О чем эта статья:
- Что такое «сокращение дробей»
- Основное свойство дроби
- Приведение дробей к несократимому виду
- Правило сокращения дробей
- Тема дроби 6 класс, правильные, неправильные, смешанные. Примеры решения дроби 6 класс. Действия с дробями 6 класс, деление, умножение, сокращение
- Повторение обычные дроби 6 класс
- Действия с обыкновенными дробями 6 класс
- Сокращенные дроби 6 класс
- Смешанные дроби 6 класс
- Вычисления с дробями 6 класс
- Основные задачи на дроби 6 класс
- Примеры умножения дроби 6 класс с пояснениями
- Сравнение дробей 6 класс
- Сложение дробей 6 класс с разными знаменателями
- Решение уравнений с дробями 6 класс
- Многоэтажные дроби 6 класс примеры с пояснениями
- Об Авторе
- Смотрите также
- Красивый подарок маме своими руками, 8 марта короткие пожелания, открытка 8 марта своими руками для детей: открытки на 8 марта своими руками шаблоны, цветные шаблоны открыток
- Явления живой и неживой природы 2 класс: биология живая неживая природа, признаки живой и неживой природы
- Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки
- 4 комментария
- Алгебраические дроби. Сокращение алгебраических дробей в более сложных случаях
Видео:Сокращение дробей. 6 классСкачать

Что такое «сокращение дробей»
Математика любит точность и краткость: лохматыми громоздкими числами ее расположение не заслужить. Поэтому, следуя негласному правилу, сокращайте все, что можно сократить.
Сократить дробь — значит разделить ее числитель и знаменатель на их общий делитель. Общий делитель должен быть положительным и не равен нулю и единице.
В результате сокращения вы получаете новую дробь, равную исходной дроби. Такие дроби равны по основному свойству:
Основное свойство дроби
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число — получится дробь, равная данной.
С основным свойством дроби знакомятся в 5 классе, но встречаться оно будет до самого окончания школы. Поэтому запоминаем, как выглядит основное свойство дроби в виде буквенных выражений:


где a, b, m — натуральные числа.
Графически сокращение дробей обычно записывается вот так:
Числитель и знаменатель зачеркиваются черточками. В этом примере числитель — 8, знаменатель — 36. Справа над ними записывают результаты деления числителя и знаменателя на их общий делитель. Общий делить 8 и 36 — 4. Это число не нужно записывать.
Больше наглядных примеров и понятных объяснений — на курсах обучения математике в онлайн-школе Skysmart.
Пример 1. Сократим обыкновенную дробь
Разделим числитель и знаменатель на общий делитель 3.


Сокращение выполнено: 
Пример 2. Сократим обыкновенную дробь
Разделим числитель и знаменатель на общий делитель 2.


Сокращение выполнено: 
Видео:6 класс, 9 урок, Сокращение дробейСкачать

Приведение дробей к несократимому виду
Смысл сокращения дробей в том, чтобы в результате сокращения в числителе и знаменателе оказались наименьшие из возможных чисел.
Так, в результате сокращения в примере 2, мы из дроби 
Выходит, что дробь выдержит еще одно сокращение и придет к виду
Сокращая дробь, стремитесь в итоге получить несократимую дробь.
Разделите числитель и знаменатель дроби на их НОД (наибольший общий делитель). Так вы приведете дробь к несократимому виду.

a : НОД(a, b) и b : НОД(a, b) — взаимно простые числа.
Два целых числа a и b называются взаимно простыми, если их наибольший общий делитель равен единице, НОД(a, b) = 1.
- Несократимые дроби:
;
;
;
Пример 3. Приведите обыкновенную дробь к несократимому виду
Найдем НОД числителя и знаменателя. НОД = 12
Найдем частное: 12 : 12 = 1


Сокращение выполнено: 
Пример 4. Приведите обыкновенную дробь к несократимому виду
Найдем НОД числителя и знаменателя. НОД = 5
Найдем частное: 15 : 5 = 3


Сокращение выполнено: 
Видео:Основное свойство дроби. Сокращение дробей. 5 класс.Скачать

Правило сокращения дробей
Чтобы без труда сокращать любую обыкновенную дробь, запомните правило.
Выполняйте сокращение дробей по следующему алгоритму:
- Найдите НОД числителя и знаменателя дроби.
- Разделите числитель и знаменатель дроби на НОД.
В 6 классе каждая вторая задачка — с дробями. Чтобы легко управляться с ними и уметь сокращать любые числа, нужно хорошо потренироваться. Давайте разберем еще несколько примеров сокращения обыкновенных дробей.
Чтобы легко сокращать дроби, нужно уметь быстро находить НОД числителя и знаменателя. Для этого неплохо бы знать таблицу умножения и уметь раскладывать числа на простые множители.
- Например, дана дробь
Чтобы найти НОД числителя и знаменателя, разложим числа на простые множители.
36 = 2 * 2 * 3 * 3
84 = 2 * 2 * 3 * 7
Перемножаем все общие множители между собой 2 * 2 * 3 = 12.
НОД 36 и 84 = 12.
Пример 5. Сократите дробь
Разложим числа в числителе и знаменателе на множители.
135 = 9 * 3 * 5
180 = 9 * 2 * 2 * 5
Мысленно убираем все общие множители и перемножаем оставшиеся.


Сокращение выполнено: 
Пример 6. Сократите обыкновенную дробь
Найдем НОД числителя и знаменателя. НОД = 9


Сокращение выполнено: 
Дробь можно сократить, последовательно сокращая числитель и знаменатель на общий делитель. Такой способ подходит, если в числителе и знаменателе стоят крупные числа, и вы не уверены в подобранном НОД.
Пример 6. Сократите дробь:



Сокращение выполнено: 
Пример 7. Сократите дробь
Найдем НОД, разложив числитель и знаменатель на простые множители.
168 = 2 * 2 * 2 * 3 * 7
240 = 2 * 2 * 2 * 2 * 3 * 5
Перемножаем все общие множители между собой 2 * 2 * 2 * 3 = 24
НОД 168 и 240 равен 24
Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 168 : 24 = 7


Сокращение выполнено: 
Пример 8. Сократите дробь
Найдем НОД, разложив числитель и знаменатель на простые множители.
360 = 2 * 2 * 2 * 3 * 3 * 5
540 = 2 * 2 * 3 * 3 * 3 * 5
Перемножаем все общие множители между собой 2 * 2 * 3 * 3 * 5 = 180
НОД 360 и 540 равен 180
Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 360 : 180 = 2


Сокращение выполнено: 
Пример 8. Сократите дробь
Найдем НОД, разложив числитель и знаменатель на простые множители.
420 = 2 * 2 * 3 * 5 * 7
2520 = 2 * 2 * 2 * 3 * 3 * 5 * 7
Перемножаем все общие множители между собой 2 * 2 * 3 * 5 * 7 = 420
НОД 420 и 2520 равен 420
Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 420 : 420 = 1


Сокращение выполнено. Дробь приведена к несократимому виду: 
Пример 9. Сократите дробь
Найдем НОД, разложив числитель и знаменатель на простые множители.
1575 = 3 * 3 * 5 * 5 * 7
3450 = 2 * 3 * 5 * 5 * 23
Перемножаем все общие множители между собой 3 * 5 * 5 = 75
НОД 1575 и 3450 равен 72
Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 1575 : 75 = 21


Сокращение выполнено. Дробь приведена к несократимому виду: 
Иногда разложение на простые множители занимает немало времени, особенно если раскладываемые числа большие, как в двух предыдущих примерах. Чтобы быстро разложить любое число на простые множители, можно обратиться к онлайн-калькулятору — в интернете их много. Воспользуйтесь одним из них.
Если времени совсем не хватает — можно использовать онлайн-калькулятор и для нахождения НОД. Однако не стоит постоянно прибегать к калькулятору для решения задач, пока вы не научитесь уверенно и быстро вычислять сами.
Видео:Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать

Тема дроби 6 класс, правильные, неправильные, смешанные. Примеры решения дроби 6 класс. Действия с дробями 6 класс, деление, умножение, сокращение
С дробями ученики знакомятся еще в 5 классе. Раньше людей, которые умели производить действия с дробями, считали очень умными. Первой дробью была 1/2, то есть половина, дальше появились 1/3 и т.д. Несколько веков примеры считались слишком сложными. Сейчас же разработаны подробные правила по преобразованию дробей, сложению, умножению и другим действиям. Достаточно немного разобраться в материале, и решение будет даваться легко.
Видео:Основное свойство дроби. Сокращение дробей. Математика 6 класс.Скачать

Повторение обычные дроби 6 класс
Обыкновенная дробь, которую называют простой дробью, записывается как деление двух чисел: m и n.

Выделяют правильные дроби (m n).


Видео:Сокращение дробей - это похудение дробей))) 6 класс. Для тех, кто не понимаетСкачать

Действия с обыкновенными дробями 6 класс
С простыми дробями можно производить следующие действия:
- Расширять дробь. Если умножить верхнюю и нижнюю часть дроби на какое-либо одинаковое число (только не на ноль), то значение дроби не поменяется (3/5 = 6/10 (просто умножили на 2).
- Сокращение дробей — схоже расширению, но тут делят на какое-либо число.
- Сравнивать. Если у двух дробей числители одинаковыми, то большей окажется дробь с меньшим знаменателем. Если одинаковые знаменатели, то больше будет дробь с наибольшим числителем.
- Выполнять сложение и вычитание. При одинаковых знаменателях это сделать просто (суммируем верхние части, а нижняя не меняется). При разных придется найти общий знаменатель и дополнительные множители.
- Умножить и разделить дроби.
Примеры действий с дробями рассмотрим ниже.
Видео:Способы сокращения дробей. Сократимая и несократимая дроби. Математика 6 классСкачать

Сокращенные дроби 6 класс
Сократить — значит поделить верхнюю и нижнюю часть дроби на какое-либо одинаковое число.
На рисунке представлены просты примеры сокращения. В первом варианте можно сразу догадаться, что числитель и знаменатель делятся на 2.
На заметку! Если число четное, то оно по-любому делится на 2. Четные числа — это 2, 4, 6…328 (заканчивается на четное) и т. д.
Во втором случае при делении 6 на 18 сразу видно, что числа делятся на 2. Разделив, получаем 3/9. Эта дробь делится еще на 3. Тогда в ответе получается 1/3. Если перемножить оба делителя: 2 на 3, то выйдет 6. Получается, что дробь была разделена на шестерку. Такое постепенное деление называется последовательным сокращением дроби на общие делители.
Кто-то сразу поделит на 6, кому-то понадобится деление частями. Главное, чтобы в конце осталась дробь, которую уже никак не сократить.
Отметим, что если число состоит из цифр, при сложении которых получится число, делящееся на 3, то и первоначальное также можно сократить на 3. Пример: число 341. Складываем цифры: 3 + 4 + 1 = 8 (8 на 3 не делится, значит, число 341 нельзя сократить на 3 без остатка). Другой пример: 264. Складываем: 2 + 6 + 4 = 12 (делится на 3). Получаем: 264 : 3 = 88. Это упростит сокращение больших чисел.
Помимо метода последовательного сокращения дроби на общие делители есть и другие способы.

Видео:МАТЕМАТИКА 6 класс: Сокращение дробей | ВидеоурокСкачать

Смешанные дроби 6 класс
Все неправильные дроби можно превратить в смешанные, выделив в них целую часть. Целое число пишется слева.
Часто приходится из неправильной дроби делать смешанное число. Процесс преобразования на примере ниже: 22/4 = 22 делим на 4, получаем 5 целых (5 * 4 = 20). 22 — 20 = 2. Получаем 5 целых и 2/4 (знаменатель не меняется). Поскольку дробь можно сократить, то делим верхнюю и нижнюю часть на 2.
Смешанное число легко превратить в неправильную дробь (это необходимо при делении и умножении дробей). Для этого: целое число умножим на нижнюю часть дроби и прибавим к этому числитель. Готово. Знаменатель не меняется.
Видео:как решать дробиСкачать

Вычисления с дробями 6 класс
Смешанные числа можно складывать. Если знаменатели одинаковые, то сделать это просто: складываем целые части и числители, знаменатель остается на месте.
При сложении чисел с разными знаменателями процесс сложнее. Сначала приводим числа к одному самому маленькому знаменателю (НОЗ).
В примере ниже для чисел 9 и 6 знаменателем будет 18. После этого нужны дополнительные множители. Чтобы их найти, следует 18 разделить на 9, так находится дополнительное число — 2. Его умножаем на числитель 4 получилась дробь 8/18). То же самое делают и со второй дробью. Преобразованные дроби уже складываем (целые числа и числители отдельно, знаменатель не меняем). В примере ответ пришлось преобразовать в правильную дробь (изначально числитель оказался больше знаменателя).

При умножении дробей важно поместить обе под одну черту. Если число смешанное, то превращаем его в простую дробь. Далее умножаем верхнюю и нижнюю части и записываем ответ. Если видно, что дроби можно сократить, то сокращаем сразу.
В указанном примере сокращать ничего не пришлось, просто записали ответ и выделили целую часть.
В этом примере пришлось сократить числа под одной чертой. Хотя сокращать можно и готовый ответ.
При делении алгоритм почти такой же. Сначала превращаем смешанную дробь в неправильную, затем записываем числа под одной чертой, заменив деление умножением. Не забываем верхнюю и нижнюю часть второй дроби поменять местами (это правило деления дробей).
При необходимости сокращаем числа (в примере ниже сократили на пятерку и двойку). Неправильную дробь преобразуем, выделив целую часть.
Видео:Сокращение дробей | Математика 6 класс #9 | ИнфоурокСкачать

Основные задачи на дроби 6 класс
На видео показано еще несколько задач. Для наглядности использованы графические изображения решений, которые помогут наглядно представить дроби.
Видео:СОКРАЩЕНИЕ ДРОБЕЙ 5 и 6 класс математикаСкачать

Примеры умножения дроби 6 класс с пояснениями

Видео:Как сокращать дроби просто. Математика 6 классСкачать

Сравнение дробей 6 класс
Чтобы сравнить дроби, нужно запомнить два простых правила.
Правило 1. Если знаменатели разные


- Смотрим на знаменатели, они не совпадают. Значит нужно найти общий.
- Для дробей общим знаменателем будет 12.
- Делим 12 сначала на нижнюю часть первой дроби: 12 : 12 = 1 (это доп. множитель для 1-й дроби).
- Теперь 12 делим на 3, получаем 4 — доп. множитель 2-й дроби.
- Умножаем полученные цифры на числители, чтобы преобразовать дроби: 1 х 7 = 7 (первая дробь: 7/12); 4 х 2 = 8 (вторая дробь: 8/12).
- Теперь можем сравнивать: 7/12 и 8/12. Получилось: 7/12 Примеры с дробями 6 класс для тренировки
В качестве тренировки можно выполнить следующие задания.
Видео:Сократить дробь. Пример 08.Скачать

Сложение дробей 6 класс с разными знаменателями
Видео:Математика 6 класс. Сокращение дробей.Скачать

Совет: если сложно найти наименьший общий знаменатель у дробей (особенно, если значения их небольшие), то можно перемножить знаменатель первой и второй дроби. Пример: 2/8 и 5/9. Найти их знаменатель просто: 8 умножаем на 9, получится 72.
Видео:Сокращение дробейСкачать

Решение уравнений с дробями 6 класс
В решении уравнений требуется вспомнить действия с дробями: умножение, деление, вычитание и сложение. Если неизвестен один из множителей, то произведение (итог) делится на известный множитель, то есть дроби перемножаются (вторая переворачивается).
Если неизвестно делимое, то знаменатель умножается на делитель, а для поиска делителя нужно делимое разделить на частное.
Представим простые примеры решения уравнений:


Видео:Ошибки при сокращении дробей.Скачать

Многоэтажные дроби 6 класс примеры с пояснениями
Многоэтажной дробью называют дробь, записанную в несколько строк. Пример решения многоэтажной дроби:
Как решали пример способом 1:
- Убрали двухэтажную дробь, чтобы пример выглядел проще. Деление записали в виде двоеточия.
- Деление на 1/2 заменили умножением на 2 (перевернули дробь).
- Складывая 1/2 и 3/4, пришли к общему знаменателю 4. При этом для первой дроби понадобился дополнительный множитель 2, из 1/2 вышло 2/4.
- Сложили 2/4 и 3/4 — получили 5/4.
- Не забыли про умножение 5/4 на 2. Путем сокращения 2 и 4 получили 5/2 или 2 целых и 1/2
Ответ получился в виде неправильной дроби. Ее можно преобразовать в 2 целых и 1/2.
Во втором способе числитель и знаменатель умножили на 4, чтобы сократить нижнюю часть, а не переворачивать знаменатель.
Об Авторе
Смотрите также
Видео:Основное свойство дроби. Сокращение дробей. Практическая часть - решение задачи. 5 класс.Скачать

Красивый подарок маме своими руками, 8 марта короткие пожелания, открытка 8 марта своими руками для детей: открытки на 8 марта своими руками шаблоны, цветные шаблоны открыток
Видео:СОКРАЩЕНИЕ ДРОБЕЙ. Видеоурок | МАТЕМАТИКА 6 классСкачать

Явления живой и неживой природы 2 класс: биология живая неживая природа, признаки живой и неживой природы
Видео:Решить уравнение с дробями - Математика - 6 классСкачать

Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки
4 комментария
Отличная статья, ставлю пятерку.
Имея высшее техническое образование и помогая внучке в шестом классе я с удовольствием узнал, что внучка и без меня хорошо в дробях разбирается, а я уже и подзабыл НОК. Спасибо.
Спасибо за оценку!
Как у вас в последнем примере из 5/2 получилось 1 целая 3/5? Будет же 2 целых 1/2
большое спасибо, примите наши извинения за досадную ошибку
Видео:Сокращение дробей за 60 секундСкачать

Алгебраические дроби. Сокращение алгебраических дробей в более сложных случаях
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На данном уроке мы вспомним понятие алгебраической дроби и основы работы с ней. Мы приступим к решению более сложных примеров, в которых не всегда нужно применять очевидные формулы, а иногда стоит задуматься и приступить к разложению совсем с другой стороны.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Упрощение выражений»








;
;
; 










