При построении математической модели распространения тепла в стержне сделаем следующие предположения:
1) стержень сделан из однородного проводящего материала с плотностью ρ;
2) боковая поверхность стержня теплоизолирована, то есть тепло может распространяться только вдоль оси ОХ;
3) стержень тонкий — это значит, что температура во всех точках любого поперечного сечения стержня одна и та же.
Рассмотрим часть стержня на отрезке [х, х + ∆х] (см. рис. 6) и воспользуемся законом сохранения количества тепла:
Общее количество тепла на отрезке [х, х + ∆х] = полному количеству тепла, прошедшему через границы + полное количество тепла, образованного внутренними источниками.
Общее количество тепла, которое необходимо сообщить участку стержня, чтобы повысить его температуру на ∆U, вычисляется по формуле: ∆Q= CρS∆x∆U, где С — удельная теплоемкость материала ( = количеству тепла, которое нужно сообщить 1 кг вещества, чтобы поднять его температуру на 1°), S — площадь поперечного сечения.
Количество тепла, прошедшее через левый конец участка стержня за время ∆t (тепловой поток) вычисляется по формуле: Q1 = -kSUx(x, t)∆t, где k — коэффициент теплопроводности материала ( = количеству тепла, протекающего в секунду через стержень единичной длины и единичной площади поперечного сечения при разности температур на противоположных концах, равной 1°). В этой формуле особого пояснения требует знак минус. Дело в том, что поток считается положительным, если он направлен в сторону увеличения х, а это, в свою очередь, означает, что слева от точки х температура больше, чем справа, то есть Ux CpS∆x∆U = kSUx(x + ∆х, t) ∆t — kSUx(x, t)∆t.
Если это равенство поделить на S∆x∆t и устремить ∆х и ∆t к нулю, то будем иметь:
Отсюда уравнение теплопроводности имеет вид
Ut = a 2 Uxx,
где 
В случае, когда внутри стержня имеются источники тепла, непрерывно распределенные с плотностью q(x,t), получится неоднородное уравнение теплопроводности
- Начальные условия и граничные условия.
- Решение первой начально-краевой задачи для уравнения теплопроводности.
- Краевые условия для уравнения теплопроводности
- Теплопроводность через стенку
- Теплопередача через плоскую стенку (граничные условия первого рода)
- Распределение температуры в плоской стенке
- Теплопроводность через многослойную стенку
- Теплопередача через плоскую стенку в граничащую среду (граничные условия третьего рода)
- Теплопроводность через цилиндрическую стенку (граничные условия первого рода)
- 📹 Видео
Начальные условия и граничные условия.
Для уравнения теплопроводности задается только одно начальное условие U|t=0 = φ(х) (или в другой записи U(x,0) = φ(х)) и физически оно означает, что начальное распределение температуры стержня имеет вид φ(х). Для уравнений теплопроводности на плоскости или в пространстве начальное условие имеет такой же вид, только функция φ будет зависеть, соответственно, от двух или трех переменных.
Граничные условия в случае уравнения теплопроводности имеют такой же вид, как и для волнового уравнения, но физический смысл их уже иной. Условия первого рода (5) означают, что на концах стержня задана температура. Если она не изменяется со временем, то g1(t) ≡ Т1 и g2(t) ≡ Т2, где Т1 и Т2 — постоянные. Если концы поддерживаются все время при нулевой температуре, то Т1= Т2 = 0 и условия будут однородными. Граничные условия второго рода (6) определяют тепловой поток на концах стержня. В частности, если g1(t) = g2(t) = 0, то условия становятся однородными. Физически они означают, что через концы не происходит теплообмен с внешней средой (эти условия еще называют условиями теплоизоляции концов). Наконец, граничные условия третьего рода (7) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона (напомним, что при выводе уравнения теплопроводности мы считали боковую поверхность теплоизолированной). Правда, в случае уравнения теплопроводности условия (7) записываются немного по-другому:
Физический закон теплообмена со средой (закон Ньютона) состоит в том, что поток тепла через единицу поверхности в единицу времени пропорционален разности температур тела и окружающей среды. Таким образом, для левого конца стержня он равен Здесь h1 > 0 — коэффициент теплообмена с окружающей средой, g1(t) — температура окружающей среды на левом конце. Знак минус поставлен в формуле по той же причине, что и при выводе уравнения теплопроводности. С другой стороны, в силу теплопроводности материала поток тепла через этот же конец равен Применив закон сохранения количества тепла, получим:
Аналогично получается условие (14) на правом конце стержня, только постоянная λ2 может быть другой, так как, вообще говоря, среды, окружающие левый и правый конец, бывают разные.
Граничные условия (14) являются более общими по сравнению с условиями первого и второго рода. Если предположить, что через какой-либо конец не происходит теплообмена со средой (то есть коэффициент теплообмена равен нулю), то получится условие второго рода. В другом случае предположим, что коэффициент теплообмена, например h1, очень большой.
Перепишем условие (14) при х = 0 в виде и устремим . В результате будем иметь условие первого рода:
Аналогично формулируются граничные условия и для большего числа переменных. Для задачи о распространении тепла в плоской пластине условие означает, что температура на ее краях поддерживается нулевой. Точно так же, условия и внешне очень похожи, но в первом случае оно означает, что рассматривается плоская пластина и края ее теплоизолированы, а во втором случае оно означает, что рассматривается задача о распространении тепла в теле и поверхность его теплоизолирована.
Решение первой начально-краевой задачи для уравнения теплопроводности.
Рассмотрим однородную первую начально-краевую задачу для уравнения теплопроводности:
Найти решение уравнения
удолетворяющее граничным условиям
и начальному условию
Решим эту задачу методом Фурье.
Шаг 1. Будем искать решения уравнения (15) в виде U(x,t) = X(x)T(t).
Найдем частные производные:
Подставим эти производные в уравнение и разделим переменные:
По основной лемме получим
Теперь можно решить каждое из этих обыкновенных дифференциальных уравнений. Обратим внимание на то, что используя граничные условия (16), можно искать не общее решение уравнения б), а частные решения, удолетворяющие соответствующим граничным условиям:
Шаг 2. Решим задачу Штурма-Лиувилля
Эта задача совпадает с задачей Штурма-Лиувилля, рассмотренной в лекции 3. Напомним, что собственные значения и собственные функции этой задачи существуют только при λ>0.
Собственные значения равны
Собственные функции равны (См. решение задачи)
Шаг 3. Подставим собственные значения в уравнение а) и решим его:
Шаг 4. Выпишем частные решения уравнения (15):
В силу линейности и однородности уравнения (15) их линейная комбинация
Шаг 5. Определим коэффициенты An в (19), используя начальное условие (17):
Приходим к тому, что начальная функция φ(x) разлагается в ряд Фурье по собственным функциям задачи Штурма-Лиувилля. По теореме Стеклова такое разложение возможно для функций, удовлетворяющих граничным условиям и имеющих непрерывные производные второго порядка. Коэффициенты Фурье находятся по формулам
Вычислив эти коэффициенты для конкретной начальной функции φ(x) и подставив их значения в формулу (19), мы тем самым получим решение задачи (15), (16), (17).
Замечание. Используя формулу (19), можно также, как в лекции 3, получить решение первой начально-краевой задачи для уравнения Ut = a 2 Uxx. Оно будет иметь вид
где
Видео:Решение первой краевой задачи для неоднородного уравнения теплопроводности.Скачать

Краевые условия для уравнения теплопроводности
Дифференциальное уравнение теплопроводности в однородных изотропных средах в терминах математической физики есть неоднородное дифференциальное уравнение в частных производных параболического типа (первого порядка по времени и второго порядка по пространственным координатам). Если внутренние тепловыделения 

Как бы то ни было, любое дифференциальное уравнение может дать однозначное решение только если заданы условия однозначности. В случае дифференциального уравнения параболического типа должно быть задано начальное условие
Что касается граничных условий, то-есть условий теплообмена на границе рассматриваемого объёма с окружающей (контактирующей с ним) средой, то здесь имеют место несколько (а именно, четыре) возможностей, каждая из которых характеризует тот или иной тип теплового взаимодействия с внешней средой. Эти возможности обычно нумеруются римскими цифрами. Перечислим их.
I. Граничные условия I рода
В этом случае задаётся распределение температур на физической границе рассматриваемого объёма, т.е. задаётся функция координат поверхности и времени
II. Граничные условия II рода
Задаётся плотность теплового потока на границе рассматриваемого тела, что позволяет записать
Такие граничные условия обычно имеют место при решении задач теплопроводности в твёрдых телах с теплообменом излучением на границах. Чаще всего такие задачи возникают при решении задач в металлургической теплотехнике, в астрофизике и т.д.
III. Граничные условия III рода
Граничные условия III рода наиболее распространены при решении задач теплопроводности в энергетике, в металлургии и в химической технологии.
Граничные условия III рода описывают в математической форме условия теплообмена внешней поверхности твёрдого тела с контактирующей с ним жидкостью или газом, т.е. со средами, допускающими конвективные движения с перемешиванием.
Математическая формулировка граничных условий III рода базируется на гипотезе (законе) Ньютона-Рихмана, согласно которой тепловой поток с поверхности к омывающей её жидкости пропорционален разности температур, т.е.
Здесь 
Экспериментальное обоснование гипотезы Ньютона-Рихмана состоит в том, что, как показывают экспериментальные исследования, количество теплоты, снимаемое с поверхности твёрдого тела, прямо пропорционально поверхности и разности температур поверхности и жидкости вдали от неё (как говорят, в ядре потока). Нахождение величины коэффициента теплоотдачи 
IV. Граничные условия IV рода
Граничные условия IV рода задают условия теплообмена на границе контакта твёрдых поверхностей. В частности, если контакт твёрдых поверхностей неидеален, то на границе их контакта в математическом смысле будет иметь место скачок температуры 

Видео:Решение уравнения теплопроводности / граничные условия второго и третьего родаСкачать

Теплопроводность через стенку
Под теплопередачей через стенку понимают процесс передачи теплоты между двумя средами через непроницаемую стенку любой геометрической формы в стационарном и нестационарном режимах теплообмена. Стенка может быть многослойной.
Рассмотрим стационарный режим теплопередачи через плоскую, цилиндрическую и сферическую стенки при котором теплопередача — величина постоянная и температурное поле не изменяется во времени и зависит только от координаты. В этом случае при условии постоянства теплофизических свойств тела температура в плоской стенке изменяется линейно, а в цилиндрической — по логарифмическому закону, т.е.
Q = const и T = f(x) — линейная (при плоской стенке) или логарифмическая функция (при круглой стенке).
Согласно второму закону термодинамики процесс теплопередачи идет от среды с большей температурой к среде с меньшей температурой.
Теплопередача через непроницаемую стенку включает в себя следующие процессы:
- теплоотдачу от горячей среды к стенке;
- теплопроводность внутри стенки;
- теплоотдачу от стенки к холодной среде.
Видео:Метод Фурье для неоднородного уравнения теплопроводностиСкачать

Теплопередача через плоскую стенку (граничные условия первого рода)
Теплопроводность — первое элементарное тепловое явление переноса теплоты посредством теплового движения микрочастиц в сплошной среде, обусловленное неоднородным распределением температуры.
Совокупность значений температуры для всех точек пространства в данный момент времени называется температурным полем.
Если температурное поле не изменяется во времени, то мы имеем дело со стационарным тепловым режимом.
Тепловой поток Q [Вт] — это количество теплоты, передаваемой в единицу времени (1 Дж/с=1 Вт).
Поверхностная плотность теплового потока рассчитывается по формуле:
где Q — тепловой поток [Вт]; F — площадь стенки [м 2 ].
На основании закона Фурье q=-λdT/dx, значение плотности теплового потока для однослойной стенки будет определяться по формуле:
где δ = dx — толщина стенки, λ
λ/δ; [Вт/м 2 *К] — коэфициент тепловой проводности стенки.
а обратная величина —
R = δ/λ; [м 2. К/Вт] — термическое сопротивление стенки.
Для теплового потока формулу так же можно представить в виде:
Общее количество теплоты проходящее через площадь стены S за время t можно представить как:
Видео:6-1. Уравнение теплопроводностиСкачать

Распределение температуры в плоской стенке
Рассмотрим изменение температуры в нашей стене. Так как у нас тепловой поток постоянный, то dT/dx = const=C1; T=C1х+С2 (1). Определим С1 и С2 через граничные условия.
При х=0 T=T1, подставим в уравнение (1) и получим T1=С2.
При х=δ T=T2, подставим в уравнение (1) и получим T2=С1*δ+С2, T2=С1*δ+T1, получим: С1=(Т2-T1)/δ. Теперь подставим в уравнение (1) найденные С1 и С2, получим следующее распределение температуры в нашей стене:
Если нам нужно узнать на какой глубине стены Т=То, то формула преобразуется в следующий вид:
Видео:Решение задачи Коши для уравнения теплопроводности (Часть 1)Скачать

Теплопроводность через многослойную стенку
Если у нас есть стенка из нескольких (n) слоев с разными коэффициентами теплопроводности λi и разной толщиной δi.
Термическое сопротивление стенки считается так:
Для теплового потока формула будет иметь вид:
Температура на границе слоя вычисляется по следующей формуле:
Например, если нужно вычислить температуру между 3-м и 4-м слоем, формула будет такая:
Эквивалентная теплопроводность многослойной стенки:
Видео:Решение уравнения теплопроводности методом конечных разностейСкачать

Теплопередача через плоскую стенку в граничащую среду (граничные условия третьего рода)
Теплопередача — это более сложный процесс теплообмена между жидкими и газообразными средами, разделенными твердой стенкой. Теплопередача включает в себя и процесс теплопроводности, и процесс теплоотдачи.
Коэффициент теплоотдачи α, Вт/(м 2 ·К) — это количество теплоты, отдаваемое в единицу времени единицей поверхности при разности температур между поверхностью и окружающей средой, равной одному градусу.
Коэффициент теплопередачи k, Вт/(м 2 ·К), характеризует тепловой поток, проходящий через единицу площади поверхности стенки при разности температуры сред, равной одному градусу:
q = k * (Tвозд.внутри — Tвозд.снаружи); Вт/м 2
Коэффициент теплопередачи для n слойной стенки:
Термические сопротивления теплоотдаче на внешних поверхностях стенки будут равны:
Тогда общее термическое сопротивление теплопередаче будет равно:
Температуры на поверхности стенки можно определить по формулам:
Видео:Закон и уравнение теплопроводностиСкачать

Теплопроводность через цилиндрическую стенку (граничные условия первого рода)
Теплообменные аппараты в большинстве случаев имеют не плоские, а цилиндрические поверхности, например рекуператоры типа «труба в трубе», кожухотрубные водонагреватели и т.д. Поэтому возникает необходимость рассмотрения основных принципов расчета цилиндрических поверхностей.
Согласно закону Фурье, количество теплоты, проходящее в единицу времени через этот слой, равно:
Подставим значения граничные значение и вспомним, что разность логарифмов равна логарифму отношению аргументов, получим:
Распределение температур внутри однородной цилиндрической стенки подчиняется логарифмическому закону, и уравнение температурной кривой имеет вид:
Количество теплоты, проходящее через стенку трубы, может быть отнесено либо к единице длины трубы L, либо к единице внутренней F1 или внешней F2 поверхности трубы. При этом расчетные формулы принимают следующий вид:
Все материалы, представленные на сайте, носят исключительно справочный и ознакомительный характер и не могут считаться прямой инструкцией к применению. Каждая ситуация является индивидуальной и требует своих расчетов, после которых нужно выбирать нужные технологии.
Не принимайте необдуманных решений. Имейте ввиду, что то что сработало у других, в ваших условиях может не сработать.
Администрация сайта и авторы статей не несут ответственности за любые убытки и последствия, которые могут возникнуть при использовании материалов сайта.
Сайт может содержать контент, запрещенный для просмотра лицам до 18 лет.
📹 Видео
8.1 Решение уравнения теплопроводности на отрезкеСкачать

Термодинамика Л27. Уравнение теплопроводности. Граничные условия. Передача тепла через стенкуСкачать

15. Решение уравнения теплопроводности в кругеСкачать

12.1 Как остывает кирпич (уравнение теплопроводности)Скачать

Стационарное решение одномерного уравнения теплопроводности.Скачать

Уравнение в частных производных Уравнение теплопроводностиСкачать

Решение неоднородного уравнения теплопроводностиСкачать

Вывод уравнения теплопроводностиСкачать

Одномерное уравнение теплопроводности. Виды краевых задачСкачать

Уравнение теплопроводности на полупрямой (решение задачи)Скачать

Решение первой начально-краевой задачи для одномерного уравнения теплопроводности.Скачать

Лекция №1.1 Явная и неявная схемы для уравнения теплопроводностиСкачать

Решение уравнения теплопроводности в одномерной постановке в ExcelСкачать










