Уравнения 7 класс по алгебре задания с ответами и решением

Линейные уравнения 7 класс.
учебно-методический материал по алгебре (7 класс) на тему

Уравнения 7 класс по алгебре задания с ответами и решением

Задания для решения линейных уравнений с одним неизвестным.

Уравнения 7 класс по алгебре задания с ответами и решением

Уравнения 7 класс по алгебре задания с ответами и решением

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

По теме: методические разработки, презентации и конспекты

Уравнения 7 класс по алгебре задания с ответами и решением

Методическая разработка урока алгебры в 7 классе «Различные способы решения систем линейных уравнений» способы решения систем уравнений

Урок алгебры в 7 классе направлен на обобщение и систематизацию различных способов решения систем уравнений: метода сравнения, сложения, подстановки, графического метода, метода Крамера, выбора рацион.

Уравнения 7 класс по алгебре задания с ответами и решением

Обобщающий урок в 7 классе по алгебре «Линейное уравнение с двумя переменными. График линейного уравнения с двумя переменными»

Обобщающий урок в 7 классе по алгебре «Линейное уравнение с двумя переменными. График линейного уравнения с двумя переменными».

Уравнения 7 класс по алгебре задания с ответами и решением

8 класс урок-зачёт по теме «Линейные уравнения и системы уравнений»

рассмотрены разные типы текстовых задач, которые решаются с помощью линейных уравнений и систем уравнений.

Уравнения 7 класс по алгебре задания с ответами и решением

Линейные уравнения и системы линейных уравнений с параметрами

Методическая разработка на тему: «Линейные уравнения и системы линейных уравнений с параметрами».

Уравнения 7 класс по алгебре задания с ответами и решением

Линейные уравнения, неравенства и системы линейных уравнений с параметром.

Уравнения 7 класс по алгебре задания с ответами и решением

Линейные уравнения и системы уравнений, повторение, 7 класс

Презентация, повторение теоретического материала.

Уравнения 7 класс по алгебре задания с ответами и решением

Презентация к уроку алгебры 7 класс «Линейное уравнение и линейная функция(обобщение).

Презентация к уроку алгебры 7 класс «Линейное уравнение и линейная функция(обобщение).

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Комментарии

Уравнения 7 класс по алгебре задания с ответами и решением

(2x + 3) — ( 5x — 11 ) = 7 +

(2x + 3) — ( 5x — 11 ) = 7 + (13 — 2x )

(7 — 10x) — (8 — 8x ) + (10x + 6) = — 8

(2x + 3) + (3x + 4) + (5x + 5 ) = 12 — 7x

Уравнения 7 класс по алгебре задания с ответами и решением

ВАРИАНТ 1

ВАРИАНТ 1
1. Решите уравнение:
2х + 1 = 3х — 4

2. Решите уравнение:
а) ⅔ х = -6 б) 1,6(5х – 1) = 1,8х – 4,7
3. Турист проехал в 7 раз большее расстояние, чем прошел пешком. Весь путь туриста составил 24 км. Какое расстояние турист проехал?
4. При каком значении переменной значение выражения 3 – 2с на 4 меньше значения выражения 5с + 1 ?
5. Длина прямоугольника на 6 см больше ширины. Найдите площадь прямоугольника, если его периметр равен 48 см.

1. Решите уравнение:
— 2х + 1 = — х — 6

2. Решите уравнение:
а) — ⅜ х = 24 б) 2(0,6х + 1,85) = 1,3х + 0,7
3. На одной полке на 15 книг большее, чем другой. Всего на двух полках 53 книги. Сколько книг на каждой полке?
4. При каком значении переменной значение выражения 4а + 8 на 3 больше значения выражения 3 – 2а ?
5. Ширина прямоугольника в 2 раза меньше длины. Найдите площадь прямоугольника, если его периметр равен 120 см.

Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Уравнения 7 класс по алгебре задания с ответами и решением

Решите уравнение 2 + 3x = − 2x − 13.

Найдем корень уравнения:

Уравнения 7 класс по алгебре задания с ответами и решением

Найдите корни уравнения&nbsp Уравнения 7 класс по алгебре задания с ответами и решением

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

Видео:Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать

Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестным

Тренировочные упражнения по алгебре на тему: «Линейные уравнения» (7 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 2 500 дидактических материалов для школьного и домашнего обучения

Столичный центр образовательных технологий г. Москва

Получите квалификацию учитель математики за 2 месяца

от 3 170 руб. 1900 руб.

Количество часов 300 ч. / 600 ч.

Успеть записаться со скидкой

Форма обучения дистанционная

311 лекций для учителей,
воспитателей и психологов

Получите свидетельство
о просмотре прямо сейчас!

Линейные уравнения. Тренировочные упражнения для 7 классов.

Собранный материал содержит тренировочные упражнения, позволяющие научить учащихся 7 классов решать линейные уравнения и уравнения, сводящиеся к линейным. При решении линейных уравнений вида ах=в следует обратить внимание на то, что если а не равно 0, то уравнение ах=в называется уравнением первой степени с одной переменной и имеет один корень, а линейное уравнение может не иметь корней, иметь один корень или бесконечно много. Данные задания могут быть использованы учителем на любом этапе урока в зависимости от целей и задач. Количество времени, отведённое на работу с упражнениями, также зависит от того, на каком этапе они используются, а также от типа школы и контингента учащихся.

№ 1. Решите уравнение:

а) х + 12 = 67; г) 15 — у = 8; ж)14 – х= –11; к) 65+к=54;

б) z + 35 = 87; д) 83 – а = 43; з) у – 33= –8; л) –15+а=22;

в) y – 93 = 18: е) m + 23 = 92; и) х +17= 13; м) 97 –х=100.

№ 2. Найдите корень уравнения:

а) 5х = 60; г) 6у = -18; ж)13у=78; к) –12к= –1,44;

б) 9у = 72; д) -2х = 10; з)1,7с= –0,34; л) 14у= –10;

в) 10 z = 15; е) 11у = 0; и) –7,4х= –1,48; м) 31с=93.

№ 3. Решите уравнение:

а) 4х + х = 70; г) 8х – 7х + 8 =12;

б) 4 · 25 · х = 800; д) у · 5 ·20 = 500;

в) 13у + 15у – 24 = 60; е) 6 z + 5 z – 44 =0.

№ 4. Решите уравнение:

а) 55 : х + 9 =20; г) 48 : (9х – х) =2; ж) 3х+14=35; к) 3=4·(к+2);

б) 88 : х – 24 = 64; д) (у + 6) – 2 = 15; з) 5·(у-9)=-2; л) 5·(с+5)= -7;

в) р · 38 – 76 = 38; е) 2 (а – 5) = 24; и) 3( у–33)=3; м) 2( х – 7)=3.

№ 5. Найдите корень уравнения:

а) (х + 15) – 8 = 17; г) 32 – х = 32 + х; ж) 2х+9=13 –х; к)1,2с+1=1–с;

б) (у – 35) + 12 = 32; д) х – 35 – 64 = 16; з) 14–у=19 –11у; л)3х–8=х+6;

в) 55 – (х – 15) = 30; е) 28 – у +35 = 53; и) 0,5а+11=4–3а; м)х–4х=27.

№ 6. Найдите корень уравнения:

а) 35х = 175; г) 2· (х – 5) =36;

б) m : 35 = 18; д) (у + 25) : 8 =16;

в) ( n -12) · 8 = 56; е) 24 · ( z + 9) = 288.

№ 7. Решите уравнение:

а) 2–3(х+2) = 5–2х; г) 0,4х = 0,4-2(х+2);

б) 0,2 – 2(х+1) = 0,4х; д) 5(2+1,5х)-0,5х=24;

в) 3-5(х+1) = 6-4х; е) 3(0,5х-4)+8,5х=18.

№8. Решите уравнение:

а) 4х — 5,5 = 5х — 3(2х-1,5); г) 7·(-3+2х)=-6х-1; ж) 4·(2-3х)=-7х+10;

б) 4 – 5(3х + 2,5) = 3х + 9,5; д) 2·(7+9к)=-6к+2; з) -4·(-к+7)=к+17;

в) 0,4(6х – 7) = 0,5(3х + 7); е) 6·(5-3с)=-8с-7; и) -5·(3а+1)-11=-16.

Видео:РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ решение уравнений 7 МакарычевСкачать

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ решение уравнений 7 Макарычев

Задачи, решаемые с помощью уравнения. 7-й класс

Разделы: Математика

Класс: 7

  1. Проверка практических умений и навыков решения задач на составление уравнения.
  2. Активизация учебной деятельности учащихся путём общения в динамических парах, когда каждый учит каждого.
  3. Воспитывать ответственное отношение к учебному труду, развивать логическое мышление, любознательность, умение проверять и оценивать выполненную работу.

Коллективным способом обучения (А. Г. Ривин и В.К. Дьяченко) является такая его организация, при которой обучение осуществляется путём общения в динамических парах, когда каждый учит каждого.

I. Работа начинается с ввода или так называемого “запуска” раздела.

Обобщение и систематизация знаний по теме “ Задачи, решаемые с помощью уравнения”.

1. За 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.

Пусть собственная скорость теплохода – Х км/ч. Заполним таблицу значений трёх величин.

Скорость (км/ч)Время (ч)Расстояние (км)
По течениюХ + 299(Х + 2)
Против теченияХ – 21111(Х – 2)

На основании условия задачи составим уравнение:
9(Х + 2) = 11(Х – 2), которое имеет единственный корень 20.
Собственная скорость теплохода 20 км/ч.

2. Увеличив среднюю скорость с 250 до300 м/мин, спортсменка стала пробегать дистанцию на 1 мин быстрее. Какова длина дистанции?
Пусть Х мин – время, за которое спортсменка пробегала дистанцию со скоростью 300 м/мин, тогда Х +1 мин – время, за которое спортсменка пробегала дистанцию со скоростью 250 м/мин. Составим уравнение:
250(Х + 1) = 300Х , которое имеет единственный корень 5.Найдём длину дистанции 300Х = 300×5 = 1500 м.

3. В первую бригаду привезли раствора цемента на 50 кг меньше, чем во вторую. Каждый час работы первая бригада расходовала 150 кг раствора, а вторая – 200кг. Через 3 ч работы в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Сколько раствора привезли в каждую бригаду?

Пусть в первую бригаду привезли Х кг раствора, тогда во вторую – Х + 50 кг. Заполним таблицу значений величин для двух бригад:

Привезли(кг)Расход(кг)за 1 часВремя (ч)Осталось раствора(кг)
1-я бригадаХ1503Х – 450
2-я бригадаХ + 502003Х + 50 – 600

По условию задачи в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Составим уравнение:

Х – 450 = (Х + 50 – 600)×1,5 , имеющее единственный корень 750. 750 кг раствора привезли в первую бригаду, а во вторую привезли 750 + 50 = 800 кг.

4. (Задача Э.Безу) По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?
Пусть работники отработали Х дней, тогда они не работали (30 – Х) дней. Составим уравнение:
48Х – 12 (30 – Х) = 0.
Решив это уравнение, получим Х = 6, то есть они отработали 6 дней.

5. Книгу в 296 страниц ученик прочитал за три дня. Во второй день он прочитал на 20% больше, чем в первый, а в третий – на 24 страницы больше, чем во второй. Сколько страниц прочитал ученик в первый день?
Пусть в первый день ученик прочитал Х страниц, тогда во второй день ученик прочитал Х + 0,2Х = 1,2Х страниц, а в третий день прочитал 1,2Х + 24. Составим уравнение:
Х + 1,2Х +1,2Х + 24 = 296. Решив это уравнение, получим Х = 80, то есть ученик прочитал в первый день 80 страниц.

6. На солнышке грелось несколько кошек. У них лап на 10 больше, чем ушей. Сколько кошек грелось на солнышке?
Пусть грелось Х кошек, тогда у этих кошек 2Х ушей и 4Х лап. Составим уравнение:
4Х – 2Х = 10. Решив это уравнение, получим Х = 5,то есть 5 кошек грелось на солнышке.

II. Самостоятельная работа учащихся.

Каждый ученик получает индивидуальную карточку с задачами. Правильность решения проверяет преподаватель, при необходимости он оказывает помощь в решении. После проверки ученику выставляется в оценочный лист плюс или оценка.

Примеры карточек для первой группы:

1. (Старинная задача.) Послан человек из Москвы в Вологду и велено ему проходить во всякий день по 40 вёрст. На следующий день вслед ему был послан другой человек и велено ему проходить по 45 вёрст в день. Через сколько дней второй догонит первого?

2. Чтобы сделать вовремя заказ, артель стеклодувов должна была изготовлять в день по 40 изделий. Однако она изготовляла ежедневно на 20 изделий больше и выполнила заказ на 3 дня раньше срока. Каков был срок выполнения заказа?

Ответ: № 1 – 8 дней, № 2 – 9 дней.

1. Кооператив наметил изготовить партию мужских сорочек за 8 дней. Выпуская в день на 10 сорочек больше, чем предполагалось, он выполнил план за один день до срока. Сколько сорочек в день должен был выпускать кооператив?

2. На ферме 1000 кроликов и кур, у них 3150 ног. Сколько кроликов и сколько кур на ферме?

Ответ: № 1 – 70 сорочек, № 2 – 575 кроликов и 425 кур..

1. Из пункта А вышла грузовая машина со скоростью 60км/ч. Через 2 ч вслед за ней из пункта А вышла легковая машина со скоростью 90 км/ч. На каком расстоянии от пункта А легковая машина догонит грузовую?

2. Чтобы выполнить задание в срок, токарь должен изготавливать по 24 детали в день. Однако он ежедневно перевыполнял норму на 15 деталей и уже за 6дней до срока изготовил 21 деталь сверх плана. Сколько деталей изготовил токарь?

Ответ: № 1 – 360 км, № 2 – 408 деталей.

1. От турбазы до привала туристы шли со скоростью 4,5км/ч, а возвращались на турбазу со скоростью 4км/ч, затратив на обратный путь на 15 мин больше. На каком расстоянии от турбазы был сделан привал?

2. На одном складе было 185 т угля, а на другом – 237 т. Первый склад стал отпускать ежедневно по 15 т угля, а второй – по 18 т. Через сколько дней на втором складе угля будет в полтора раза больше, чем на первом?

Ответ: № 1 – 9 км, № 2 – 9 дней.

Примеры карточек для второй группы:

1. Из пункта А выехал велосипедист. Одновременно вслед за ним из пункта В , отстоящего от пункта А на расстоянии 60 км/ч, выехал мотоциклист. Велосипедист ехал со скоростью 12 км/ч, а мотоциклист – со скоростью 30 км/ч. На каком расстоянии от пункта А мотоциклист догонит велосипедиста?

2. Три бригады изготовили 65 деталей. Первая бригада изготовила на 10 деталей меньше, чем вторая, а третья – 30% того числа деталей, которые изготовили первая и вторая детали вместе. Сколько деталей изготовила каждая бригада?

Ответ: № 1 – 40 км, № 2 – 20, 30, 15 деталей.

1. Расстояние между пристанями М и N равно 162 км. От пристани М отошёл теплоход со скоростью 45 км/ч. Через 45 мин от пристани N навстречу ему отошёл другой теплоход, скорость которого 36 км/ч. Через сколько часов после отправления первого теплохода они встретятся?

2. Бригада рабочих должна была изготовить определённое количество деталей за 20 дней. Однако она ежедневно изготавливала на 70 деталей больше, чем планировалось первоначально. Поэтому уже за 7 дней до срока ей осталось изготовить 140 деталей. Сколько деталей должна была изготовить бригада?

Ответ: № 1 – 2 Уравнения 7 класс по алгебре задания с ответами и решениемч, № 2 – 3000 деталей.

1. От пристани А отошел теплоход со скоростью 40 км/ч. Через 1 Уравнения 7 класс по алгебре задания с ответами и решениемч вслед за ним отошёл другой теплоход со скоростью 60 км/ч. Через сколько часов после своего отправления и на каком расстоянии от А второй теплоход догонит первый?

2. В хозяйстве имеются куры и овцы. Сколько тех и других, если у них вместе 19 голов и 46 ног?

Ответ: № 1 – 2 ,5 ч; 150 км, № 2 – 4 овцы и15 кур.

1. Сумму в 74 р. заплатили девятнадцатью монетами по 2 р. и 5 р. Сколько было монет по 2 р.?

2. За 4 ч катер проходит по течению расстояние, в 2,4 раза большее, чем за 2 ч против течения. Какова скорость катера в стоячей воде, если скорость течения 1,5 км/ч?

Ответ: № 1 – 7 монет, № 2 – 16,5 км/ч.

Примеры карточек для третьей группы:

1. Со станции М и N, расстояние между которыми 380 км, одновременно навстречу друг другу вышли два поезда. Скорость поезда, отправившегося со станции N, была больше скорости другого поезда на 5 км/ч. Через 2 ч после отправления поездам оставалось пройти до встречи 30 км. Найдите скорость поездов.

2. В одном резервуаре 380 м³ воды, а в другом 1500 м³. В первый резервуар каждый час поступает 80 м³ воды, а из второго каждый час выкачивают 60 м³. Через сколько часов воды в резервуаре станет поровну?

Ответ: № 1 – 85 и 90км/ч, № 2 – 56 ч.

1. Сумму в 74 р. заплатили девятнадцатью монетами по 2 р. и 5 р. Сколько было монет по 2 р.?

2. Скашивая ежедневно по 60 га вместо 50 га, бригада сумела скосить луг на один день быстрее, чем планировалось. Какова площадь луга?

Ответ: № 1 – 7 монет, № 2 – 300 га.

1. (Старинная задача.) Летели галки, сели на палки: по две сядут – одна палка лишняя, по одной сядут – одна галка лишняя. Сколько было галок и сколько палок?

2. Турист рассчитал, что если он будет идти к железнодорожной станции со скоростью 4км/ч, то опоздает к поезду на полчаса, а если он будет идти со скоростью 5км/ч, то придёт на станцию за 6 мин до отправления поезда. Какое расстояние должен пройти турист?

Ответ: № 1 – 4 галки и 3 палки, № 2 – 12 км.

1. (Задача С.А. Рачинского.) Я дал одному ученику 3 ореха, а всем остальным по 5 . Если бы я всем дал по 4 ореха, у меня осталось бы 15. Сколько было орехов?

2. К числу приписали справа нуль. Число увеличилось на 405. Найдите первое число.

Ответ: № 1 – 83 ореха, № 2 – 45.

Раздел считается введённым в работу, если каждая карточка с заданиями выполнена хотя бы одним учеником.

III. Работа в группах.

Затем работа классного коллектива выглядит так: организуется 3–4 группы по 4 человека (можно до 7 человек). В группе у каждого ученика своя карточка, за которую ученик уже получил плюс или оценку в оценочный лист. Каждый в группе выбирает партнёра, и они меняются карточками. Школьники работают в парах (решают карточку своего партнера полностью), затем пары в группе меняются. Если необходима помощь, то происходит взаимообучение. Если помощь не нужна, то после выполнения задания происходит взаимопроверка и делается отметка в оценочный лист. Потом пары меняются, и процесс продолжается до тех пор, пока каждый ученик не выполнит задания других учеников группы. Затем подводится итог, и выставляется общая оценка.

№1№2№3№4Итоговая оценка
Лаптева Алина5
Борзенков Егор3
Мартышин Сергей4
Казакова Виктория3

По диагонали оценка выставлена учителем. За выполнение карточки № 1оценка выставляется Лаптевой А., № 2 – Борзенковым Е., № 3 – Мартышиным С., № 4 – Казаковой В..

🌟 Видео

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 класс

Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Решение задач с помощью уравнений. Алгебра 7 классСкачать

Решение задач с помощью уравнений. Алгебра 7 класс

Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1Скачать

Алгебра 7 класс. 11 сентября. Решение линейных уравнений #1

Алгебра 7 класс с нуля | Математика | УмскулСкачать

Алгебра 7 класс с нуля | Математика | Умскул

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать

АЛГЕБРА 7 класс : Решение задач с помощью уравнений | Видеоурок

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Уравнение в котором произведение множителей равно нулю. Алгебра 7 класс.Скачать

Уравнение в котором произведение множителей равно нулю. Алгебра 7 класс.

Решение уравнений, сводящихся к линейным | Алгебра 7 класс #18 | ИнфоурокСкачать

Решение уравнений, сводящихся к линейным | Алгебра 7 класс #18 | Инфоурок

АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать

АЛГЕБРА 7 класс : Уравнение и его корни | Видеоурок

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Решение задач с помощью уравнений. Алгебра, 7 классСкачать

Решение задач с помощью уравнений. Алгебра, 7 класс

Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать

Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)
Поделиться или сохранить к себе: