алгебраическомуУравнения и неравенства конспект кратко

При потенцировании теряется информация об ОДЗ. Поэтому выпишем ОДЗ в явном виде:

Уравнения и неравенства конспект кратко

Решением этой системы неравенств будет интервал (1; 3). Теперь потенцируем, перенося логарифм в левую часть:

Уравнения и неравенства конспект кратко

Подобрав один корень х = 2, выделяем множитель (x— 2):

Уравнения и неравенства конспект кратко

Корни квадратного множителя: х=1±Уравнения и неравенства конспект кратко. Сопоставляя с ОДЗ, получаем ответ: x1 =2, x2 =1+Уравнения и неравенства конспект кратко

6) Тригонометрическое уравнение Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

и получаем уравнение

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

т. е. Уравнения и неравенства конспект краткоπ n

Так как уравнение несовместно с условием cos х= — 1, то при переходе к тангенсу половинного угла потери корней не произошло.

Приближенные методы вычисления корней

Во многих случаях при решении уравнений их корни находят приближенно. Для этого в математике накоплены различные методы приближенных вычислений. Обычно они дают последовательность приближений к искомому числу. Примером может служить способ извлечения квадратного корня, знакомый из курса алгебры.

Простейшим методом приближенного вычисления корней является метод половинного деления. Допустим, что известен промежуток [а; b], на котором лежит искомый корень. Приближенно строится график функции f на этом промежутке (например, так, как это изображено на рисунке 142).

Уравнения и неравенства конспект кратко

Вычисляя f (а) и f (b), видим, что эти числа разных знаков: f (а) 0. Вычисляем далее значение функции f в середине отрезка [а; b). Из двух половин отрезка [a; b] берем ту, на концах которой знаки функции различны. Очевидно, корень х лежит внутри нового отрезка. Совершаем с ним ту же процедуру: делим его пополам, вычисляем значение функции f в точке деления и берем ту половину отрезка, на концах которой знаки функции f различны. Так мы получим последовательность отрезков, длина которых убывает и внутри которых лежит искомый корень. Это и означает, что получена последовательность приближенных значений искомого корня.

И. Ньютону принадлежит так называемый метод касательных. Об этом способе приближенного вычисления корней можно получить представление, рассматривая рисунок 143. Приближенные значения корня получаются построением касательных к графику функции. Уравнение касательной написать нетрудно, а затем нужно найти точку ее пересечения с осью х, что и дает приближенное значение корня функции.

Вместо касательных можно проводить хорды (рис. 144) и поступать аналогично (метод хорд).

Видео:Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать

Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnline

Неравенства с одним неизвестным

Решение неравенств (так же как и решение уравнений) обычно распадается на два шага — преобразование неравенства к одному из стандартных и решение стандартного неравенства. К стандартным неравенствам мы отнесем следующие типы неравенств, изученные нами ранее (из возможных четырех знаков неравенства мы выбираем один):

  1. Линейное неравенство ах + b> 0.
  2. Квадратное неравенство а x2+ bх + с>0.
  3. Степенное неравенствоУравнения и неравенства конспект кратко>а.
  4. Показательное неравенствоУравнения и неравенства конспект кратко>Ь.
  5. Логарифмическое неравенство logах>Ь.

Решение стандартных неравенств было рассмотрено нами в предыдущих главах.

Общие приемы решения уравнений и неравенств аналогичны. Так же как и для уравнений, при решении неравенств помогает разложение на множители. Как уже отмечалось, решение неравенства вида Уравнения и неравенства конспект краткоможно заменить решением двух систем
неравенств:

Уравнения и неравенства конспект кратко

В то же время если множители □ или ∆ являются линейными или произведениями линейных, то не стоит сводить решение неравенства к системе: проще применить метод интервалов, который сильно сокращает количество вычислений.

Важнейшим методом решения неравенств является метод замены неизвестного. Мы проиллюстрируем его примером решения неравенства

Уравнения и неравенства конспект кратко

Прежде всего сделаем заменуУравнения и неравенства конспект кратко, тогда Уравнения и неравенства конспект краткои неравенство примет вид

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Изобразим график квадратного трехчлена y = 2z 2 — 16z (рис. 145). Решением неравенства |у + 19| ≤ 5, как видно из графика, является объединение двух отрезков [z1, z2] и [z3, z4], где z1, z4 — решения уравнения у= = — 14, a z2 , z3 — решения уравнения y = —24. Решая эти уравнения, находим z1 = 1, z2 =2, z3 = 6, z4 = 7. Учитывая, что функция z является возрастающей, решаем стандартные неравенства и записываем ответ: [—1; 0]U[log2 6 —1; log2 7—1].

Видео:Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Как решать неравенства? Математика 10 класс | TutorOnline

Примеры решения неравенств

1) Алгебраическое неравенство

Уравнения и неравенства конспект кратко

Перенесем правую часть влево, приведем к общему знаменателю и разложим на множители числитель дроби:

Уравнения и неравенства конспект кратко

Применяя метод интервалов, с помощью числовой оси (рис. 146) решаем неравенство и получаем ответ: х 1.
2) Иррациональное неравенство Уравнения и неравенства конспект кратко

ОДЗ: х + 2 ≥ 0 ⇔ х ≥ — 2.

Если иррациональное уравнение мы смело возводили в квадрат, так как всегда можно было проверить нарушение равносильности, подставляя корни полученного уравнения, то при решении неравенства нужно поступать аккуратнее.

Заметим, что неравенство а>b, где а ≥ 0, b Уравнения и неравенства конспект кратко

Корни квадратного трехчлена x1 = — 1, x2 = 2 наносим на числовую ось; решением неравенства будут числа 0 ≤ х Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко

Стандартное логарифмическое неравенство Уравнения и неравенства конспект краткоравносильно системе

Уравнения и неравенства конспект кратко

Решаем каждое неравенство системы методом интервалов, предварительно сделав преобразования:

Уравнения и неравенства конспект кратко

Корни числителя: x1 = Уравнения и неравенства конспект кратко, x2 = 4. Решение системы неравенств изображено на рисунке 147. Ответ: — Уравнения и неравенства конспект кратко≤ х Системы уравнений

Системы уравнений появляются при решении задач, в которых неизвестной является не одна величина, а несколько. Эти величины связаны определенными зависимостями, которые записываются в виде уравнений.

Способ подстановки

Если система имеет хотя бы одно решение, она называется совместной. Если решений у системы нет, она называется несовместной. Слово «несовместность» наглядно показывает, что уравнения системы накладывают несовместимые друг с другом условия, которым должны удовлетворять неизвестные. Например, система Уравнения и неравенства конспект кратконесовместна, потому что сумма чисел х и у не может одновременно равняться единице и двум.

Одним из основных способов решения систем является способ подстановки. Рассмотрим, например, систему двух уравнений с двумя неизвестными хну. Часто удается одно уравнение преобразовать так, чтобы одно неизвестное явно выражалось как функция другого. Тогда, подставляя его во второе уравнение, мы получим уравнение с одним неизвестным. Приведем примеры.

Уравнения и неравенства конспект кратко

В каждой из четырех систем второе уравнение системы можно решить относительно у, т. е. преобразовать к виду y = f(x):

Уравнения и неравенства конспект кратко

Подставляя y = f(x) в первое уравнение системы, получим уравнение с одним неизвестным:

Уравнения и неравенства конспект кратко

Решая уравнение, находим его корни — значения неизвестного х, а затем для каждого из них находим соответствующее значение у по формуле y = f(x):

Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко

Уравнение имеет четыре корня, а система — четыре решения:

Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко

Способ подстановки возможен не всегда, а кроме того, не всегда выгоден и тогда, когда возможен. Часто из уравнений системы удается получить новое уравнение — их следствие — более простого вида. Так, в четвертом из рассматривавшихся выше примеров можно, исключив произведение ху, стоящее справа, получить:

Уравнения и неравенства конспект кратко

Последнее соотношение является линейным, и из него соотношение между х и у легче находится так: у = 2х.

Важным приемом, часто позволяющим упростить систему, является замена неизвестных. Так, во втором примере полезно заменить x 2 на z и получить более простую систему:

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Системы двух уравнений с двумя неизвестными и их решения можно изобразить графически на координатной плоскости. На рисунке 148 изображены кривые уравнений написанных выше систем. Точки пересечения кривых (а точнее, их координаты) — решения систем.

Есть некоторые типы систем, для которых известны стандартные методы решения. Рассмотрим два из них: симметричные системы и линейные системы.

Симметричные системы

Симметричными называются системы, составленные из выражений, являющихся симметричными относительно всех неизвестных. Приведем примеры различных симметричных выражений для двух неизвестных: х и у.

Уравнения и неравенства конспект кратко

Решение простейшей симметричной системы Уравнения и неравенства конспект краткоосновано на теореме, обратной теореме Виета: хну, удовлетворяющие указанной системе, являются корнями квадратного уравнения t 2 — аt + β =0. Этот вывод можно получить, подставив из первого уравнения во второе у = а — х.

Итак, для решения простейшей симметричной системы надо составить квадратное уравнение с заданными суммой и произведением корней и решить его. Найденные корни будут значениями х и у.

Уравнения и неравенства конспект кратко

Составляем квадратное уравнение t 2 —3t —4 = 0, откуда t1 = 4, t2 = — 1.

Уравнения и неравенства конспект кратко

Решение других симметричных систем основано на том, что всякое симметричное относительно х и у выражение можно выразить через u= х+у и v=xy.

Приведем примеры таких выражений:

Уравнения и неравенства конспект кратко

Делая в симметричной системе замену х+у=u, xy = v, получаем более простую систему относительно и и и, а затем, найдя численные значения и и у, приходим к решению простейших симметричных систем: Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко

Воспользуемся найденным выше выражением х 3 + у 3 через и и у:

Уравнения и неравенства конспект кратко

Из второго уравнения v= — 1— u 2 подставляем в первое:

Уравнения и неравенства конспект кратко

Далее решаем систему Уравнения и неравенства конспект кратко

Линейные системы

С системами линейных уравнений мы встречались ранее. В основном рассматривались системы двух линейных уравнений с двумя неизвестными вида Уравнения и неравенства конспект кратко

Исследование этой системы можно повторить по информационной схеме XVI.

В практике встречаются системы линейных уравнений с большим количеством неизвестных. Так, в задачах математической экономики можно найти системы, состоящие из нескольких сотен уравнений с таким же примерно числом неизвестных. Для их решения разработаны мощные машинные методы. Эти методы в основном имитируют знакомый вам метод подстановки, которым в принципе можно решить любую такую систему. Основную роль при этом играют компактные способы записи систем и их преобразований. Представьте только себе: система из тысячи уравнений с тысячью неизвестными содержит миллион коэффициентов.

Рассмотрим более скромный пример — систему трех линейных уравнений с тремя неизвестными:

Уравнения и неравенства конспект кратко

Будем решать систему методом исключения неизвестных. Чтобы исключить х из второго и третьего уравнений, надо вычесть из них первое, умноженное соответственно на 2 и на 3.

Уравнения и неравенства конспект кратко

Удобно умножить второе и третье уравнения на (—1), а затем из третьего уравнения вычесть второе, умноженное на 5. Получим «треугольную» систему

Уравнения и неравенства конспект кратко

Из последнего уравнения находим z=1. Подставляя в предыдущее уравнение, находим у=9— 10= — 1.

Подставляя 2=1, у= — 1 в первое уравнение, получим х + 2( — 1) + 3 •1=2, откуда х=1.

Ответ: х— 1, у= — 1, 2=1.

Показанный на этом примере способ решения линейной системы называется методом Гаусса по имени великого немецкого математика, жившего в первой половине XIX в. Метод Гаусса с различными модификациями используется при решении линейных систем с помощью вычислительных машин.

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Тождества

Мы определили тождество как равенство двух выражений, справедливое при всех допустимых значениях букв, входящих в эти выражения. Такая точка зрения свойственна теории функций — мы рассматриваем две части равенства как функции и называем эти части тождественно равными, если они совпадают как функции, т. е. если они при одних и тех же значениях аргумента принимают равные значения. Возможна другая точка зрения на тождества, которая более тесно связана с алгеброй.

Уравнения и неравенства конспект кратко

Колмогоров Андрей Николаевич
(1903—1987) — советский математик, один из создателей и автор общепринятой системы аксиом современной теории вероятностей. Автор глубоких идей и результатов в топологии, математической логике, гидродинамике и небесной механике.
«Обобщение понятия часто бывает полезно для постижения его сущности».

В алгебре многочлен рассматривается не как функция, а как некоторое формальное выражение, составленное из одночленов. Мы умеем совершать различные операции над многочленами, не задумываясь при этом над тем, какие значения можно подставлять в многочлен вместо букв. В алгебре два многочлена равны, если после приведения подобных членов окажется, что они составлены из одинаковых одночленов, т. е. если выполняется формальное, почленное равенство. Так, проверяя тождество а 3 — b 3 =(a-b)(a 2 + ab+b 2 ), мы совсем не занимаемся подстановкой в обе части значений а и b (тем более что неясно, сколько их надо подставлять), а преобразуем правую часть и убеждаемся, что она формально совпадает с левой.

Проверке формального совпадения многочленов может помочь их запись, принятая в качестве стандартной. Например, если многочлены от одной буквы х записывать по убывающим степеням (как мы привыкли), то тождество многочленов будет означать равенство их степеней и совпадение коэффициентов, стоящих на одинаковых местах.

Возникает естественный вопрос: как связаны между собой функциональное и алгебраическое определения тождества? Разумеется, если два многочлена равны формально, то они принимают одинаковые значения при всех значениях букв. Обратное заключение составляет содержание трудной теоремы алгебры — теоремы о тождестве. Поясним смысл этой теоремы для простейшего случая многочленов от одной буквы х.

Прежде всего заметим, что от равенства f(x)=g(x) всегда можно перейти к равенству f(x) — g (х)=0, как бы мы ни определяли понятие тождества. Это означает, что теорему о тождестве можно доказывать в таком упрощенном варианте: если многочлен F (х) при всяком значении x равен нулю, то этот многочлен нулевой, т. е. не содержит ни одного ненулевого одночлена. Если многочлен F (х) имеет степень n, то, оказывается, достаточно подставлять лишь n + 1 значение х. Иными словами, если многочлен F (х) степени n имеет n + 1 корень, то этот многочлен нулевой. В такой формулировке теорема допускает уже не очень сложное доказательство.

Итак, полезно запомнить, что ненулевой многочлен не может иметь корней больше, чем его степень. Возможна другая формулировка: если два многочлена степени n совпадают в n + 1 точке, то эти многочлены формально равны. Последняя формулировка очень полезна при доказательстве различных тождеств (см. задачи).

В применении к многочленам первой степени нам знакома геометрическая формулировка этой теоремы: через две точки проходит только одна прямая. Аналогично для совпадения двух квадратных трехчленов достаточно равенства их значений в трех точках.

Кроме равенства многочленов, можно определить равенство дробей с алгебраической точки зрения: две дроби Уравнения и неравенства конспект краткосчитаются равными, если формально равны многочлены f1(x)g2 [x) и g1(x)f2 (x).

В более усложненном варианте алгебраический подход возможен и к тригонометрическим тождествам. Так, тождествам, содержащим степени sin х и cos х, можно придать условный характер: доказать тождество, используя из тригонометрии лишь соотношение sin 2 x+cos 2 х= 1. Такую задачу можно решить, делая лишь алгебраические преобразования и не вспоминая о том, что такое синус и косинус. Приведем пример условного тождества в алгебре:

Уравнения и неравенства конспект кратко

Другие примеры условных тождеств приведены в задачах.

Видео:Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnlineСкачать

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnline

Доказательство неравенств

Наряду с тождествами — равенствами, выполняющимися тождественно,— существуют тождественно выполняющиеся неравенства, т. е. неравенства, верные при любых допустимых значениях входящих в них букв. Приведем простейшие примеры таких тождественно выполняющихся неравенств.

2) а 2 + f 2 + с 2 ≥ 0, причем равенство нулю возможно лишь при а = b = с = 0;

3) х 2 + + q>0, если p 2 — 4q Уравнения и неравенства конспект кратко

Последнее неравенство всегда верно, следовательно, всегда верно исходное.

Полученное неравенство (его называют неравенством о среднем арифметическом и среднем геометрическом двух чисел) можно применять к доказательству других неравенств. Убедитесь, например, что следующие неравенства являются следствиями доказанного:

Уравнения и неравенства конспект кратко

Использование производной дает мощный способ доказательства неравенств с одной переменной. Этот способ основан на следующем соображении: если в точке Хо выполняется условие f (хо) ≥ 0 и для всех х ≥ хо выполняется условие f (х) ≥ 0, то для всех х ≥ хо верно неравенство f(x)>0 (разберитесь в справедливости сформулированного правила).

Пример (неравенство Бернулли).

Уравнения и неравенства конспект кратко

Для доказательства рассмотрим функцию y = f(x), где f(x) = (1+x) k — l — kx. Имеем f(0) = 0, f'<x) = k<1+x) k-1 — k = k ((1+x) k-1 —1). Так как x ≥ 0, k ≥ 1, то (1+x) k-1 ≥ 1 и f (х) ≥ 0. Значит, при х ≥ 0 функция f возрастает и при всяком х ≥ 0 имеем f(x) ≥ f(0) = 0, что и требовалось доказать.

Видео:Решение неравенства методом интерваловСкачать

Решение неравенства методом интервалов

Алгебраические уравнения

Алгебраическое уравнение — это уравнение вида

Уравнения и неравенства конспект кратко

Число n называется степенью уравнения. Уравнение первой степени (или линейное уравнение) решается с помощью арифметических операций. Формула для решения уравнения второй степени (или квадратного уравнения) известна с глубокой древности. В нее входит операция извлечения квадратного корня. Решение уравнения произвольной степени в течение многих веков считалось основной задачей алгебры.

Постановка вопроса о решении алгебраического уравнения может быть различной. Почему «не решается» данное нам уравнение? Рассмотрим возможные ответы на этот вопрос.

1) Нам «не хватает» имеющихся чисел. Уравнение х 2 + 2х + 5 = 0 не имеет вещественных корней. Можно, конечно, на этом утверждении остановиться. Однако полезно, как это было сделано еще в XVI в., ввести комплексные числа, с которыми вы немного знакомы. Комплексное число имеет вид a+bi, где а и b —’ вещественные числа, а символ i (мнимая единица) обозначает такое число, для которого i 2 = — 1. Комплексные числа x1 = — 1 — 2i и x2 = — 1 + 2i являются корнями написанного выше квадратного уравнения.

Если мы разрешим числу х принимать не только вещественные, но и комплексные значения, то отпадет вопрос существования корня алгебраического уравнения. В 1831 г. Гаусс доказал замечательную теорему, которую часто называют основной теоремой алгебры: всякое алгебраическое уравнение имеет хотя бы один комплексный корень.

2) Мы не можем разложить левую часть уравнения на множители. Возьмем, например, уравнение х 5 + x + 1 =0. Не сразу бросается в глаза, что левую часть можно разложить на множители:

Уравнения и неравенства конспект кратко

После разложения на множители получим уравнения меньших степеней: x 2 + х + 1 = 0 и x 3x 2 + 1=0. Однако этот прием проходит далеко не всегда. Так, многочлен х 5 — х+1 уже нельзя разложить на множители с целыми коэффициентами. Известен алгоритм, который позволяет разложить любой многочлен с целыми коэффициентами на множители с целыми коэффициентами, если это возможно. Частный случай применения этого алгоритма мы неоднократно использовали: если многочлен х n + аn-1 х n-1 + … + а0 с целыми коэффициентами имеет множитель вида х — с, где с — целое число (являющееся, конечно, корнем многочлена), то свободный член а0 делится на с. Эта теорема позволяет перебором делителей свободного члена и проверкой найти целые корни многочлена с целыми коэффициентами.

3) Мы не знаем общей формулы для корней уравнения. Простая формула корней квадратного уравнения вызывала желание математиков найти формулы корней уравнения более высокой степени. В XVI в. эта задача была решена для уравнений 3-й и 4-й степеней. Хотя эти формулы громоздки и не употребляются для реального вычисления корней, принципиальное их значение велико: они позволяют записать корни уравнений 3-й (и 4-й) степеней как некоторую функцию от коэффициентов этих уравнений. Эта функция содержит операции извлечения корней 3-й (и 4-й) степеней. Долго изучавшийся вопрос о том, существует ли формула, выражающая корни уравнения 5-й степени через его коэффициенты с помощью радикалов, получил отрицательное решение в работах Абеля (1802—1829) и Галуа (1811 —1832) в начале XIX в.

Итак, как правило, для алгебраического уравнения высокой степени мы не можем указать общей формулы его корней. Для приближенного вычисления корней используют методы анализа.

Различные приближенные методы нахождения корней уравнения часто используют следующее соображение, которое мы неоднократно отмечали раньше: если на концах промежутка функция y=f(х) принимает значения разных знаков, то внутри этого промежутка уравнение f(х) = 0 имеет корень (рис. 142). Это утверждение верно для всех непрерывных функций. С его помощью нетрудно, например, доказать, что всякий многочлен нечетной степени имеет вещественный корень. Например, кубическое уравнение х 3 + ax 2 +bх+с = 0 всегда имеет хотя бы одно решение, так как левая часть при больших по модулю и отрицательных х меньше нуля (слагаемое х 3 «перевесит» все остальные), а при положительных больших х станет больше нуля.

Для разрывных функций сформулированное утверждение может оказаться неверным, как показывает простой пример функции Уравнения и неравенства конспект кратконе имеющей корней, но принимающей значения разных знаков.

Уравнения, тождества, неравенства: определения и классификация

Уравнением называется равенство двух математических выражений с одной или несколькими переменными. В математике рассматриваются два вида равенств — тождества и уравнения. Тождество — это равенство, которое выполняется при всех допустимых значениях входящих в него букв. Для записи тождества наряду со знаком обычного равенства «=» также используется знак тождественного равенства Уравнения и неравенства конспект краткоВ отличие от тождества уравнение — это равенство, которое выполняется лишь при некоторых значениях входящих в него букв или даже не выполняется никогда. Используемые при записи уравнения буквы бывают двух видов; те буквы, значения которых требуется отыскать, называют неизвестными (например, x,y,z,…) или переменными. Другие называют коэффициентами или параметрами. В зависимости от числа неизвестных уравнение называют уравнением с одной, двумя и т.д. неизвестными. Два математических выражения, связанные одним из знаков « » (больше), Уравнения и неравенства конспект кратко(меньше либо равно), Уравнения и неравенства конспект кратко(больше либо равно), Уравнения и неравенства конспект кратко(не равно), образуют неравенство.

В общем виде уравнение с одним неизвестным имеет представление

Уравнения и неравенства конспект кратко

где f(x) некоторая функция неизвестной x. Областью (множеством) допустимых значений (ОДЗ) неизвестной x в этом случае называют область определения функции f (х). Значения неизвестной x из области допустимых значений уравнения, обращающие уравнение в верное тождество, называют решениями (корнями) уравнения. Уравнение считается решённым, если найдены все его решения или показано, что оно не имеет решений. Аналогично всякое значение неизвестной x из области допустимых значений неравенства, обращающее неравенство в верное числовое неравенство, называется решением неравенства. Все решения неравенства образуют множество его решений.

Если у= f(x) — одна из основных элементарных функций, b — некоторое действительное число, то уравнение f(x) = b принято называть простейшим уравнением. Например, при Уравнения и неравенства конспект краткоуравнение Уравнения и неравенства конспект кратконазывается простейшим степенным уравнением, в частности при Уравнения и неравенства конспект краткоуравнение Уравнения и неравенства конспект кратконосит название простейшего целого алгебраического уравнения, а Уравнения и неравенства конспект краткопростейшего дробного алгебраического уравнения; при Уравнения и неравенства конспект краткоуравнения Уравнения и неравенства конспект краткои Уравнения и неравенства конспект кратконазываются соответственно простейшими показательным и логарифмическим уравнениями; уравнения Уравнения и неравенства конспект краткоУравнения и неравенства конспект краткоУравнения и неравенства конспект краткоУравнения и неравенства конспект кратко, — простейшими тригонометрическими уравнениями; уравнения Уравнения и неравенства конспект краткоУравнения и неравенства конспект краткоУравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко— простейшими уравнениями с обратными тригонометрическими функциями и т.д.

Пример:

Найти все значения а, при каждом из которых множество решений неравенства Уравнения и неравенства конспект краткосодержит точку x = 1.

Решение:

Число x = 1 является решением неравенства тогда и только тогда, когда Уравнения и неравенства конспект кратко

Ответ: Уравнения и неравенства конспект кратко

Рассмотрим простейшую классификацию уравнений (неравенств), изучаемых в школьном курсе. В алгебраических уравнениях над неизвестными совершаются, и притом в конечном числе, лишь операции сложения, вычитания, умножения, деления, возведения в целую степень и извлечения корня. Если над неизвестными совершаются и другие операции, например возведение в иррациональную степень, взятие логарифма или синуса, или же перечисленные выше математические операции совершаются бесконечное число раз, то уравнение называется трансцендентным. В рациональных уравнениях отсутствует операция извлечения корня из выражения, содержащего неизвестные. В целых уравнениях отсутствует операция деления на выражение, содержащее неизвестные, а в дробных — такое деление есть.

Уравнения и неравенства конспект кратко

Например: Уравнения и неравенства конспект кратко— дробно-рациональное уравнение с двумя неизвестными; Уравнения и неравенства конспект кратко— иррациональное неравен-ство с одним неизвестным; Уравнения и неравенства конспект кратко— целое рациональное уравнение 3-й степени с одним неизвестным; Уравнения и неравенства конспект кратко— дробно-рациональное неравенство с одним неизвестным; Уравнения и неравенства конспект кратко— трансцендентное уравнение с одним неизвестным.

Любое целое рациональное алгебраическое уравнение с одним неизвестным x степени n после преобразований можно привести к стандартному виду:

Уравнения и неравенства конспект кратко

где Уравнения и неравенства конспект кратко, Уравнения и неравенства конспект кратко— коэффициенты уравнения, Уравнения и неравенства конспект кратко-старший коэффициент, Уравнения и неравенства конспект кратко— свободный член.

Пример:

Найти сумму коэффициентов многочлена, который получится после раскрытия скобок и приведения подобных членов в выражении:

Уравнения и неравенства конспект кратко

Решение:

Конечно, никто не ожидает от вас на экзамене, что вы начнёте раскрывать скобки и приводить данный многочлен к стандартному виду. У этой задачи существует оригинальное и очень простое решение. Обозначим данный многочлен через f (х). Тогда искомая сумма его коэффициентов Уравнения и неравенства конспект краткоравна f(l) (объясните, почему). В нашем случае

Уравнения и неравенства конспект кратко

Ответ: сумма коэффициентов равна 1.

Пример:

Для каких значений параметра р отношение суммы коэффициентов многочленаУравнения и неравенства конспект краткок его свободному члену минимально?

Решение:

Поскольку сумма коэффициентов данного многочлена равна его значению в точке x = 1, а его свободный член, как несложно увидеть, равен Уравнения и неравенства конспект кратко, то рассматриваемое отношение имеет вид Уравнения и неравенства конспект краткоЭто выражение неотрицательно при всех действительных значениях р и достигает наименьшего значения, равного нулю, только при р = 7 .

Пример:

Привести пример алгебраического уравнения с целыми коэффициентами, одним из корней которого является число Уравнения и неравенства конспект кратко

Решение:

Рассмотрим равенство Уравнения и неравенства конспект краткокак алгебраическое уравнение первой степени относительно неизвестной x. Это уравнение не удовлетворяет условию задачи, так как его свободный член (число Уравнения и неравенства конспект кратко)иррационален. С целью избавления от иррациональности возведём данное равенство в квадрат, перейдя к следствию

Уравнения и неравенства конспект кратко

Уединим радикал Уравнения и неравенства конспект краткои еще раз возведем в квадрат

Уравнения и неравенства конспект кратко

Благодаря операции возведения в квадрат удалось добиться того, чтобы все коэффициенты уравнения стали целочисленными. Полученное уравнение 4-й степени удовлетворяет условию задачи.

Замечание:

Эта задача имеет не единственный ответ. Любое алгебраическое следствие уравнения Уравнения и неравенства конспект кратко, например уравнение

Уравнения и неравенства конспект кратко

также можно было бы предъявить в качестве ответа.

Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:

Эти страницы возможно вам будут полезны:

ГЛАВА VII
УРАВНЕНИЯ И НЕРАВЕНСТВА ПЕРВОЙ СТЕПЕНИ С ОДНИМ
НЕИЗВЕСТНЫМ

Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Уравнения и неравенства первой степени с одним неизвестным

Два свойства уравнений

Мы много раз пользовались уравнениями и знаем, что они очень полезны для решения различных задач. Чтобы успешно, пользоваться уравнениями, надо хорошо знать их свойства и изучить различные приемы их решения..

Решение уравнений — один из основных вопросов курса алгебры. К этому вопросу мы будем возвращаться несколько раз. Сейчас рассмотрим два основных свойства уравнений.

Свойство:

Если к обеим частям уравнения прибавить
одно и то же число или один и то же многочлен относительно неизвестного, то полученное в результате этого новое уравнение имеет те же и только те же решения, что и исходное уравнение.

Или, другими словами: уравнение не теряет и не приобретает решения, когда к обеим частям его прибавляется одно и то же число или один и тот же многочлен относительно неизвестного.

Разъясним сначала, почему уравнение щ может потерять решение когда к обеим частям его прибавляется одно и то же число или один и тот же многочлен относительно неизвестного.

Уравнения и неравенства конспект кратко

Это уравнение имеет решение x = 5. При х = 5 уравнение (1) превращается в тождество 6 = 6. Прибавим теперь к каждой части уравнения (1) по 20, получим новое уравнение

Уравнения и неравенства конспект кратко

После замены в уравнении (2) буквы х числом 5 каждое из выражений, заключенных в скобки, дает в результате опять 6, и таким образом мы в каждой части получим 26. Разница между уравнением (1) и уравнением (2) заключается лишь в том, что при x = 5
уравнение (1) превращается в тождество 6 = 6, а уравнение (2) превращается в тождество 26 = 26.

Если бы к каждой части уравнения (1) прибавили не по 20, а по —200, новое уравнение опять при х=Ь превратилось бы в тождество. Различие между этим уравнением и уравнением (1) заключалось бы только в том, что в каждой части нового уравнения получилось бы по —194, а не по 6, как в уравнении (1).

Если бы мы к каждой части уравнения прибавили по многочлену Уравнения и неравенства конспект кратко, новое уравнение опять при х=5 превратилось бы в тождество 38 = 38 (многочлен Уравнения и неравенства конспект краткопри х = 5 принимает значение 32).

Выходит, что решение лг = б не теряете», когда к каждой части уравнения (1) прибавляется одно и то же число или один и тот же многочлен относительно неизвестного.

То, что мы показали на уравнении (1), можно также показать и на каком угодно другом уравнений. Так как вычитание любого числа и любого многочлена можно заменить сложением, уравнение не может потерять решение и тогда, когда от каждой части его отнимается одно и то же число или один и тот же многочлен относительно неизвестного.

Разъясним теперь, почему уравнение не может приобрести решение, когда к обеим частям его прибавляется одно и то же число или один и тот же многочлен относительно неизвестного. Рассмотрим
опять уравнение (1) и (2) и выясним, почему при переходе от уравнения (1) к уравнению (2) мы не могли приобрести решения.

Для того чтобы от уравнения (2) перейти к уравнению (1), достаточно от каждой части его отнять по 20 (или к каждой части прибавить по —20). Значит, при переходе от уравнения (2) к уравнению (1) мы не можем потерять решение.

Допустим теперь, что при переходе от уравнения (I) к
уравнению (2) мы приобрели какое-нибудь решение (скажем, x=2,5). Тогда при переходе от уравнения (2) назад к уравнению (1) мы должны потерять это решение, а это невозможно.

Замечание:

Так как буквы в алгебре обозначают числа, все сказанное об уравнениях с числовыми коэффициентами относится также и к уравнениям с буквенными коэффициентами.

Покажем, на примерах, как свойство 1 можно применять к решению уравнений.

Пример:

Решить уравнение х— 7 = 11.

Решение:

Прибавим к каждой части уравнения по 7, получим x = 18.

Пример:

Решить уравнение х + 30 = 10.

Решение:

Вычтем из каждой части уравнения по 30 (или прибавим по —30). Получим х = — 20

Пример:

Решить уравнение х — а=b.

Решение:

Прибавим к каждой части уравнения а, получим х = b+a

Следствие из свойства 1 уравнений. Любой член
уравнения можно перенести из одной части е другую, изменив при этом его знак на противоположный.

Это утверждение справедливо для любых уравнений. Чтобы упростить изложение, мы проведем его на частном примере.

Уравнения и неравенства конспект кратко

Покажем, что —2х можно перенести с противоположным знаком в левую часть, т. е. покажем, что при переходе от уравнения (3) к уравнению

Уравнения и неравенства конспект кратко

ни одно решение не теряется и не приобретается.

К каждой части уравнения (3) прибавим 2х, получим уравнение (4). На оснований свойства 1 уравнений переход от уравнения (3) к уравнению (4) происходит без потери и приобретения решений.

Все сказанное относительно —2х можно повторить относительно любого другого члена уравнение (3).

Этим свойством уравнений широка пользуются при решении уравнений. Именно, решая уравнения, часто переносят члены, содержащие неизвестные, в одну часть, а известные — в другую. Поясним это примером.

Пример:

Уравнения и неравенства конспект кратко

Решение:

Перенесем неизвестные члены в левую часть, а известные в правую, получим

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Свойство:

Если обе части уравнения умножить или
разделить на какое-нибудь число, отличное от нуля, то полученное в результате этого новое уравнение имеет те же и только те же решения, что и исходное уравнение.

Иными словами: уравнение не приобретает и не теряет решений от того, что обе части его умножены или разделены на одно и то же число, отличное от нуля.

Прежде чем разъяснить свойство 2, заметим, что его достаточно разъяснить для умножения, так как деление можно всегда заменить умножением на обратное число.

Мы и здесь, как и при разъяснении свойства 1, сначала расскажем, почему при умножении (или делении) обеих частей уравнения на одно и то же число, отличное от нуля, ни одно решение не может быть потеряно. После этого разъяснится и то, что ни одно решение не может быть при этом приобретено..

Возьмем какое-нибудь уравнение. Все, что будет показано на этом уравнении, можно показать и на любом другом уравнении.

Уравнения и неравенства конспект кратко

имеет решение х = 6. Действительно, при x=Q уравнение
превращается в тождество 10 = 10.

Умножим каждую часть уравнения (5) на 20, получим уравнение

Уравнения и неравенства конспект кратко

При х = 6 уравнение (6) тоже превращается в тождество

Если бы мы умножили обе части уравнения на Уравнения и неравенства конспект кратко,мы получили бы уравнение, которое при x = 6 превращается в тождество

Уравнения и неравенства конспект кратко

Выходит, что решение x=6 не теряется при умножении или делении каждой части уравнения (5) на одно и то же число.

От уравнения (6) можно, перейти обратно к уравнению (5) посредством умножения каждой части его Уравнения и неравенства конспект кратко

Ясно поэтому, что при переходе от уравнения (6) к уравнению (5) не может быть потери решения,

Отсюда вытекает, что при переходе от уравнения (5) к
уравнению (6) не могло быть и приобретения решения, Здесь опять, как и при изучении свойства 1, важно понять, что решения, приобретенные при переходе от уравнения (5) к уравнению (6), должны были бы
потеряться при обратном переходе, а потеря решения здесь невозможна.

Уравнения и неравенства конспект кратко

Оно имеет единственное решение х = 6. Умножим каждую часть его на нуль. Получим

Уравнения и неравенства конспект кратко

Уравнению (8) удовлетворяет не только х = б, но и любое другое значение х. (Например, положим х = 1 000, получим тождество Уравнения и неравенства конспект кратко)

Выходит, что при переходе от уравнения (7) к уравнению (8) мы приобрели бесконечное множество решений. Вот почему в формулировке свойства 2 указано, что число, на которое умножаются обе части уравнения, должно быть отлично от нуля.

Замечание:

Так как буквы в алгебре обозначают числа, все сказанное об уравнениях с числовыми коэффициентами относится также и к уравнениям с буквенными коэффициентами. При этом необходимо только следить, за тем, чтобы при умножении обеих частей уравнения на буквенное выражение не вкралось умножение на нуль (Дело в том, что буквенные выражения могут при некоторых значениях входящих в них букв равняться нулю.)

Покажем на примерах, как свойство 2 можно применять к решению уравнений.

Пример:

Решить уравнение Уравнения и неравенства конспект кратко

Решение:

Разделим обе части уравнения на 2 получим

Уравнения и неравенства конспект кратко

Пример:

Решить уравнение 15 — x = 20.

Решение:

Перенесем 15 в правую часть, получим

Уравнения и неравенства конспект кратко

Умножим теперь обе части уравнения на —1,получим

Уравнения и неравенства конспект кратко

Пример:

Решить уравнение ах=b.

Решение:

Если Уравнения и неравенства конспект краткото, разделив обе части уравнения на а, получим Уравнения и неравенства конспект кратко

Если же а = 0, то уравнение имеет вид Уравнения и неравенства конспект краткои тогда, если Уравнения и неравенства конспект краткоуравнение решений не имеет, если же b = 0, уравнение есть тождество, так как ему удовлетворяет любое значение х.

Пример:

Решить уравнение Уравнения и неравенства конспект кратко

Решение:

Здесь Уравнения и неравенства конспект краткотак как иначе уравнение не имеет смысла. Умножив обе части уравнения на a, получим х = аb.

Понятие о равносильности уравнений

Определение:

Если каждое решение одного из уравнений является решением другого и каждое решение второго уравнения является решением первого, уравнения называются равносильными.

Пример:

Уравнения и неравенства конспект кратко

имеет единственное решение x=11 Уравнение

Уравнения и неравенства конспект кратко

имеет также единственное решение x=11 . Уравнение (1) и (2) равносильны.

Пример:

Уравнения и неравенства конспект кратко

имеет два решения: Уравнения и неравенства конспект краткоУравнение

Уравнения и неравенства конспект кратко

имеет также два решения: Уравнения и неравенства конспект краткоУравнение (3) и (4) равносильны

Пример:

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

не равносильны. Действительно, уравнение (5) имеет два решения: Уравнения и неравенства конспект краткоа уравнение (6) имеет три решения: Уравнения и неравенства конспект кратко Уравнения и неравенства конспект краткотаким образом, каждое решение уравнения (5) является решением уравнения (6), но не каждое решение уравнения (6) является решением уравнения (5).

Теперь основные свойства уравнений можно сформулировать так:

Свойство:

Если к обеим частям уравнения прибавить
одно и то же число или один и тот же многочлен относительно неизвестного, то полученное в результате этого новое уравнение равносильно данному.

Свойство:

Если обе части уравнения умножить или
разделить на какое-нибудь число, отличное от нуля, то полученное в результате этого новое уравнение равносильно данному.

О некоторых преобразованиях уравнения, которые могут привести к потере или приобретению решений

При внимательном рассмотрении свойств 1 и 2 уравнений (§ 1) могут возникнуть два вопроса:

  1. В § 1 говорится о прибавлении к обеим частям уравнения многочленов относительно неизвестного. А что произойдет с решениями уравнения, если к обеим частям его прибавить не многочлен относительно неизвестного, а выражение, содержащее неизвестное в знаменателе?
  2. В § 1 говорится об умножении и делении обеих частей уравнения на любое число. А что произойдет с решением уравнения, если обе части его умножить или разделить на одно и то же выражение, содержащее неизвестное?

Мы сейчас приведем примеры, которые и помогут нам ответить на эти вопросы.

Пример:

Уравнения и неравенства конспект кратко

имеет решение х = 8. Уравнение

Уравнения и неравенства конспект кратко

полученное из уравнения (1) прибавлением к каждой части выражения Уравнения и неравенства конспект кратко, не имеет решения х = 8, так как при этом значении равенство (2) не имеет смысла. При переходе от уравнения (1) к уравнению (2) решение x = 8 потеряно, при обратном переходе от уравнения (2) к уравнению (1) решение х=8 приобретается.

Теперь ясно, почему в § 1 шла речь о прибавлении многочленов от неизвестного.

Пример:

Уравнения и неравенства конспект кратко

имеет единственное решение x= 3. Уравнение

Уравнения и неравенства конспект кратко

полученное из уравнения (3) умножением обеих частей на х — 2, имеет два решения: Уравнения и неравенства конспект кратко. При переходе от уравнения (3) к уравнению (4) приобретено решение x = 2. От уравнения (4) мы можем перейти к уравнению (3) делением обеих частей уравнения на х- 2. При этом решение x = 2 будет потеряно.

Теперь ясно, почему, в § 1 говорится об умножении и делении обеих частей уравнения на число, а не на выражения, которые содержат неизвестное.

Дело в том, что, умножая обе части уравнения на х — 2, мы умножаем их не на определенное число, а на выражение, которое при разных значениях х имеет разные значения и среди этих значений содержится нуль (при x = 2 выражение х — 2 равно нулю). Мы же знаем, что умножение обеих частей уравнения на нуль
приводит к приобретению решений (см. § 1).

При делении на х — 2 мы теряем решение потому, что в
выражении х — 2 скрыты разные значения и среди них содержится 0, на который делить нельзя.

Все сказанное здесь приводит к следующим выводам:

  1. Прибавление к обеим- частям уравнения выражения, содержащего неизвестное в знаменателе, может привести к потере и приобретению решений. При этом потерянными и
    приобретенными решениями могут быть только те значения неизвестного, при которых знаменатель этого выражения равен нулю.
  2. Умножение обеих частей уравнения на многочлен от неизвестного может привести к приобретению решений. При этом приобретенными решениями могут быть только те значения неизвестного, при которых этот многочлен равен нулю.
  3. Деление обеих частей уравнения на Решение уравнений

При решений уравнений можно поступать по следующему правилу:

  1. Освободить уравнение от дробей.
  2. Раскрыть скобки.
  3. Перенести все члены, содержащие неизвестные, в одну часть уравнения (в левую), а известные в другую.
  4. Сделать приведение подобных членов. В случае если неизвестное входит в несколько членов с буквенными коэффициентами, вынести неизвестное за скобки.
  5. Если в результате этих преобразований получится урaвнение видаax = b, то разделить обе части этого уравнения на коэффициент при неизвестном (а), не допуская деления на нуль.

Пример:

Уравнения и неравенства конспект кратко

Решение:

Умножим обе части уравнения на 20 (20 — общее наименьшее кратное знаменателей)

Уравнения и неравенства конспект кратко

Раскрыв скобки, имеем

Уравнения и неравенства конспект кратко

Приведем подобные члены в каждой части уравнения

Уравнения и неравенства конспект кратко

Перенесем Уравнения и неравенства конспект кратков левую, а — 61 в правую часть. Получим.

Уравнения и неравенства конспект кратко

Пример:

Уравнения и неравенства конспект кратко

Решение:

Чтобы освободить уравнение от дробей, умножим обе части его на (a + b) (а — b). Выражение (a + b) (а — b) отлично от нуля, так как иначе а+ b=0 или а — b= 0, и тогда уравнение (1) не имело бы смысла. Получим

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Перенесем неизвестные в левую, а известные в правую часть

Уравнения и неравенства конспект кратко

(Можно упростить решение, вычеркнув сразу после раскрытия скобок из каждой части уравнений одинаковые слагаемые ах и ab,) Приведем подобные члены

Уравнения и неравенства конспект кратко

Теперь нам. следует делить oбе части уравнения на 2b. Это можно делать только в том случае, если Уравнения и неравенства конспект краткоПредположим, что Уравнения и неравенства конспект краткоТогда

Уравнения и неравенства конспект кратко

Если b=0, уравнение (1) принимает такой вид:

Уравнения и неравенства конспект кратко

Это уравнение, очевидно, не имеет решения.

Ответ. Если Уравнения и неравенства конспект кратко, Уравнения и неравенства конспект краткоЕсли b = 0,
уравнение решений не имеет.

Пример:

Уравнения и неравенства конспект кратко

Решение:

Умножим обе части уравнения на abc. Выражение abc отлично от нуля, так как иначе уравнение не имело бы смысла. Получим

Уравнения и неравенства конспект кратко

Вынесем х за скобки, получим

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Случай, когда ab+bc+ca = 0, представляет некоторые трудности для исследования, и потому мы оставим его без рассмотрения.

Ответ. Если Уравнения и неравенства конспект краткото Уравнения и неравенства конспект кратко

Видео:Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

О числе решений уравнения первой степени с одним неизвестным

Определение:

Уравнением первой степени с одним
неизвестным
называется такое уравнение, которое после освобождения его от дробей, раскрытия скобок, перенесения всех членов в одну часть и приведения подобных членов принимает вид

Уравнения и неравенства конспект кратко

где а и b — известные числа, а — называется коэффициентом при неизвестном, b свободным членом.

Пример:

Уравнения, рассмотренные в § 4, — уравнения первой степени с одним неизвестным.

Уравнение первой степени с одним неизвестным либо имеет единственное решение, либо совсем не имеет решения, либо имеет бесконечное множество решений.

  1. Если коэффициент при неизвестном в уравнении первой степени с одним неизвестным отличен от нуля, уравнение имеет решение и притом единственное.
    Пример. Уравнение З х + 2 = 0 имеет единственное решение Уравнения и неравенства конспект краткоПример. Уравнение 2x=0 имеет единственное решение х=0.
  2. Если коэффициент при неизвестном в уравнении первой степени с одним неизвестным равен нулю, а свободный член неравен нулю, уравнение не имеет решения.
    Пример. Уравнение0 Уравнения и неравенства конспект краткох + 1 = 0не имеет решения, так как при любом значении хпроизведение 0Уравнения и неравенства конспект краткох равно 0 и 0 + 1 =1.
  3. Если коэффициент при неизвестном и свободный член в уравнении первой степени с одним неизвестным равны нулю, уравнение имеет бесконечное множество решений. Всякое число
    является решением такого уравнения
    . В самом деле, уравнению 0 • x +0 = 0 удовлетворяет любое
    число, так как произведение любого числа и нуля равно нулю и 0 + 0 = 0.

Видео:Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | МатематикаСкачать

Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | Математика

Уравнения, содержащие неизвестное в знаменателе

К уравнениям первой степени с одним неизвестным приводятся и некоторые уравнения, содержащие неизвестное в знаменателе. Они решаются по тому же правилу, что и уравнения, не содержащие неизвестное в знаменателе.

Нужно только иметь в виду, что при освобождении такого уравнения от дробей приходится обе части его умножать на многочлен от неизвестного, и потому возможно приобретение решений или, как говорят, возможно появление посторонних решений.

Пример:

Уравнения и неравенства конспект кратко

Решение:

Умножим обе части уравнения на Уравнения и неравенства конспект кратко
Получим

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Так как при умножении на Уравнения и неравенства конспект краткомы могли ввести посторонние решения, мы обязаны проверить полученный ответ. Подставим 8 вместо х в исходное уравнение. Имеем

Уравнения и неравенства конспект кратко

Проверка показала, что х = 8 есть решение уравнения. Таким образом, мы посторонних решений не ввели. Впрочем, это можно было установить и проще: при х = 8 выражение Уравнения и неравенства конспект краткоотлично от нуля, и потому х = 8 не может быть посторонним решением.

Пример:

Уравнения и неравенства конспект кратко

Решение:

Умножим обе части уравнения на (x + 2)(x + 3).
Получим

Уравнения и неравенства конспект кратко

При x = —2 уравнение не имеет смысла. Таким образом, х = —2 есть постороннее решение.

Ответ. Уравнение решений не имеет.

Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Решение задач при помощи уравнений. Понятие об исследовании задачи

Задачи, которые . приходится решать при помощи уравнений, весьма разнообразны и весьма разнообразны способы их решения. Поэтому нельзя дать общее правило, руководствуясь которым можно
было бы, не задумываясь, решить любую задачу при помощи уравнений. Часто бывает так, что способ, который с успехом применялся в решении одной задачи, непригоден для решения другой. Каждая задача требует для ее решения сообразительности,
изобретательности.

Научиться решать задачи можно только на практике. Чем больше мы будем решать задач, чем больше будем думать над их решением, чем больше будем стараться изобретать различные способы их решения, тем больше мы разовьем свою сообразительность, тем лучше будем решать задачи.

Мы сейчас для примера рассмотрим несколько задачки расскажем, как эти задачи решаются.

Рекомендуем внимательно рассмотреть эти решения и на них учиться самостоятельному решению задач.

Задача:

Определить расстояние между пунктами А и В, если велосипедист, делающий по 15 км в час, проезжал это расстояние на 2 мин. скорее, чем другой велосипедист, проезжающий по 12 км в час?

Решение:

Обозначим буквой х расстояние между А и В (в
километрах). Первый велосипедист проехал это расстояние в Уравнения и неравенства конспект краткочас, второй в Уравнения и неравенства конспект краткочас. По условию, Уравнения и неравенства конспект краткона Уравнения и неравенства конспект краткоменьше, чем Уравнения и неравенства конспект кратко. Значит,

Уравнения и неравенства конспект кратко

Уравнение составлено. Из него имеем

Уравнения и неравенства конспект кратко

Проверка. Первый велосипедист 2 км проезжает в Уравнения и неравенства конспект краткочаса, т. е. в 8 мин. Второй велосипедист 2 км проезжает в Уравнения и неравенства конспект краткочаса, т. е. в 10 мин. Значит, первый велосипедист на 2 мин. скорее проходит это расстояние, чем второй. Задача решена правильно.

Замечание:

Рекомендуем обратить внимание на следующее:

  1. Буквойхв рассмотренной задаче мы обозначили искомую величину. Так можно поступать при решении многих задач. В дальнейшем, мы покажем, что иногда лучше поступать иначе и обозначать буквой л: другую величину, которая не является искомой.
  2. В рассмотренной задаче мы имели дело с двумя величинами, из которых одна на некоторое количество меньше другой Уравнения и неравенства конспект краткоПри составлении уравнения мы к меньшей из величин добавили соответствующее количество и полученную сумму приравняли большей. Вместо этого мы могли бы из большей величины вычесть соответствующее количество и полученную разность приравнять меньшей.

Задача:

Самолет летел сначала со скоростью 180 км в час. Когда ему осталось пролететь на 320 км меньше, чем он пролетел, он стал лететь со скоростью 250 км в час. Средняя скорость на всем пути оказалась равной 200 км в час. Сколько всего километров пролетел самолет?

Решение:

Обозначим буквой х расстояние (в километрах), которое самолет пролетел со скоростью 180 км в час. Тогда ему осталось после этого пролететь (х— 320) км. Всего самолет пролетел

Уравнения и неравенства конспект кратко

Так как средняя скорость оказалась равной 200 км в час, самолет на весь путь потратил

Уравнения и неравенства конспект кратко

На первую часть пути он потратил Уравнения и неравенства конспект краткочас, а на вторую часть Уравнения и неравенства конспект краткочас Значит, на весь путь он потратил

Уравнения и неравенства конспект кратко

Мы получили два различных выражения для времени (в часах), которое самолет потратил на весь путь. Выходит, что

Уравнения и неравенства конспект кратко

Уравнение составлено. Имеем

Уравнения и неравенства конспект кратко

Умножим обе части уравнения на 4500, получим

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Итак, первая, часть пути составляет 720 км, вторая 400 км (720 — 320 = 400 км), Значит, весь путь составляет 1120 км.

Проверка. На первую часть пути самолет потратил 4 часа Уравнения и неравенства конспект краткоНа вторую часть пути он потратил 1,6 часа Уравнения и неравенства конспект краткоНа весь путь самолет потратил 5,6 часа. Средняя скорость выходит равной Уравнения и неравенства конспект кратко(км в час). Задача решена правильно.

Замечание:

Рекомендуем обратить внимание на следующее: буквой х мы обозначили здесь не искомую величину (все расстояние, которое пролетел самолет), а другую величину (первую часть этого расстояния). Мы поступили так потому, что при таком обозначении проще составить уравнение и, кроме того, потому, что, зная первую часть расстояния, нетрудно найти и все расстояние.

Впрочем, можно обозначить буквой х и все расстояние в километрах. Тогда для определения первой и второй части расстояния надо х разделить на 2 части так, чтобы одна была на 320 больше другой. Делается это так: от х отнимается 320 и полученная разность делится на 2, получается Уравнения и неравенства конспект кратко,это меньшая из частей. Для отыскания большей части надо к х сначала прибавить 320, а потом полученную сумму разделить на 2, получим Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

есть количество часов, потраченных на первую часть пути.

Уравнения и неравенства конспект кратко

есть количество часов, потраченных на вторую часть пути.

Уравнения и неравенства конспект кратко

есть количество часов, потраченных на весь путь, т. е

Уравнения и неравенства конспект кратко

Решив это уравнение, получим х = 1120, т. е. тот же ответ, что и раньше. Из этого примера видно, что простота решения задачи зависит от того, насколько удачно выбрана величина, обозначаемая буквой х.

Задача:

Ученики собрали 3 кг 200 г семян белой акации,
желтой акации, клена и липы. Сколько семян каждого вида в отдельности собрали ученики, если семян белой акации они собрали в 3 раза больше, чем семян липы; семян клена собрано в 2 раза больше, чем семян белой акации и липы вместе, а семян желтой акации на 1 кг 200 г больше, чем семян клена?

Решение:

Мы должны определить четыре неизвестных величины: количество семян белой акации, желтой акации, клена и липы. При внимательном рассмотрении условия задачи видно, что, если бы мы узнали количество семян липы, нам нетрудно было бы узнать и остальные неизвестные величины.

Предположим, что семян липы собрано х г. Тогда семян белой акации собрано 3 х г. Семян клена собрано 2(x+3х) = 8х г. Семян желтой акации собрано (8х+1200)г,

Теперь нетрудно подсчитать, сколько собрано всех семян. Для этого достаточно сложить [х+Зх+8х(8х+1200)] г. Но, по условию, всех семян собрано 3200 г. Значит,

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Теперь нетрудно написать и ответ: семян липы собрано 100 г, семян белой акации — 300 г, семян клена — 800 г, семян желтой акации — 2 кг. Проверка ответа не представляет труда.

На примере этой задачи видно, что посредством уравнений с одним неизвестным можно решать не только задачи с одной искомой величиной, но и такие задачи, в которых имеется несколько искомых величин.

Задача:

Периметр треугольника 44 см. Стороны треугольника относятся как 10:7:5. Определить стороны треугольника.

Решение:

Пусть меньшая сторона треугольника равна 5х см. Тогда средняя сторона этого треугольника равна 1х см, а бoльшая сторона равна 10x см. По условию,

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Выходит, что меньшая сторона треугольника равна 10 см, средняя 14 см, а большая 20 см. Нетрудно проверить, что задача решена правильна

Ответ. 10 см;14 см; 20 см.

Замечание:

При решении последней задачи рекомендуем обратить внимание на следующее.
1) В задаче три искомые величины, но мы их выразили через одно неизвестное х.
2) Буквой х (в см) мы обозначили Уравнения и неравенства конспект краткочасть меньшей стороны.
Конечно, можно было бы обозначить буквой х и всю меньшую сторону, но тогда средняя сторона была бы равна Уравнения и неравенства конспект краткоx, бoльшая 2х. Как видно, в уравнении появились бы дроби, и от этого решение стало бы несколько сложнее.

Задача:

В комнате № 1 общежития живут 9 человек, а в
комнате № 2 — 6 человек. Сколько человек надо переселить из комнаты № 1 в комнату № 2, чтобы в каждой комнате проживало по одному и тому же числу людей?

Решение:

Обозначим буквой х искомое количество людей. Тогда

Уравнения и неравенства конспект кратко

Мы не напишем в ответе, что надо переселить 1,5 человека, так как это было бы бессмысленно. Мы должны сказать, что задача не имеет решения.

Ответ. Задача не имеет решения.

Задача:

Числитель дроби составляет Уравнения и неравенства конспект краткознаменателя. После того как к числителю прибавили 5, а к знаменателю 15, дробь стала равной Уравнения и неравенства конспект краткоНайти дробь:

Решение:

Обозначим знаменатель дроби буквой х. Тогда числитель ее будет Уравнения и неравенства конспект краткоx. По условию,

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Ответ. Дроби, удовлетворяющей условию задачи, не существует.

Задача:

Сумма цифр двузначного числа равна 14. Если к этому числу прибавить 72,, то в результате получается число, записанное теми же цифрами, но в обратном порядке. Найти число.

Решение:

Обозначим Цифру десятков искомого числа буквой х. Тогда цифра единиц этого числа равна 14 — x. Имеем

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Выходит, что цифра десятков искомого числа равна 3, а цифра единиц равна 11.

Ответ. Так как цифра не может быть больше 9,
задача решения не имеет.

Задача:

Одна машинистка может выполнить некоторую работу за 5 час. Во сколько часов может выполнить эту работу вторая машинистка, если, работая совместно, обе машинистки выполнили ту же работу в 6 час?

Решение:

Предположим, что вторая машинистка может
выполнить эту работу в х час. Тогда в 1 час она выполнит Уравнения и неравенства конспект краткочасть работы. Первая машинистка в час выполняет Уравнения и неравенства конспект краткочасть работы. Обе машинистки, работая совместно, выполняют в час Уравнения и неравенства конспект краткочасть работы или Уравнения и неравенства конспект краткочасть работы. Значит,

Уравнения и неравенства конспект кратко

Ответ. Так как искомое чрсло часов не может быть отрицательно, задача решения не имеет.

Обратим .внимание на следующее. Уравнения, к которым приводили последние четыре задачи, имеют решения, а задачи все же не имеют решения, В первой из этих задач оказалось, что искомое число людей должно быть дробным; в-следующей задаче оказалось, что знаменатель дроби должен быть равен 0; в предпоследней задаче оказалось, что число единиц двузначного числа больше 9, в последней задаче
оказалось, что машинистка выполняет некоторую работу в отрицательное число часов.

Отсюда вытекает, что всякое решение требует еще и проверки его по смыслу. Мало того, крайне важно выяснить: почему данная задача не имеет решения, где в условии задачи кроются х причины, в силу которых задача не имеет решения, при каких численных данных подобная задача имеет решение.

Такая работа над задачей называется исследованием задачи.

Проведем, исследование рассмотренных четырех задач.

Исследование первой з а д а ч и. Дробное число людей,
которых надо переселить из одной комнаты в другую, возникло потому, что в одной комнате проживает чётное число людей, а в другой нечетное. Если бы числа проживающих в этих комнатах людей были одной четности, отрет был бы выражен целым числом. При этом, если в комнате № 1 живет больше людей, чем в комнате № 2, в ответе будет целое положительное число. Если в обеих комнатах живет по одинаковому числу людей, в ответе будет 0, и такой ответ означает,
что никого переселять из одной комнаты в другую не надо. Если, наконец, в комнате № 1 проживает меньше людей, чем в комнате № 2 в ответе получится целое отрицательное число, и такой ответ означает, что переселять надо не из комнаты № 1 в комнату № 2, а наоборот— из второй в первую»

Исследование второй задачи. Знаменатель дроби оказался равным нулю, потому что Уравнения и неравенства конспект краткоЕсли бы отношение чисел, прибавленных к числителю и знаменателю дроби, было не равно Уравнения и неравенства конспект кратко, знаменатель искомой дроби был бы отличен от нуля и задача имела бы решение.

Исследование третьей задачи. Двузначных-чисел, сумма, цифр которых 14, существует всего пять: 59, 68, 77, 86 и 95. Если к любому из них прибавить 72, в результате получится не двузначное, а трехзначное число. Если в условии задачи заменить число 72
числом 36, задача будет иметь решение, так как 95 — 59 = 36, Точно так же задача будет иметь решение, если, в условии ее число 72 заменить числом 18, так как 86 — 68 = 18.

Исследование четвертой задачи. Отрицательный ответ
получился потому, что по условию две машинистки, работая совместно, тратят на- выполнение работы больше времени (6 час), чем одна машинистка (5 час). Так могло бы быть, если бы вторая машинистка
не помогала первой, а уничтожала бы работу, выполненную первой машинисткой. Для того чтобы задача имела решение, достаточно число 6 в условии заменить каким-нибудь положительным числом, меньшим 5, или число 5 заменить числом, большим 6. Можно, конечно, сразу заменить и оба числа, только при -этом нужно, чтобы вдвоем машинистки меньше тратили времени на работу, чем одна.

Задача:

На трех складах находится 300 куб. м дров. На первом складе 110 куб. м. На втором складе на несколько куб, метров больше, чем на первом, а на третьем складе на столько же куб. метров меньше, чем, на первом. Сколько куб. метров дров на каждом складе?

Решение:

Пусть на втором складе на х Уравнения и неравенства конспект краткодров больше, чем на первом. Тогда

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Уравнение не имеет решения.

Ответ. Задача не имеет решения.

Последняя задача не имеет решения, и этим она похожа на предыдущие четыре задачи. Однако здесь есть и различие. Это различие заключается в том, что предыдущие задачи приводили ю уравнениям, которые имели решения, но эти решения не подходили по смыслу. Последняя же задача привела к уравнению, которое не имеет решения.

Исследование задачи. Где в условии кроется причина того, что задача не имеет решения? По смыслу задачи на втором и на третьем складах вместе должно быть дров вдвое больше, чем на первом. Значит, на первом складе должно быть Уравнения и неравенства конспект кратковсех дров. Выходит,
что либо надо 300 заменить на 330, либо надо 110 заменить на 100, либо заменить оба числа так, чтобы одно было в 3 раза больше другого. Заменим, например, 300 на 330, тогда получим уравнение

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Этому уравнению удовлетворяет любое число. Выходит, что задача имеет бесконечное число решений. По смыслу задачи х может быть любым числом, абсолютная величина которого не превосходит 110.

Все сказанное по поводу решения задач при помощи уравнений приводит к следующему выводу.

Решение задачи при помощи уравнений состоит из четырех частей:

1) составления уравнения,
2) решения уравнения,
3) проверки,
4) исследования.

Наиболее трудная часть работы заключается в составлении уравнения. При составлений уравнения большое значение имеет удачный или неудачный выбор величины для обозначения ее буквой. Большое
внимание требуется и при исследовании решения.

Применение уравнений к решению задач в общем виде

Мы рассмотрели ряд задач с числовыми данными. Известно, однако, что особый интерес представляют задачи в общем виде, т. е. задачи с буквенными данными. Так как буквы обозначают у нас числа, решение задач с буквенными данными ведется так же, как и задач с числовыми данными, только всякий раз нужно исследовать решение. Покажем это на примере.

Задача:

Отцу 40 лет, сыну 10 лет. Через сколько лет отец будет в n раз старше сына?

Решение:

Предположим, что через х лет отец будет в n раз старше сына. Через х лет отцу будет (40 + x) лет, а сыну (10 +x ) лет. Значит,

Уравнения и неравенства конспект кратко

Уравнение составлено. Решая его, имеем:

Уравнения и неравенства конспект кратко

По смыслу задачи n > 1, поэтому знаменатель — всегда
положительное число. Что касается числителя, то при x 4 числитель отрицателен. Исследование показывает, что возможны три случая:

Случай 1. n 4. В этом случае задача имеет отрицательное решение, которое означает, что | x | лет назад отец был в n раз старше сына. Пусть, например, n = 6. Тогда x = —4; х = 4. Действительно, 4 года назад отцу было 36 лет, сыну 6 лет, и отец был в 6 раз старше сына.

Видео:Решение квадратных неравенств | МатематикаСкачать

Решение квадратных неравенств | Математика

Понятие о неравенстве

При исследовании уравнений с буквенными коэффициентами приходится решать такие задачи:

Даны два алгебраических выражения, зависящие от одной или нескольких букв. Требуется узнать, при каких значениях этих букв одно из данных выражений больше или меньше другого. Например, исследуя задачи из § 8, мы должны были узнать, при каких значениях n выражение 40—10n является положительным числом и при каких значениях n это выражение является отрицательным числом. Иными
словами, нам нужно было узнать, при каких значениях n

Уравнения и неравенства конспект кратко

и при каких значениях n

Уравнения и неравенства конспект кратко

В таких случаях говорят, что нам нужно было решить два неравенства: 40>10n и 40 или знаком Уравнения и неравенства конспект кратко

Выражение, записанное слева от знака неравенства, называется левой частью неравенства, а выражение, записанное справа от этого знака, называются правой частью неравенства.

При желании части неравенства можно переменить местами, но тогда надо изменить знак неравенства на. знак противоположного смысла, т. е. вместо знака ]> писать знак . Перепишем неравенства (1), переменив местами правую и левую части. Получим

Уравнения и неравенства конспект кратко

Неравенства (1) и (2) не содержат букв, это так называемые числовые неравенства. Неравенства

Уравнения и неравенства конспект кратко

Неравенства, не содержащие букв, могут быть верными
(справедливыми) или неверными (несправедливыми). Так, например, все неравенства (1) и (2) верные. Нетрудно указать и несправедливое неравенство. Для этого достаточно в верном неравенстве заменить знак
неравенства знаком противоположного смысла.

С неравенствами, содержащими буквы, дело обстоит сложнее. Рассмотрим для примера знакомое нам неравенство

Уравнения и неравенства конспект кратко

Мы знаем, чтo это неравенство справедливо при n надо заменить знаком = , а при n > 4 знак > надо заменить знаком Уравнения и неравенства конспект кратко

Действительно, при любом а левая часть неравенства (5) на 1 больше правой.

С другой стороны, нетрудно указать и такое неравенство, которое при любых значениях входящих в него букв несправедливо. Для этого достаточно в неравенстве, которое справедливо при всех значениях входящих в него букв, заменить знак неравенства знаком противоположного смысла. Так, например, заменим в неравенстве (5) знак > знаком Уравнения и неравенства конспект кратко

которое при всех значениях буквы а несправедливо.

Определение:

Решить неравенство — это значит узнать, при каких значениях входящих в него букв это неравенство справедливо.

Пример:

Решить неравенство 40 > 10n.

Пример:

Решить неравенство 40 Свойства неравенств

Для того чтобы научиться решать неравенства, надо изучить их свойства.

Свойство:

Возьмем какое-нибудь справедливое неравенство, например

Уравнения и неравенства конспект кратко

Прибавим к каждой части этого неравенства одно и то же число, например 10. Получим новое неравенство 5 + 10 > 3 + 10 или

Уравнения и неравенства конспект кратко

Неравенство (2) тоже справедливо. В самом деле, мы к большему числу 5 и к меньшему числу 3 прибавили поровну (по 10), понятно, поэтому, что первая сумма больше второй.

Возьмем неравенство (1). Вычтем теперь из каждой части этого неравенства одно и то же число, например 10. Получим новое неравенство

Уравнения и неравенства конспект кратко

Неравенство (3) тоже справедливо.

Возьмем еще раз неравенство (1). Прибавим к каждой его часта одно и то же буквенное выражение, например а + 2b. Получим новое неравенство

Уравнения и неравенства конспект кратко

Неравенство (4) справедливо при любых значениях а и b. В самом деле, при каких угодно значениях а и b к правой и левой части неравенства (1) добавляется одно и то же число.

Пусть, например, а=3; b=4, тогда

Уравнения и неравенства конспект кратко

и выходит, что при этих значениях а и b к каждой части неравенства (1) прибавлено по 11. Если а и b имеют какие-нибудь другие значения, все равно а + 2b, добавленное к левой части неравенства (1), имеет
то же значение, что и а + 2b, добавленное к правой части этого неравенства.

Теперь мы можем сформулировать свойство 1 неравенств:

Если а > b и с — произвольное число, то а + с > b + с;
а— с > b— с, т. е. к обеим частям неравенства можно прибавить или от обеих частей его вычесть одно и то же число или буквенное выражение.

Как легко видеть, свойство 1 неравенств очень напоминает соответствующее свойство равенств.

Следствие из свойства 1. Любой член неравенства можно перенести из одной части в другую, переменив при этом знак его на противоположный.

Действительно, рассмотрим неравенство

Уравнения и неравенства конспект кратко

Нетрудно проверить, что это неравенство справедливо. Допустим, что мы хотим число —2 перенести из правой части в левую. Прибавим к каждой части неравенства по 2, получим опять справедливое неравенство

Уравнения и неравенства конспект кратко

Сравнивая неравенство (6) с неравенством (5), видим, что неравенство (6) получается из неравенства (5) посредством переноса числа (—2) из правой части в левую, но с противоположным знаком.

Свойство:

Возьмем какое-нибудь справедливое неравенство, например

Уравнения и неравенства конспект кратко

Умножим обе части этого неравенства на одно и то же положительное число, например на 5. Получим новое неравенство

Уравнения и неравенства конспект кратко

Неравенство (2) тоже справедливо.

Возьмем опять то же неравенство

Уравнения и неравенства конспект кратко

Разделим обе части этого неравенства на одно и то же
положительное число, например на 10. Получим новое неравенство

Уравнения и неравенства конспект кратко

Неравенство (3) тоже справедливо.

Возьмем еще раз неравенство 3 >—2. Умножим обе части этого неравенства на какое-нибудь отрицательное число, например на —5. В левой части получится —15, а в правой 10. Ясно, что

Уравнения и неравенства конспект кратко

Как видно, чтобы получить справедливое неравенство (4), нам пришлось знак > заменить знаком Уравнения и неравенства конспект кратко

Разделим обе части его на какое-нибудь отрицательное число, например на —10. В левой части получится —0,3, а в правой 0,2. Чтобы новое неравенство было справедливым, необходимо знак > заменить
знаком Уравнения и неравенства конспект кратко

Теперь мы можем сформулировать свойство 2 неравенств:

Если а > b и с положительно, то Уравнения и неравенства конспект краткот. е. обе части неравенства можно умножить или разделить на одно и то же положительное число.

Если а>b и с отрицательно, то Уравнения и неравенства конспект краткот.е. при умножении или делении обеих частей неравенства на одно и то же отрицательное число знак неравенства надо заменить знаком противоположного смысла (т.е. вместо знака > надо писать знак ).

Если обе части неравенства умножить на нуль, неравенство превращается в равенство.

Пример:

Умножим обе части неравенства 3 > — 2 на нуль. В левой части получится 0, в правой части получится тоже 0, т. е.

Уравнения и неравенства конспект кратко

Вместо знака > приходится писать знак=.

При умножении или делении обеих частей неравенства на буквенное выражение нужно быть весьма осторожным, так как при различных значениях букв это выражение может оказаться и положительным,
и отрицательным, и нулем. Так, например, неравенство 3 > — 2 при умножении на х дает

Уравнения и неравенства конспект кратко

Видео:Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.

Решение неравенств первой степени с одним неизвестным

Определение:

Неравенством первой степени с одним
неизвестным
называется такое неравенство, которое не содержит неизвестного в знаменателе и после освобождения его от дробей, раскрытия скобок, перенесения всех членов в левую часть и приведения
подобных членов имеет вид ах + b > 0 или ах + b Уравнения и неравенства конспект кратко

Решение:

Перенесем в левую, а —1 в правую часть
неравенства. Получим

Уравнения и неравенства конспект кратко

Этот ответ означает, что данное неравенство справедливо при любом значении х, большем чем —4. Ответ. x > —4.

Пример:

Решить неравенство 5х + 2 Уравнения и неравенства конспект кратко

Разделим обе части неравенства на 3, получим

Уравнения и неравенства конспект кратко

Ответ. Уравнения и неравенства конспект кратко

Пример:

Решить неравенство 2х + 5 > 7х — 10.

Решение:

Перенесем в правую, а —10 в левую часть
неравенства. Получим

Уравнения и неравенства конспект кратко

Разделим обе части неравенства на 5. Получим

Уравнения и неравенства конспект кратко

Это неравенство можно решить и иначе. Например, перенесем в левую, а 5 в правую часть. Получим

Уравнения и неравенства конспект кратко

Разделим обе части неравенства на —5. Получим опять

Уравнения и неравенства конспект кратко

Ответ. х Уравнения и неравенства конспект кратко

Решение:

Умножим обе части неравенства на 6. Получим

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Перенесем —8х в правую часть. Получим

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко

Ответ.Уравнения и неравенства конспект кратко

Пример:

Решить неравенство ах 0), то Уравнения и неравенства конспект краткоЕсли а отрицательно (т. е. a bc.

Решение:

Так как b и d одного знака, bd положительно.
Поэтому, умножив обе части справедливого по условию неравенства Уравнения и неравенства конспект краткона bd, получим опять справедливое неравенство.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Уравнения и неравенства конспект кратко

Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко Уравнения и неравенства конспект кратко

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

💥 Видео

Решение квадратных неравенств методом интервалов. 8 класс.Скачать

Решение квадратных неравенств методом интервалов. 8 класс.

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!

Удалили с экзамена ОГЭ Устное Собеседование shorts #shortsСкачать

Удалили с экзамена ОГЭ Устное Собеседование shorts #shorts
Поделиться или сохранить к себе: