Уравнение состояния идеального газа молярная газовая постоянная

Уравнение состояния идеального газа
Содержание
  1. теория по физике 🧲 молекулярная физика, МКТ, газовые законы
  2. Уравнение состояния идеального газа
  3. Уравнение состояния идеального газа
  4. Термодинамические параметры газа
  5. Объединенный газовый закон. Приведение объема газа к нормальным условиям
  6. Молярная газовая постоянная. Определение числового значения постоянной Больцмана
  7. Уравнение Клапейрона — Менделеева. Плотность газа
  8. Зависимость средней квадратичной скорости молекул газа от температуры
  9. Изохорический процесс
  10. Изобарический- процесс
  11. Изотермический процесс
  12. Внутренняя энергия идеального газа
  13. Работа газа при изменении его объема
  14. Уравнение состояния идеального газа — основные понятия, формулы и определение с примерами
  15. Уравнение состояния идеального газа
  16. Уравнение Клапейрона
  17. Изопроцессы
  18. Какой процесс называют изотермическим. Закон Бойля — Мариотта
  19. Какой процесс называют изобарным. Закон Гей-Люссака
  20. Закон Гей-Люссака
  21. Изохорный процесс. Закон Шарля
  22. Закон Шарля
  23. Пример №1
  24. Пример №2
  25. 📺 Видео

теория по физике 🧲 молекулярная физика, МКТ, газовые законы

Уравнение состояния идеального газа было открыто экспериментально. Оно носит название уравнения Клапейрона — Менделеева. Это уравнение устанавливает математическую зависимость между параметрами идеального газа, находящегося в одном состоянии. Математически его можно записать следующими способами:

Уравнение состояния идеального газа

Уравнение состояния идеального газа молярная газовая постоянная

Внимание! При решении задач важно все единицы измерения переводить в СИ.

Пример №1. Кислород находится в сосуде вместимостью 0,4 м 3 под давлением 8,3∙10 5 Па и при температуре 320 К. Чему равна масса кислорода? Молярная масса кислорода равна 0,032 кг/моль.

Из основного уравнения состояния идеального газа выразим массу:

Уравнение состояния идеального газа молярная газовая постоянная

Уравнение состояния идеального газа следует использовать, если газ переходит из одного состояния в другое и при этом изменяется его масса (количество вещества, число молекул) или молярная масса. В этом случае необходимо составить уравнение Клапейрона — Менделеева отдельно для каждого состояния. Решая систему уравнений, легко найти недостающий параметр.

Подсказки к задачам

Важна только та масса, что осталась в сосуде. Поэтому:

Давление возросло на 15%p2 = 1,15p1
Объем увеличился на 2%V2 = 1,02V1
Масса увеличилась в 3 разаm2 = 3m1
Газ нагрелся до 25 о СT2 = 25 + 273 = 298 (К)
Температура уменьшилась на 15 К (15 о С)T2 = T1 – 15
Температура уменьшилась в 2 разаУравнение состояния идеального газа молярная газовая постоянная
Масса уменьшилась на 20%m2 = 0,8m1
Выпущено 0,7 начальной массы
Какую массу следует удалить из баллона?Нужно найти разность начальной и конечной массы:

Газ потерял половину молекулУравнение состояния идеального газа молярная газовая постоянная
Молекулы двухатомного газа (например, водорода), диссоциируют на атомыУравнение состояния идеального газа молярная газовая постоянная
Озон (трехатомный кислород) при нагревании превращается в кислород (двухатомный газ)M (O3) = 3Ar (O)∙10 –3 кг/моль M (O2) = 2Ar (O)∙10 –3 кг/моль
Открытый сосудОбъем V и атмосферное давление pатм остаются постоянными
Закрытый сосудМасса m, молярная масса M, количество вещества ν, объем V, число N и концентрация n частиц, плотность ρ— постоянные величины
Нормальные условияТемпература T0 = 273 К Давление p0 = 10 5 Па
Единицы измерения давления1 атм = 10 5 Па

Пример №2. В баллоне содержится газ под давлением 2,8 МПа при температуре 280 К. Удалив половину молекул, баллон перенесли в помещение с другой температурой. Определите конечную температуру газа, если давление уменьшилось до 1,5 МПа.

2,8 МПа = 2,8∙10 6 Па

1,5 МПа = 1,5∙10 6 Па

Так как половина молекул была выпущена, m2 = 0,5m1. Объем остается постоянным, как и молярная масса. Учитывая это, запишем уравнение состояния идеального газа для начального и конечного случая:

Уравнение состояния идеального газа молярная газовая постоянная

Преобразим уравнения и получим:

Уравнение состояния идеального газа молярная газовая постоянная

Приравняем правые части и выразим искомую величину:

Уравнение состояния идеального газа молярная газовая постоянная

Уравнение состояния идеального газа молярная газовая постояннаяНа графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

ν R = p 1 V 1 T 1 . . = p 2 V 2 T 2 . .

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

На высоте 200 км давление воздуха составляет примерно 10 –9 от нормального атмосферного давления, а температура воздуха Т – примерно 1200 К. Оцените плотность воздуха на этой высоте.

Видео:Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Уравнение состояния идеального газа

Содержание:

Уравнение состояния идеального газа получило название «уравнение Менделеева-Клапейрона». Давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений: закон Дальтона.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Видео:Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Уравнение состояния идеального газа

Уравнение состояния идеального газа — это p = nkT называется уравнением Менделеева Клапейрона и оно даёт взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа давления, объёма и температуры. Поэтому уравнение Менделеева Клапейрона называется ещё уравнением состояния идеального газа.

Термодинамические параметры газа

В предыдущих главах было показано, что при описании свойств газа можно пользоваться величинами, характеризующими молекулярный мир (микромир), например энергией молекулы, скоростью ее движения, массой и т. п. Числовые значения таких величин мы можем определять только с помощью расчета. Все такие величины принято называть микроскопическими (от греческого «микрос» — малый).

Однако для описания свойств газов можно пользоваться и такими величинами, числовые значения которых находят простым измерением с помощью приборов, например давлением, температурой и объемом газа. Значения таких величин определяются совместным действием огромного числа молекул, поэтому они называются макроскопическими (от греческого «макрос» — большой).

Соотношение (4.1): Уравнение состояния идеального газа молярная газовая постояннаяустанавливает связь между микроскопическими и макроскопическими величинами для газов. Поэтому формулу (4.1) называют основным уравнением молекулярно-кинетической теории газов. Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа. Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

Если взять определенную массу газа т, то при постоянных р, V и Т газ будет находиться в равновесном состоянии. Когда происходят изменения этих параметров, то в газе протекает тот или иной процесс. Если этот процесс состоит из ряда непрерывно следующих друг за другом равновесных состояний газа, то он называется равновесным процессом. Равновесный процесс должен протекать достаточно медленно, так как при быстром изменении параметров давление и температура не могут иметь соответственно одинаковые значения во всем объеме газа. В этой главе рассматриваются только равновесные процессы в газах, при которых масса газа остается постоянной.

Когда процесс в газе заканчивается, то газ переходит в новое состояние, а его параметры приобретают новые постоянные числовые значения, вообще говоря, отличные от их значений в начале процесса. Если же при постоянной массе газа значения всех его параметров в начале и в конце процесса окажутся одинаковыми, то процесс называется круговым или замкнутым.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом. Газовый закон, выражающий связь между всеми тремя параметрами газа, называется объединенным газовым законом.

Отметим еще, что такого процесса в газе, при котором изменялся бы только один параметр газа, не существует, так как значения этих параметров взаимосвязаны. Примером сказанного является закон Шарля, выражающий связь между р и Т.

Объединенный газовый закон. Приведение объема газа к нормальным условиям

Связь между давлением, объемом и температурой определенной массы газа устанавливается с помощью соотношения (4.9):

Уравнение состояния идеального газа молярная газовая постоянная

Поскольку Уравнение состояния идеального газа молярная газовая постояннаяобозначает число молекул в единице объема газа, то Уравнение состояния идеального газа молярная газовая постоянная, где N — общее число молекул, V — объем газа. Тогда получим

Уравнение состояния идеального газа молярная газовая постоянная

Так как при постоянной массе газа N остается неизменным, Уравнение состояния идеального газа молярная газовая постоянная— постоянное число, т. е.

Уравнение состояния идеального газа молярная газовая постоянная

Поскольку значения р, V и Т в (5.2) относятся к одному и тому же состоянию газа, можно следующим образом сформулировать объединенный газовый закон: при постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Следовательно, если числовые значения параметров в начале процесса, происходящего с какой-либо определенной массой газа, обозначить через р1 , V1 и Т1, а их значения в конце процесса соответственно через р2 , V2 и Т2, то

Уравнение состояния идеального газа молярная газовая постоянная

Формулы (5.2) и (5.3) представляют собой математическое выражение объединенного газового закона.

На практике иногда нужно установить, какой объем V0 займет имеющаяся масса газа при нормальных условиях, т. е. при Т0=273 К и при р0=1,013 . 10 5 Па. Если значения параметров для этой массы газа в каком-либо произвольном состоянии, отличном от нормального, обозначить через р, V и Т, то на основании (5.3) получаем Уравнение состояния идеального газа молярная газовая постоянная, или

Уравнение состояния идеального газа молярная газовая постоянная

Формула (5.4) позволяет приводить объем заданной массы газа к нормальным условиям.

Молярная газовая постоянная. Определение числового значения постоянной Больцмана

Формула (5.1) справедлива для любой массы газа, в которой содержится N молекул. Если применить эту формулу к одному молю какого-либо газа, то N нужно заменить постоянной Авогадро NA, а V — объемом одного моля Vмоль

Уравнение состояния идеального газа молярная газовая постоянная

Так как в одном моле любого газа содержится одно и то же число молекул NA, то произведение Уравнение состояния идеального газа молярная газовая постояннаяимеет одинаковое значение для всех газов, т. е. не зависит от природы газа. Произведение Уравнение состояния идеального газа молярная газовая постоянная обозначается R и называется молярной газовой постоянной. Таким образом,

Уравнение состояния идеального газа молярная газовая постоянная

Уравнение состояния идеального газа молярная газовая постоянная

Числовое значение R можно найти, если применить (5.5) к состоянию одного моля газа при нормальных условиях, так как при этом Уравнение состояния идеального газа молярная газовая постояннаям 3 /моль (§ 3.6). Действительно,

Уравнение состояния идеального газа молярная газовая постоянная

Уравнение состояния идеального газа молярная газовая постоянная

Это числовое значение R в СИ необходимо запомнить, так как им часто пользуются при расчетах и при решении задач.

Теперь легко найти числовое значение постоянной Больнмана Уравнение состояния идеального газа молярная газовая постоянная. Из (5.6) получаем Уравнение состояния идеального газа молярная газовая постоянная. Подставляя сюда числовые значения R и Уравнение состояния идеального газа молярная газовая постоянная, вычисляем Уравнение состояния идеального газа молярная газовая постоянная:

Уравнение состояния идеального газа молярная газовая постоянная

Уравнение Клапейрона — Менделеева. Плотность газа

Выясним, как будет выглядеть соотношение (5.1), если в него ввести молярную газовую постоянную R. Так как N — полное число молекул в массе газа т, а Уравнение состояния идеального газа молярная газовая постоянная— число молекул в одном моле, то

Уравнение состояния идеального газа молярная газовая постоянная

где Уравнение состояния идеального газа молярная газовая постоянная— число молей в массе газа /т. Поэтому

Уравнение состояния идеального газа молярная газовая постоянная

Поскольку Уравнение состояния идеального газа молярная газовая постоянная, а Уравнение состояния идеального газа молярная газовая постояннаяравно массе газа т, деленной на массу одного моля газа Уравнение состояния идеального газа молярная газовая постоянная, то получаем

Уравнение состояния идеального газа молярная газовая постоянная

Соотношение (5.7) называется уравнением Клапейрона — Менделеева или уравнением состояния для произвольной массы идеального газа. Для одного моля идеального газа уравнение Клапейрона — Менделеева принимает вид

Уравнение состояния идеального газа молярная газовая постоянная

С помощью формулы (5.7) легко выяснить, какими величинами определяется плотность газа. Так как Уравнение состояния идеального газа молярная газовая постоянная, то из (5.7) имеем

Уравнение состояния идеального газа молярная газовая постоянная

Зависимость средней квадратичной скорости молекул газа от температуры

Выясним теперь, как можно с помощью вычислений находить среднюю квадратичную скорость движения молекул газа Уравнение состояния идеального газа молярная газовая постоянная. Поскольку средняя кинетическая энергия поступательного движения молекул газа Уравнение состояния идеального газа молярная газовая постояннаяравна (3/2) Уравнение состояния идеального газа молярная газовая постоянная, то можно написать Уравнение состояния идеального газа молярная газовая постоянная, откуда

Уравнение состояния идеального газа молярная газовая постоянная

Отметим, что под т в формуле (5.10) подразумевается масса одной молекулы в кг. Так как Уравнение состояния идеального газа молярная газовая постоянная, получим Уравнение состояния идеального газа молярная газовая постоянная. Поскольку Уравнение состояния идеального газа молярная газовая постояннаяа есть масса одного моля газа Уравнение состояния идеального газа молярная газовая постоянная(§ 3.6), имеем

Уравнение состояния идеального газа молярная газовая постоянная

Наконец, из (5.9) следует, что Уравнение состояния идеального газа молярная газовая постоянная, поэтому

Уравнение состояния идеального газа молярная газовая постоянная

Среднюю квадратичную скорость можно находить по любой из формул (5.10)—(5.12). Из функции Максвелла можно получить формулы для средней арифметической скорости и наивероятнейшей скорости. Средняя арифметическая скорость

Уравнение состояния идеального газа молярная газовая постоянная

Наконец, наивероятнейшую скорость вычисляют так:

Уравнение состояния идеального газа молярная газовая постоянная

(Используя график функции Максвелла (рис. 3.3), поясните, почему Уравнение состояния идеального газа молярная газовая постояннаяменьше Уравнение состояния идеального газа молярная газовая постоянная, а Уравнение состояния идеального газа молярная газовая постояннаяменьше Уравнение состояния идеального газа молярная газовая постоянная

Изохорический процесс

Процессы, при которых масса газа и один из его параметров остаются постоянными, называются изопроцессами (от греческого «изос» — равный, одинаковый). Поскольку имеется три параметра газа, существует три различных изопроцесса. Первый из них (изохорический) рассмотрен выше (§ 4.3). Процесс в газе, который происходит при постоянной массе и неизменном объеме, называется изохорическим (от греческого «хора» — пространство). Графики для этого процесса называются изохорами (рис. 4.3).

Отметим, что к любому изопроцессу применим объединенный газовый закон и формулы (5.3), (5.7) и (5.8) с учетом того, что один из параметров остается постоянным. При изохорическом процессе постоянным остается объем V, поэтому формула (5.3) после сокращения на V принимает вид

Уравнение состояния идеального газа молярная газовая постоянная

Итак, изохорический процесс подчиняется закону Шарля: при постоянной-массе газа и неизменном объеме давление газа прямо пропорционально его абсолютной температуре. Это видно и из уравнения Клапейрона — Менделеева (5.7):

Уравнение состояния идеального газа молярная газовая постоянная

Так как V, т, Уравнение состояния идеального газа молярная газовая постояннаяи R остаются постоянными, то из (5.7) следует, что р пропорционально Т. Отметим, что закон Шарля можно формулировать и так, как это было сделано в § 4.3.

Изобарический- процесс

Процесс в газе, который происходит при постоянной массе и неизменном давлении, называется изобарическим (от греческого «барос» — тяжесть). Этот процесс был изучен французским физиком Л. Гей-Люссаком в 1802 г.

Поскольку при изобарическом процессе р постоянно, то после сокращения на р формула (5.3) принимает вид

Уравнение состояния идеального газа молярная газовая постоянная

Формула (5.16) является математическим выражением закона Гей-Люссака: при постоянной массе газа и неизменном давлении объем газа прямо пропорционален его абсолютной температуре. (Это видно и из уравнения Клапейрона — Менделеева (5.7): так как р, т, Уравнение состояния идеального газа молярная газовая постояннаяи R постоянны, то объем V пропорционален Т.)

На рис. 5.1 схематически изображен опыт Гей-Люссака. Колба с газом помещается в сосуд с водой и льдом.

Уравнение состояния идеального газа молярная газовая постоянная

В пробку вставлена трубка, изогнутая таким образом, что свободный конец ее горизонтален. Газ в колбе отделен от окружающего воздуха небольшим столбиком ртути в трубке. Температуру газа определяют по термометру, а объем — по положению столбика ртути. Для этого на трубке нанесены деления, соответствующие определенному внутреннему объему трубки (при градуировке трубки можно учесть и расширение сосуда при нагревании, но оно сравнительно мало’).

Сначала по положению столбика ртути 1 определяют Уравнение состояния идеального газа молярная газовая постоянная— объем газа при 0°С. Затем газ нагревают (столбик ртути перемещается в положение 2), в процессе нагревания записывают значения объема и температуры и строят график, который называется изобарой.

Оказывается, что изобара представляет собой прямую линию (рис. 5.2, а), которая пересекается с осью абсцисс в точке А.

Из подобия треугольников на рис. 5.2, а следует

Уравнение состояния идеального газа молярная газовая постоянная

Обозначив Уравнение состояния идеального газа молярная газовая постояннаячерез Уравнение состояния идеального газа молярная газовая постоянная, получим

Уравнение состояния идеального газа молярная газовая постоянная

Здесь Уравнение состояния идеального газа молярная газовая постояннаякоэффициент объемного расширения газа (гл. 13).

Если повторять этот опыт для разных газов или для разных масс газа, то все графики будут пересекаться в точке А, соответствующей t=—273°С (рис. 5.2, б), т. е. коэффициент Уравнение состояния идеального газа молярная газовая постояннаяодинаков для всех газов. Это означает, что расширение газа при изобарическом процессе не зависит от его природы.

Отметим, что для газов коэффициенты Уравнение состояния идеального газа молярная газовая постояннаяи Уравнение состояния идеального газа молярная газовая постояннаяв формулах (4.2а) и (5.17) численно одинаковы, поэтому обычно пользуются одним Уравнение состояния идеального газа молярная газовая постоянная.

Изотермический процесс

Процесс в газе, который происходит при постоянной температуре, называется изотермическим.

Изотермический процесс в газе был изучен английским ученым Р. Бойлем и французским ученым Э. Мариоттом. Установленная ими опытным путем связь получается непосредственно из формулы (5.3) после сокращения на Т:

Уравнение состояния идеального газа молярная газовая постоянная

Формула (5.18) является математическим выражением закона Бойля — Мариотта: при постоянной массе газа и неизменной температуре давление газа обратно пропорционально его объему. Иначе говоря, в этих условиях произведение объема газа на соответствующее давление есть величина постоянная:
Уравнение состояния идеального газа молярная газовая постоянная
Соотношение (5.19) можно получить и из (5.7) или (5.8), так как при постоянном Г справа в формулах (5.7) и (5.8) стоит постоянная величина. График зависимости р от V при изотермическом процессе в газе представляет собой гиперболу и называется изотермой. На рис. 5.3 изображены три изотермы для одной и той же массы газа, но при разных температурах Т.

Уравнение состояния идеального газа молярная газовая постоянная

Отметим еще, что из формулы (5.9) непосредственно вытекает, что при изотермическом процессе плотность газа изменяется прямо пропорционально давлению:

Уравнение состояния идеального газа молярная газовая постоянная

(Подумайте, как проверить закон Бойля — Мариотта на опыте.)

Внутренняя энергия идеального газа

Как отмечалось, силы взаимодействия молекул в идеальном газе отсутствуют. Это означает, что молекулярно-потенциальной энергии у идеального газа нет. Кроме того, атомы идеального газа представляют собой материальные точки, т. е. не имеют внутренней структуры, а значит, не имеют и энергии, связанной с движением и взаимодействием частиц внутри атома. Таким образом, внутренняя энергия идеального газа представляет собой только сумму знамений кинетической энергии хаотического движения всех его молекул:

Уравнение состояния идеального газа молярная газовая постоянная

Поскольку у материальной точки вращательного движения быть не может, то у одноатомных газов (молекула состоит из одного атома) молекулы обладают только поступательным движением. Так как среднее значение энергии поступательного движения молекул определяется соотношением(4.8): Уравнение состояния идеального газа молярная газовая постоянная, то внутренняя энергия одного моля одноатомного идеального газа выразится формулой Уравнение состояния идеального газа молярная газовая постоянная, где Уравнение состояния идеального газа молярная газовая постоянная— постоянная Авогадро. Если учесть, что Уравнение состояния идеального газа молярная газовая постоянная, то получим:

Уравнение состояния идеального газа молярная газовая постоянная

Для произвольной массы одноатомного идеального газа имеем

Уравнение состояния идеального газа молярная газовая постоянная

Если молекула газа состоит из двух жестко связанных атомов (двухатомный газ), то молекулы при хаотическом движении приобретают еще и вращательное движение, которое происходит вокруг двух взаимно перпендикулярных осей. Поэтому при одинаковой температуре внутренняя энергия двухатомного газа больше, чем одноатомного, и выражается формулой

Уравнение состояния идеального газа молярная газовая постоянная

Наконец, внутренняя энергия многоатомного газа (молекула содержит три или больше атомов) в два раза больше, чем у одно-атомного при той же температуре:

Уравнение состояния идеального газа молярная газовая постоянная

поскольку вращение молекулы вокруг трех взаимно перпендикулярных осей вносит в энергию теплового движения такой же вклад, как поступательное движение молекулы по трем взаимно перпендикулярным направлениям.

Отметим, что формулы (5.23) и (5.24) теряют силу для реальных газов при высоких температурах, так как при этом в молекулах возникают еще колебания атомов, что ведет к увеличению внутренней энергии газа. (Почему это не относится к формуле (5.22)?)

Работа газа при изменении его объема

Физический смысл молярной газовой постоянной. Опыт показывает, что сжатый газ в процессе своего расширения может выполнять работу. Приборы и агрегаты, действия которых основаны на этом свойстве газа, называют пневматическими. На этом принципе действуют пневматические молотки, механизмы для закрывания и открывания дверей на транспорте и т. д.

Представим себе цилиндр с подвижным поршнем, заполненный газом (рис. 5.4).

Уравнение состояния идеального газа молярная газовая постоянная

Пока давление газа внутри цилиндра и окружающего наружного воздуха одинаковы, поршень неподвижен. Пусть при этом температура газа и окружающей среды равна Уравнение состояния идеального газа молярная газовая постояннаяа давление равно р.

Будем теперь медленно нагревать газ в цилиндре до температуры Уравнение состояния идеального газа молярная газовая постоянная. Газ при этом начинает изобарически расширяться (внешнее давление р остается постоянным), и поршень переместится из положения 1 в положение 2 на расстояние Уравнение состояния идеального газа молярная газовая постоянная. При этом газ совершит работу против внешней силы. Сила F, совершающая эту работу, будет равна рS, где S — площадь сечения цилиндра. Из механики известно, что работа выражается формулой Уравнение состояния идеального газа молярная газовая постоянная, или Уравнение состояния идеального газа молярная газовая постоянная. Так как Уравнение состояния идеального газа молярная газовая постояннаяесть приращение объема газа в процессе его изобарического нагревания от Уравнение состояния идеального газа молярная газовая постояннаядо Уравнение состояния идеального газа молярная газовая постоянная, имеем

Уравнение состояния идеального газа молярная газовая постоянная

Нетрудно сообразить, что при изохорическом процессе работа газа равна нулю, так как никакого изменения объема, занятого газом, в этом случае не происходит. Вообще следует помнить, что газ выполняет работу только в процессе изменения своего объема, т. е. при Уравнение состояния идеального газа молярная газовая постоянная. Отметим, что при расширении газа Уравнение состояния идеального газа молярная газовая постояннаяработа газа положительна; при сжатии газа Уравнение состояния идеального газа молярная газовая постояннаяположительную работу выполняют внешние силы, а работа газа в этом случае отрицательна.

Выясним, как можно определить работу газа по графику зависимости р от V в том или ином газовом процессе. При изобарическом процессе график зависимости р от V представляет собой прямую линию, параллельную оси абсцисс, так как р постоянно. Из рис. 5.5 видно, что работа газа в этом случае численно равна заштрихованной площади.

Выясним, как найти работу газа при изотермическом процессе. На рис. 5.6 изображена изотерма идеального газа. При таком процессе газ выполняет работу, так как Уравнение состояния идеального газа молярная газовая постояннаяв этом случае отлично от нуля. Формулу (5.25) здесь применять нельзя, так как она верна при постоянном давлении р, а в изотермической процессе р изменяется. Однако можно взять такое малое приращение объема Уравнение состояния идеального газа молярная газовая постоянная, при котором изменением давления можно пренебречь. Тогда приближенно можно считать, что при увеличении объема газа на Уравнение состояния идеального газа молярная газовая постояннаядавление остается постоянным. Работу Уравнение состояния идеального газа молярная газовая постояннаяпри этом можно вычислять по формуле Уравнение состояния идеального газа молярная газовая постоянная. На рис. 5.6 она выражается заштрихованной площадью.

Разбивая интервал Уравнение состояния идеального газа молярная газовая постояннаяна множество интервалов Уравнение состояния идеального газа молярная газовая постоянная, настолько малых, что работу на каждом из них можно вычислять по формуле Уравнение состояния идеального газа молярная газовая постоянная, полную работу газа найдем как сумму элементарных работ Уравнение состояния идеального газа молярная газовая постоянная. Это означает, что работа газа будет равна сумме площадей, подобных заштрихованной площади на рис. 5.6. Следовательно, работа газа при изотермическом процессе выражается площадью, ограниченной двумя ординатами Уравнение состояния идеального газа молярная газовая постояннаяи Уравнение состояния идеального газа молярная газовая постоянная, отрезком оси абсцисс и графиком зависимости р от V.

Уравнение состояния идеального газа молярная газовая постоянная

Можно строго доказать, что работа газа при любом процессе выражается площадью, ограниченной двумя ординатами, отрезком оси абсцисс и графиком того процесса в координатах V и р.

Выясним теперь физический смысл молярной газовой постоянной R. Применяя формулу (5.25) к одному молю идеального газа, получим

Уравнение состояния идеального газа молярная газовая постоянная

Но из уравнения Клапейрона — Менделеева (5.8) для одного моля можно записать для двух состояний газа:

Уравнение состояния идеального газа молярная газовая постоянная

Уравнение состояния идеального газа молярная газовая постоянная

Подставляя это выражение в (5.26), будем иметь Уравнение состояния идеального газа молярная газовая постоянная, или

Уравнение состояния идеального газа молярная газовая постоянная

Из (5.27) следует, что молярная газовая постоянная численно равна работе, совершаемой одним молем идеального газа при его изобарическом нагревании на один кельвин.

Из соотношения Уравнение состояния идеального газа молярная газовая постояннаявидно, что постоянная Больцмана показывает, сколько работы в среднем приходится на одну молекулу идеального газа при изобарическом нагревании на один кельвин.

Услуги по физике:

Лекции по физике:

Присылайте задания в любое время дня и ночи в ➔ Уравнение состояния идеального газа молярная газовая постояннаяУравнение состояния идеального газа молярная газовая постоянная

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Уравнение состояния идеального газа — основные понятия, формулы и определение с примерами

Содержание:

Уравнение состояния идеального газа:

Уравнения Клапейрона и Менделеева — клапейрона; законы Шарля, Гей-Люссака, Бойля — Мариотта, Авогадро, Дальтона, — пожалуй, такого количества «именных» законов нет ни в одном разделе физики. за каждым из них — кропотливая работа в лабораториях, тщательные измерения, длительные аналитические размышления и точные расчеты. нам намного проще. Мы уже знаем основные положения теории, и «открыть» все вышеупомянутые законы нам не составит труда.

Видео:ЕГЭ по физике. Теория #25. Идеальный газ. Уравнение состояния идеального газаСкачать

ЕГЭ по физике. Теория #25. Идеальный газ. Уравнение состояния идеального газа

Уравнение состояния идеального газа

Давление газа полностью определяется его температурой и концентрацией молекул: p=nkT. Запишем данное уравнение в виде: pV = NkT. Если состав и масса газа известны, число молекул газа можно найти из соотношения Уравнение состояния идеального газа молярная газовая постоянная

Произведение числа Авогадро Уравнение состояния идеального газа молярная газовая постояннаяна постоянную Больцмана k называют универсальной газовой постоянной (R): R=Уравнение состояния идеального газа молярная газовая постояннаяk 8,31 Дж/ (моль⋅К). Заменив в уравнении (*) Уравнение состояния идеального газа молярная газовая постояннаяk на R, получим уравнение состояния идеального газа (уравнение Менделеева — Клапейрона):

Уравнение состояния идеального газа молярная газовая постоянная

Обратите внимание! Состояние данного газа некоторой массы однозначно определяется двумя его макроскопическими параметрами; третий параметр можно найти из уравнения Менделеева — Клапейрона.

Уравнение Клапейрона

С помощью уравнения Менделеева — Клапейрона можно установить связь между макроскопическими параметрами газа при его переходе из одного состояния в другое. Пусть газ, имеющий массу m и молярную массу М, переходит из состояния (Уравнение состояния идеального газа молярная газовая постоянная) в состояние (Уравнение состояния идеального газа молярная газовая постоянная) (рис. 30.1).

Уравнение состояния идеального газа молярная газовая постоянная

Для каждого состояния запишем уравнение Менделеева — Клапейрона: Уравнение состояния идеального газа молярная газовая постояннаяРазделив обе части первого уравнения на Уравнение состояния идеального газа молярная газовая постоянная, а второго — на Уравнение состояния идеального газа молярная газовая постоянная, получим: Уравнение состояния идеального газа молярная газовая постояннаяУравнение состояния идеального газа молярная газовая постоянная. Правые части этих уравнений равны; приравняв левые части, получим уравнение Клапейрона:

Уравнение состояния идеального газа молярная газовая постоянная

Для данного газа некоторой массы отношение произведения давления на объем к температуре газа является неизменным.

Изопроцессы

Процесс, при котором один из макроскопических параметров данного газа некоторой массы остается неизменным, называют изопроцессом. Поскольку состояние газа характеризуется тремя макроскопическими параметрами, возможных изопроцессов тоже три: происходящий при неизменной температуре; происходящий при неизменном давлении; происходящий при неизменном объеме. Рассмотрим их.

Какой процесс называют изотермическим. Закон Бойля — Мариотта

Пузырек воздуха, поднимаясь со дна глубокого водоема, может увеличиться в объеме в несколько раз, при этом давление внутри пузырька падает, поскольку вследствие дополнительного гидростатического давления воды (Уравнение состояния идеального газа молярная газовая постоянная) давление на глубине больше атмосферного. Температура же внутри пузырька практически не изменяется. В данном случае имеем дело с процессом изотермического расширения.

Уравнение состояния идеального газа молярная газовая постоянная

Рис. 30.2. Изотермическое сжатие газа. Если медленно опускать поршень, температура газа под поршнем будет оставаться неизменной и равной температуре окружающей среды. Давление газа при этом будет увеличиваться

Изотермический процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменной температуре.

Пусть некий газ переходит из состояния (Уравнение состояния идеального газа молярная газовая постоянная) в состояние (Уравнение состояния идеального газа молярная газовая постояннаяУравнение состояния идеального газа молярная газовая постояннаяT), то есть температура газа остается неизменной (рис. 30.2). Тогда согласно уравнению Клапейрона имеет место равенство pУравнение состояния идеального газа молярная газовая постоянная. После сокращения на T получим: Уравнение состояния идеального газа молярная газовая постоянная.

Закон Бойля — Мариотта:

Для данного газа некоторой массы произведение давления газа на его объем остается постоянным, если температура газа не изменяется:

Уравнение состояния идеального газа молярная газовая постоянная

Графики изотермических процессов называют изотермами. Как следует из закона Бойля — Мариотта, при неизменной температуре давление газа данной массы обратно пропорционально его объему: Уравнение состояния идеального газа молярная газовая постоянная. Эту зависимость в координатах p, V можно представить в виде гиперболы (рис. 30.3, а). Поскольку при изотермическом процессе температура газа не изменяется, в координатах p, T и V, T изотермы перпендикулярны оси температур (рис. 30.3, б, в).

Уравнение состояния идеального газа молярная газовая постояннаяУравнение состояния идеального газа молярная газовая постоянная

Какой процесс называют изобарным. Закон Гей-Люссака

Изобарный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном давлении.

Пусть некий газ переходит из состояния (Уравнение состояния идеального газа молярная газовая постоянная) в состояние (Уравнение состояния идеального газа молярная газовая постоянная), то есть давление газа остается неизменным (рис. 30.4). Тогда имеет место равенство Уравнение состояния идеального газа молярная газовая постоянная. После сокращения на p получим: Уравнение состояния идеального газа молярная газовая постоянная

Уравнение состояния идеального газа молярная газовая постоянная

Рис. 30.4. Изобарное расширение газа. Если газ находится под тяжелым поршнем массой M и площадью S, который может перемещаться практически без трения, то при увеличении температуры объем газа будет увеличиваться, а давление газа будет оставаться неизменным и равным pУравнение состояния идеального газа молярная газовая постоянная

Закон Гей-Люссака

Для данного газа некоторой массы отношение объема газа к температуре остается постоянным, если давление газа не изменяется:

Уравнение состояния идеального газа молярная газовая постоянная

Графики изобарных процессов называют изобарами. Как следует из закона Гей-Люссака, при неизменном давлении объем газа данной массы прямо пропорционален его температуре: V = const⋅T. График данной зависимости — прямая, проходящая через начало координат (рис. 30.5, а). По графику видно, что с приближением к абсолютному нулю объем идеального газа должен уменьшиться до нуля. Понятно, что это невозможно, поскольку реальные газы при низких температурах превращаются в жидкости. В координатах p, V и p, T изобары перпендикулярны оси давления (рис. 30.5, б, в).

Уравнение состояния идеального газа молярная газовая постояннаяУравнение состояния идеального газа молярная газовая постоянная

Изохорный процесс. Закон Шарля

Если газовый баллон сильно нагреется на солнце, давление в нем повысится настолько, что баллон может взорваться. В данном случае имеем дело с изохорным нагреванием.

Изохорный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном объеме.

Пусть некий газ переходит из состояния (Уравнение состояния идеального газа молярная газовая постоянная) в состояние (Уравнение состояния идеального газа молярная газовая постоянная), то есть объем газа не изменяется (рис. 30.6). В этом случае имеет место равенство Уравнение состояния идеального газа молярная газовая постоянная. После сокращения на V получим: Уравнение состояния идеального газа молярная газовая постоянная

Уравнение состояния идеального газа молярная газовая постоянная

Рис. 30.6. Изохорное нагревание газа. Если газ находится в цилиндре под закрепленным поршнем, то с увеличением температуры давление газа тоже будет увеличиваться. Опыт показывает, что в любой момент времени отношение давления газа к его температуре неизменно: Уравнение состояния идеального газа молярная газовая постоянная

Закон Шарля

Для данного газа некоторой массы отношение давления газа к его температуре остается постоянным, если объем газа не изменяется:

Уравнение состояния идеального газа молярная газовая постоянная

Графики изохорных процессов называют изохорами. Из закона Шарля следует, что при неизменном объеме давление газа данной массы прямо пропорционально его температуре: p T = ⋅ const . График этой зависимости — прямая, проходящая через начало координат (рис. 30.7, а). В координатах p, V и V, T изохоры перпендикулярны оси объема (рис. 30.7, б, в).

Уравнение состояния идеального газа молярная газовая постояннаяУравнение состояния идеального газа молярная газовая постоянная

Пример №1

В вертикальной цилиндрической емкости под легкоподвижным поршнем находится 2 моль гелия и 1 моль молекулярного водорода. Температуру смеси увеличили в 2 раза, и весь водород распался на атомы. Во сколько раз увеличился объем смеси газов?

Уравнение состояния идеального газа молярная газовая постоянная

Анализ физической проблемы. Смесь газов находится под легкоподвижным поршнем, поэтому давление смеси не изменяется:Уравнение состояния идеального газа молярная газовая постоянная, но использовать закон Бойля — Мариотта нельзя, так как вследствие диссоциации (распада) молярная масса и число молей водорода увеличились в 2 раза: Уравнение состояния идеального газа молярная газовая постоянная

Решение:

Воспользуемся уравнением состояния идеального газа: pV = νRT. Запишем это уравнение для состояний смеси газов до и после распада: Уравнение состояния идеального газа молярная газовая постоянная Уравнение состояния идеального газа молярная газовая постояннаяРазделив уравнение (2) на уравнение (1) и учитывая, что Уравнение состояния идеального газа молярная газовая постояннаяполучим: Уравнение состояния идеального газа молярная газовая постояннаягде Уравнение состояния идеального газа молярная газовая постояннаяУравнение состояния идеального газа молярная газовая постояннаяНайдем значение искомой величины: Уравнение состояния идеального газа молярная газовая постоянная

Ответ: примерно в 2,7 раза.

Пример №2

На рис. 1 представлен график изменения состояния идеального газа неизменной массы в координатах V, T. Представьте график данного процесса в координатах p, V и p, T.

Решение:

1. Выясним, какой изопроцесс соответствует каждому участку графика (рис. 1).

Уравнение состояния идеального газа молярная газовая постоянная

Зная законы, которым подчиняются эти изопроцессы, определим, как изменяются макроскопические параметры газа. Участок 1–2: изотермическое расширение; T = const, V ↑, следовательно, по закону Бойля — Мариотта p ↓. Участок 2–3: изохорное нагревание; V = const, T ↑, следовательно, по закону Шарля p ↑ . Участок 3–1: изобарное охлаждение; p = const , T ↓, следовательно, по закону Гей-Люссака V ↓ .

2. Учитывая, что точки 1 и 2 лежат на одной изотерме, точки 1 и 3 — на одной изобаре, а точки 2 и 3 на одной изохоре, и используя результаты анализа, построим график процесса в координатах p, V и p, T (рис. 2)

Уравнение состояния идеального газа молярная газовая постоянная

  1. Из соотношения p=nkT можно получить ряд важных законов, большинство из которых установлены экспериментально.
  2. Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона): Уравнение состояния идеального газа молярная газовая постоянная— универсальная газовая постоянная.
  3. Уравнение Клапейрона: Уравнение состояния идеального газа молярная газовая постоянная
  4. Законы, которым подчиняются изопроцессы, то есть процессы, при которых один из макроскопических параметров данного газа некоторой массы остается неизменным:

Уравнение состояния идеального газа молярная газовая постоянная

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Температура в физике
  • Парообразование и конденсация
  • Тепловое равновесие в физике
  • Изопроцессы в физике
  • Абсолютно упругие и неупругие столкновения тел
  • Механизмы, работающие на основе правила моментов
  • Идеальный газ в физике
  • Уравнение МКТ идеального газа

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📺 Видео

Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗАСкачать

идеальный газ УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Уравнение состояния идеального газа. Практическая часть. 10 класс.Скачать

Уравнение состояния идеального газа. Практическая часть. 10 класс.

Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/Скачать

Физика. 10 класс. Уравнение состояния идеального газа /23.11.2020/

Уравнение состояния идеального газаСкачать

Уравнение состояния идеального газа

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1Скачать

Урок 145. Идеальный газ. Основное ур-ние МКТ ид. газа - 1

10 класс, 4 урок, Уравнение состояния идеального газаСкачать

10 класс, 4 урок, Уравнение состояния идеального газа

Уравнение состояния идеального газа. Газовые законыСкачать

Уравнение состояния идеального газа. Газовые законы

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.Скачать

Идеальный газ. Основное уравнение молекулярно-кинетической теории газов. 10 класс.

Урок 157. Изопроцессы и их графики. Частные газовые законыСкачать

Урок 157. Изопроцессы и их графики. Частные газовые законы

Газовые законыСкачать

Газовые законы

Физика. 10 класс. Уравнение состояния идеального газаСкачать

Физика. 10 класс. Уравнение состояния идеального газа
Поделиться или сохранить к себе: