Уравнение с модулем упростить выражение

Обобщённое понятие модуля числа

В данном уроке мы рассмотрим понятие модуля числа более подробно.

Видео:Уравнения с модулемСкачать

Уравнения с модулем

Что такое модуль?

Модуль — это расстояние от начала координат до какого-нибудь числа на координатной прямой. Поскольку расстояние не бывает отрицательным, то и модуль всегда неотрицателен. Так, модуль числа 3 равен 3, как и модуль числа −3 равен 3

Предстáвим, что на координатной прямой расстояние между целыми числами равно одному шагу. Теперь если отметить числа −3 и 3, то расстояние до них от начала координат будет одинаково равно трём шагам:

Уравнение с модулем упростить выражение

Модуль это не только расстояние от начала координат до какого-нибудь числа. Модуль это также расстояние между любыми двумя числами на координатной прямой. Такое расстояние выражается в виде разности между этими числами, заключенной под знак модуля:

Где x1 и x2 — числа на координатной прямой.

Например, отметим на координатной прямой числа 2 и 5.

Уравнение с модулем упростить выражение

Расстояние между числами 2 и 5 можно записать с помощью модуля. Для этого запишем разность из чисел 2 и 5 и заключим эту разность под знак модуля:

Видим, что расстояние от числа 2 до числа 5 равно трём шагам:

Уравнение с модулем упростить выражение

Если расстояние от 2 до 5 равно 3, то и расстояние от 5 до 2 тоже равно 3

Уравнение с модулем упростить выражение

То есть, если в выражении |5 − 2| поменять числа местами, то результат не изменится:

Тогда можно записать, что |2 − 5| = |5 − 2|. Вообще, справедливо следующее равенство:

Это равенство можно прочитать так: Расстояние от x1 до x2 равно расстоянию от x2 до x1.

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Раскрытие модуля

Когда мы говорим, что |3|= 3 или |−3|= 3 мы выполняем действие называемое раскрытием модуля.

Правило раскрытия модуля выглядит так:

Уравнение с модулем упростить выражение

Такую запись мы ранее не использовали. Дело в том, что равенство можно задавать несколькими формулами. Фигурная скобка указывает, что возможны два случая в зависимости от условия. В данном случае условиями являются записи «если x ≥ 0» и «если x .

В зависимости от того что будет подставлено вместо x, выражение |x| будет равно x, если подставленное число больше или равно нулю. А если вместо x подставлено число меньшее нуля, то выражение |x| будет равно −x.

Второй случай на первый взгляд может показаться противоречивым, поскольку запись |x| = −x выглядит будто модуль стал равен отрицательному числу. Следует иметь ввиду, что когда x

Пример 2. Пусть x = 5. То есть мы рассматриваем модуль числа 5

В данном случае выполняется первое условие x ≥ 0, ведь 5 ≥ 0

Уравнение с модулем упростить выражение

Поэтому используем первую формулу. А именно | x | = x. Получаем | 5 | = 5.

Ноль это своего рода точка перехода, в которой модуль меняет свой порядок раскрытия и далее сохраняет свой знак. Визуально это можно представить так:

Уравнение с модулем упростить выражение

На рисунке красные знаки минуса и плюса указывают как будет раскрываться модуль |x| на промежутках x и x ≥ 0 .

К примеру, если взять числа 1, 9 и 13 , а они принадлежат промежутку x ≥ 0, то согласно рисунку модуль |x| раскроется со знаком плюс:

А если возьмём числа, меньшие нуля, например −3, −9, −15, то согласно рисунку модуль раскроется со знаком минус:

Пример 3. Пусть x = √4 − 6. То есть мы рассматриваем модуль выражения √4 − 6,

Корень из числа 4 равен 2. Тогда модуль примет вид

x который был равен √4−6 теперь стал равен −4. В данном случае выполняется второе условие x |√4 − 6| = |2 − 6| = |−4| = −(−4) = 4

На практике обычно рассуждают так:

«Модуль раскрывается со знаком плюс, если подмодульное выражение больше или равно нулю; модуль раскрывается со знаком минус, если подмодульное выражение меньше нуля».

Примеры:

|2| = 2 — модуль раскрылся со знаком плюс, поскольку 2 ≥ 0

|−4| = −(−4) = 4 — модуль раскрылся со знаком минус, поскольку −4 x ≥ 0 расписано подробнее, а именно сказано что если x > 0 , то выражение |x| будет равно x , а если x =0, то выражение |x| будет равно нулю.

Пример 4. Пусть x = 0. То есть мы рассматриваем модуль нуля:

В данном случае выполняется условие x=0, ведь 0 = 0

Уравнение с модулем упростить выражение

Пример 5. Раскрыть модуль в выражении |x|+ 3

Если x ≥ 0, то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид x + 3.

Допустим, требуется найти значение выражения |x|+ 3 при x = 5. Поскольку 5 ≥ 0, то модуль, содержащийся в выражении |x|+ 3 раскрóется со знаком плюс и тогда решение примет вид:

Найдём значение выражения |x|+ 3 при x = −6. Поскольку −6 |x| + 3 = 3 − x = 3 − (−6) = 9

Пример 6. Раскрыть модуль в выражении x +|x + 3|

Если x + 3 ≥ 0, то модуль |x + 3| раскроется со знаком плюс и тогда исходное выражение примет вид x + x + 3 , откуда 2x + 3.

Найдём значение выражения x +|x + 3| при x = 4. Поскольку 4 ≥ −3, то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив 4 получим 11

Найдём значение выражения x +|x + 3| при x=−3.

Поскольку −3 ≥ −3 , то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив −3 получим −3

Пример 3. Раскрыть модуль в выражении Уравнение с модулем упростить выражение

Как и прежде используем правило раскрытия модуля:

Уравнение с модулем упростить выражение

Но это решение не будет правильным, поскольку в первом случае написано условие x ≥ 0 , которое допускает что при x = 0 знаменатель выражения Уравнение с модулем упростить выражениеобращается в ноль, а на ноль делить нельзя.

В данном примере удобнее использовать подробную запись правила раскрытия модуля, где отдельно рассматривается случай при котором x = 0

Уравнение с модулем упростить выражение

Перепишем решение так:

Уравнение с модулем упростить выражение

В первом случае написано условие x > 0 . Тогда выражение Уравнение с модулем упростить выражениестанет равно 1. Например, если x = 3 , то числитель и знаменатель станут равны 3, откуда полýчится 1

Уравнение с модулем упростить выражение

И так будет при любом x , бóльшем нуля.

Во втором случае написано условие x = 0 . Тогда решений не будет, потому что на ноль делить нельзя.

В третьем случае написано условие x . Тогда выражение Уравнение с модулем упростить выражениестанет равно −1 . Например, если x = −4 , то числитель станет равен 4 , а знаменатель −4 , откуда полýчится единица −1

Уравнение с модулем упростить выражение

Пример 4. Раскрыть модуль в выражении Уравнение с модулем упростить выражение

Если x ≥ 0 , то модуль, содержащийся в числителе, раскроется со знаком плюс, и тогда исходное выражение примет вид Уравнение с модулем упростить выражение, которое при любом x , бóльшем нуля, будет равно единице:

Уравнение с модулем упростить выражение

Если x , то модуль раскроется со знаком минус, и тогда исходное выражение примет вид Уравнение с модулем упростить выражение

Уравнение с модулем упростить выражение

Но надо учитывать, что при x = − 1 знаменатель выражения Уравнение с модулем упростить выражениеобращается в ноль. Поэтому второе условие x следует дополнить записью о том, какие значения может принимать x

Уравнение с модулем упростить выражение

Видео:МодульСкачать

Модуль

Преобразование выражений с модулями

Модуль, входящий в выражение, можно рассматривать как полноценный множитель. Его можно сокращать и выносить за скобки. Если модуль входит в многочлен, то его можно сложить с подобным ему модулем.

Как и у обычного буквенного множителя, у модуля есть свой коэффициент. Например, коэффициентом модуля |x| является 1, а коэффициентом модуля −|x| является −1. Коэффициентом модуля 3|x+1| является 3, а коэффициентом модуля −3|x+1| является −3.

Пример 1. Упростить выражение |x| + 2|x| − 2x + 5y и раскрыть модуль в получившемся выражении.

Решение

Выражения|x| и 2|x| являются подобными членами. Слóжим их. Остальное оставим без изменений:

Уравнение с модулем упростить выражение

Раскроем модуль в получившемся выражении. Если x ≥ 0, то получим 3x − 2x + 5y , откуда x + 5y .

Если x , то получим − 3x − 2x + 5y , откуда − 5x + 5y . Вынесем за скобки множитель − 5 , получим − 5(x − y)

В итоге имеем следующее решение:

Уравнение с модулем упростить выражение

Пример 2. Раскрыть модуль в выражении: −|x|

Решение

В данном случае перед знаком модуля стоит минус. Его можно понимать как минус единицу перед знаком модуля. Если x ≥ 0 , то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид −x

Если x , то модуль раскроется со знаком минус, и тогда исходное выражение примет вид −(−x) откуда получим просто x

Видео:Модуль числа. Практическая часть. 6 класс.Скачать

Модуль числа. Практическая часть. 6 класс.

Модули. Применение геометрического смысла модуля при решений уравнений и неравенств

Классы: 9 , 10 , 11

Ключевые слова: модуль числа , свойства модуля , геометрический смысл модуля

Цель: Актуализировать знания школьников о смысле понятия «модуль». Учить их применять эти знания при решении уравнении, неравенств и систем уравнении с модулями.

Для того, чтобы научиться решать уравнения и неравенства с модулем, необходимо хорошо разобраться с понятием модуля, его геометрическим смыслом и свойствами.

С рассмотрения этого материала мы и начнем наше занятие.

1. Определение: Модулем числа называется само число, если оно неотрицательно, или число противоположное данному, если оно отрицательно.

Следовательно, при любых значениях переменной |а| есть число неотрицательное.

2. Рассмотрим основные свойства модуля, которые используются при решении уравнений и неравенств, содержащих модуль.

Свойства модуля

— Модуль числа есть величина неотрицательная: |а|>0 или равно 0.

— Модули противоположенных чисел равны: |а|= |-а|

— Модуль произведения равен произведению модулей множителей: |а*в|= |а|*|в|.

— Модуль частного равен частному модулей числителя и знаменателя: |а/в|=|а|/|в|, где в не равен нулю.

— Квадрат модуля равен квадрату подмодульного выражения: |а| 2 =а 2 .

— Модуль суммы не больше суммы модулей ее слагаемых: |а+в|≤|а|+|в|.

При этом равенство |а+в|=|а|+|в| имеет место тогда и только тогда, когда слагаемые одного знака или одно из слагаемых равно нулю.

— Два числа, модули которых равны, либо равны между собой, либо отличаются только знаками, то есть являются противоположными: |а|=|в|, если, а=в или, а=–в.

Преобразование выражений, содержащих модули

При решении уравнении и неравенств с модулем, часто приходится преобразовывать их, раскрывая знак модуля.

Рассмотрим, по каким правилам раскрывается модуль.

Из определения модуля следует: чтобы раскрыть знак модуля, надо знать знак подмодульного выражения.

Составим схему раскрытия модуля:

а) если знак подмодульного выражения неотрицателен, то знак модуля опускается: |а| =а.

б) если знак подмодульного выражения отрицателен, то подмодульное выражение умножается на (-1), то есть заменяется противоположенным выражением: |а| =-1а.

Рассмотрим несколько примеров.

Пример 1.1

а) т.к. с 0, то -7х 5;

б) |3+х|, если х 5, то х-2 > 0, поэтому |х-2|=х-2;

в) т.к. х 0, |8-х|= 8 – х, х-6 (=) 2/3 3х – 2 >(=)0, следовательно, |3[ — 2|= 3х – 2.

4. Задания для самостоятельной работы

б) |- 3/7х|, если х 2 |, если а > 0;

г) |8 + х|, если х > -7;

д) |х — 5| — |х + 4|, если -3 13.

3. Решить неравенство самостоятельно:

4. Решить уравнение:

5. Решить уравнение:

6. Решить неравенство:

7. Найдите наибольшее натуральное значение параметра с при котором решение неравенства

  1. ||2х + 4| — 7| — 13 ≤ 2с 2 удовлетворяет условию х [-37; 35].

Это задание можно предложить сильным школьникам для домашней работы с последующей проверкой на уроке.

Решения и ответы:

1. Для решения уравнении используем рисунок на доске и правило: «Модуль — это расстояние»:

2. Для решения неравенства сделаем ещё два рисунка.

Значение выражения, стоящего под модулем, не должно превышать 2, значит

Значение выражения, стоящего под модулем, должно быть больше, чем 48 единиц, значит:

18 – х ≥ 48 или 18 – х ≤ -48 => х ≤ -30 или х ≥66.

Видео:Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать

Уравнения с модулем. Часть 2  | Математика | TutorOnline

Уравнение с модулем упростить выражение

3.14159.. e Число e — основание натурального логарифма, примерно равно

2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности

Сервис (своего рода программа для классов 5 и 7, 8, 9, 10, 11) позволяет упрощать математические выражения: алгебра (алгебраические выражения), тригонометрических выражений, выражения с корнями и другими степенями, сокращение дробей, также упрощает сложные буквенные выражения,
для упрощение комплексных выражений вам сюда(!)

Важно В выражениях переменные обозначаются ОДНОЙ буквой! Например, a, b, . z

© Контрольная работа РУ — калькуляторы онлайн

Видео:Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать

Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравнении

Где учитесь?

Для правильного составления решения, укажите:

🎦 Видео

Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Неравенства с модулем | Математика | TutorOnlineСкачать

Неравенства с модулем | Математика | TutorOnline

Модуль в модуле в уравнении. Алгебра 7 класс.Скачать

Модуль в модуле в уравнении. Алгебра 7 класс.

Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.Скачать

Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.

Уравнения с модулем за 1 минуту. #математикапрофиль2023 #егэ2023 #математика #школа #fypСкачать

Уравнения с модулем за 1 минуту. #математикапрофиль2023 #егэ2023 #математика #школа #fyp

Упрощение выражения с модулямиСкачать

Упрощение выражения с модулями

УРАВНЕНИЯ С МОДУЛЕМ | метод интерваловСкачать

УРАВНЕНИЯ С МОДУЛЕМ | метод интервалов

ВПР 6 КЛАСС. Задание с модулем.Скачать

ВПР 6 КЛАСС. Задание с модулем.

МОДУЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

МОДУЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Задание №1 "Упростить выражение" по теме "Умножение и сложение многочленов и одночленов". Алгебра 7Скачать

Задание №1 "Упростить выражение" по теме "Умножение и сложение многочленов и одночленов". Алгебра 7

Модуль выражения при решении уравнений. Алгебра 7 класс.Скачать

Модуль выражения при решении уравнений. Алгебра 7 класс.

Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать

Задание 23 из ОГЭ Построение графиков функций с модулем | Математика

Упрощение выражения с модулями. Алгебра 8 класс.Скачать

Упрощение выражения с модулями. Алгебра 8 класс.

УРАВНЕНИЕ ПО МОДУЛЮ 😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

УРАВНЕНИЕ ПО МОДУЛЮ 😉 #shorts #егэ #огэ #математика #профильныйегэ
Поделиться или сохранить к себе: