Уравнение реакции окисления пропена кислородом

Окисление кислородом воздуха в пропиленоксид

При нагревании в присутствии серебряных катализаторов:

Уравнение реакции окисления пропена кислородом

Получение

В лаборатории

1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:

2. Гидрирование пропина в присутствии катализатора (Pd):

3. Дегидратация изопропилового спирта (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или Аl2O3:

4. Отщепление двух атомов галогена от дигалогеноалканов, содержащих галогены при соседних атомах С. Реакция протекает под действием металлов (Zn и др.):

В промышленности

Обычно пропилен выделяют из газов нефтепереработки (при крекинге сырой нефти в кипящем слое (процесс фирмы BASF), пиролизе бензиновых фракций) или попутных газов, а также из газов коксования угля. Существует несколько видов пиролиза пропилена: пиролиз в трубчатых печах, пиролиз в реакторе с кварцевым теплоносителем (процесс фирмы Phillips Petroleum Co.), пиролиз в реакторе с коксовым теплоносителем (процесс фирмы Farbewerke Hoechst), пиролиз в реакторе с песком в качестве теплоносителя (процесс фирмы Lurgi), пиролиз в трубчатой печи (процесс фирмы Kellogg), процесс Лавровского — Бродского, автотермический пиролиз по Бартоломе. В промышленности пропилен получают также дегидрированием алканов в присутствии катализатора (Сr2О3, Аl2О3).

Промышленным способом получения пропилена наряду с крекингом служит дегидратация пропанола над оксидом алюминия:

Уравнение реакции окисления пропена кислородом

Применение

Для производства оксида пропилена, получения изопропилового спирта и ацетона, для синтеза альдегидов, для получения акриловой кислоты и акрилонитрила, полипропилена, пластмасс, каучуков, моющих средств, компонентов моторных топлив, растворителей.

Янтарная кислота(Бурштиновая кислота)

Химическая формулаНООС-СН2-СН2-СООН

Янтарная кислота (бутандиовая кислота, этан-1,2-дикарбоновая кислота) — двухосновная предельная карбоновая кислота. Бесцветные кристаллы, растворимые в воде и спирте. Содержится в небольших количествах во многих растениях, янтаре. Стимулирует рост и повышает урожай растений, ускоряет развитие кукурузы. В промышленности янтарную кислоту получают главным образом гидрированием малеинового ангидрида.

Впервые получена в XVII веке перегонкой янтаря. Соли и эфиры янтарной кислоты называются сукцинатами (лат. succinum — янтарь).

Биохимическая роль

Янтарная кислота участвует в процессе клеточного дыхания кислорододышащих организмов (см. Цикл трикарбоновых кислот).

Летальные дозы (LD50): орально — 2,26 г/кг (крысы), внутривенно — 1,4 г/кг (мыши) [2] .

Применение

Янтарную кислоту используют для получения пластмасс, смол, лекарственных препаратов (в частности, хинолитина), для синтетических целей, а также в аналитической химии.

В пищевой промышленности используется в качестве пищевой добавки E363.

В медицине янтарная кислота применяется, в частности, как одно из средств для борьбы с похмельным синдромом [источник?] .

Химические свойства.

Янтарная кислота содержится в небольшом кол-ве в буром угле, прир. смолах, в янтаре (отсюда название). Найдена во мн. растениях.
Конденсация янтарной кислоты или ее эфиров с кетонами и альдегидами в присут. оснований приводит к алкилиденянтарным к-там (см. Штоббе конденсация); при взаимод. с аммиаком и аминами образуются сукцинимид и его N-замещенные производные; с ароматич. соед. в условиях р-ции Фриделя-Крафтса -4-арил-4-кетомасляная к-та (р-ция сукциноилирования). При окислении янтарной кислоты Н2О2 в зависимости от условий образуются пероксиянтарная (СН2СОООН)2, оксоянтарная или малоновая к-ты либо смесь ацетальдегида, малоновой и малеиновой к-т, при окислении КМnО4 — щавелевая к-та или смесь малоновой и винной к-т, при окислении NaClO4 — 3-гидроксипропионовая к-та, Каталитич. восстановление янтарной кислоты в зависимости от катализатора и условий р-ции приводит к 1,4-бутандиолу, Уравнение реакции окисления пропена кислородомбутиролактону, ТГФ или к смеси этих соед., гидрирование в 1,4-бутандиоле — к Уравнение реакции окисления пропена кислородомгидроксимасляной к-те.
При 235 °С янтарная кислота отщепляет воду, давая янтарный ангидрид, при фотохим. распаде mpem-бутилпероксиэфиров — этилен.
Я нтарная кислота вступает в р-ции замещения по активным метиленовым группам. Нагревание с бромом в закрытом сосуде при 100 °С дает с количеств. выходом 2,3-дибромянтарную к-ту.
Янтарную кислоту получают в качестве побочного продукта при произ-ве адипиновой к-ты, а также выделяют из смеси к-т, образующихся при окисленииуглеводородов С4 — С10. Янтарная кислота может быть получена окислением фурфурола пероксидом водорода, гидрированием малеинового ангидрида с последующей гидратацией. Известен пром. способ выделения янтарной кислоты из отходов янтаря.
Соли янтарной кислоты образуются при окислении 1,4-бутандиола р-ром Na2O2 или Уравнение реакции окисления пропена кислородомгидроксимасляной к-ты гидроксидами щел.-зем. металлов в присут. Pd.
Применяют янтарную кислоту для получения алкидных смол, сукцинатов, фотоматериалов, красителей, лек. в-в. Эфиры янтарной кислоты используют в пищ. и парфюм. пром-сти. Так, диэтилсукцинат -ароматизатор для пищ. продуктов, компонент парфюм. композиций (запах цветов); обладает также св-вамипластификатора. Моно- и диамиды янтарной кислоты с ароматич. и гетероциклич. аминами применяют в произ-ве нек-рых красителей и инсектицидов.
Для янтарной кислоты ПДК в воде водоемов 0,01 мг/л.

Лит.: Kirk-Othmer encyclopedia, 3 ed., v. 21, N. Y., 1983, p. 848-6

Видео:Уравнивание реакций горения углеводородовСкачать

Уравнивание реакций горения углеводородов

Уравнение реакции окисления пропена кислородом

Органическое вещество А, широко используемое в производстве пластмасс, состоит из трёх элементов. Оно содержит 5,66% водорода и 26,42% азота по массе. Вещество А образуется при окислении пропена кислородом воздуха в присутствии аммиака. Оно легко вступает в реакции полимеризации и сополимеризации. Определите молекулярную формулу вещества А, установите его структуру и напишите уравнение полимеризации.

1) Определена молекулярная формула вещества A:

n(C) : n(H) : n(N) = ((100 –5,66 – 26,42) / 12) : (5,66 / 1) : (26,42 / 14) =5,66 : 5,66 : 1,89 = 3 : 3 : 1 .

Простейшая формула – Уравнение реакции окисления пропена кислородом.

Вещество А образуется при окислении пропена, значит, в молекуле вещества А три атома углерода, и молекулярная формула совпадает с простейшей.

Молекулярная формула – Уравнение реакции окисления пропена кислородом.

2) Вещество А легко вступает в реакции полимеризации и сополимеризации, значит, содержит кратную связь. При окислении пропена кислородом воздуха в присутствии аммиака образуется акрилонитрил:

Уравнение реакции окисления пропена кислородом

3) Уравнение полимеризации акрилонитрила:

Уравнение реакции окисления пропена кислородом

Критерии оценивания выполнения заданияБаллы
Ответ правильный и полный:

− правильно произведены вычисления, необходимые для

установления молекулярной формулы вещества и записана молекулярная формула вещества;

− записана структурная формула органического вещества, которая отражает порядок связи и взаимное расположение заместителей и функциональных групп в молекуле в соответствии с условием задания;

Видео:8 класс. ОВР. Окислительно-восстановительные реакции.Скачать

8 класс. ОВР. Окислительно-восстановительные реакции.

Химические свойства алкенов

Алкены – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна двойная связь между атомами углерода С=С.

Наличие двойной связи между атомами углерода очень сильно меняет свойства углеводородов.

Видео:ОКИСЛЕНИЕ АЛКЕНОВ ЕГЭ / жёсткое, мягкое окисление в органике с KMnO4Скачать

ОКИСЛЕНИЕ АЛКЕНОВ ЕГЭ / жёсткое, мягкое окисление в органике с KMnO4

Химические свойства алкенов

Алкены – непредельные углеводороды, в молекулах которых есть одна двойная связь. Строение и свойства двойной связи определяют характерные химические свойства алкенов.

Двойная связь состоит из σ-связи и π-связи. Рассмотрим характеристики одинарной связи С-С и двойной связи С=С:

Энергия связи, кДж/мольДлина связи, нм
С-С3480,154
С=С6200,133

Можно примерно оценить энергию π-связи в составе двойной связи С=С:

Таким образом, π-связь — менее прочная, чем σ-связь. Поэтому алкены вступают в реакции присоединения, сопровождающиеся разрывом π-связи. Присоединение к алкенам может протекать по ионному и радикальному механизмам.

Для алкенов также характерны реакции окисления и изомеризации. Окисление алкенов протекает преимущественно по двойной связи, хотя возможно и жесткое окисление (горение).

Видео:29. Общая реакция горения для всех углеводородов. Как расставить коэффициенты реакции легкоСкачать

29. Общая реакция горения для всех углеводородов.  Как расставить коэффициенты реакции легко

1. Реакции присоединения

Для алкенов характерны реакции присоединения по двойной связи С=С, при которых протекает разрыв пи-связи в молекуле алкена.

1.1. Гидрирование

Алкены реагируют с водородом при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt, Pd и др.).

Например, при гидрировании бутена-2 образуется бутан.

Уравнение реакции окисления пропена кислородом

Реакция протекает обратимо. Для смещения равновесия в сторону образования бутана используют повышенное давление.

1.2. Галогенирование алкенов

Присоединение галогенов к алкенам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкенами красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на двойную связь.
Например, при бромировании пропилена образуется 1,2-дибромпропан, а при хлорировании — 1,2-дихлорпропан.

Уравнение реакции окисления пропена кислородом

Уравнение реакции окисления пропена кислородом

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкенов

Алкены присоединяют галогеноводороды. Реакция идет по механизму электрофильного присоединения с образованием галогенопроизводного алкана.

Например, при взаимодействии этилена с бромоводородом образуется бромэтан.

Уравнение реакции окисления пропена кислородом

При присоединении полярных молекул к несимметричным алкенам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкенам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.
Например, при присоединении хлороводорода HCl к пропилену атом водорода преимущественно присоединяется к атому углерода группы СН2=, поэтому преимущественно образуется 2-хлорпропан.

Уравнение реакции окисления пропена кислородом

1.4. Гидратация

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

Уравнение реакции окисления пропена кислородом

Гидратация алкенов также протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.

Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2.

Уравнение реакции окисления пропена кислородом

1.5. Полимеризация

Полимеризация — это процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn (M – это молекула мономера)

Например, при полимеризации этилена образуется полиэтилен, а при полимеризации пропилена — полипропилен.

Уравнение реакции окисления пропена кислородом

Уравнение реакции окисления пропена кислородом

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

2. Окисление алкенов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

2.1. Каталитическое окисление

Каталитическое окисление протекает под действием катализатора.

Взаимодействие этилена с кислородом в присутствии солей палладия протекает с образованием этаналя (уксусного альдегида)

Уравнение реакции окисления пропена кислородом

Взаимодействие этилена с кислородом в присутствии серебра протекает с образованием эпоксида

Уравнение реакции окисления пропена кислородом

2.2. Мягкое окисление

Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Уравнение реакции окисления пропена кислородом

Например, этилен реагирует с водным раствором перманганата калия при низкой температуре с образованием этиленгликоля (этандиол-1,2)

Уравнение реакции окисления пропена кислородом

2.2. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) происходит полный разрыв двойной связи С=С и связей С-Н у атомов углерода при двойной связи. При этом вместо разрывающихся связей образуются связи с кислородом.

Так, если у атома углерода окисляется одна связь, то образуется группа С-О-Н (спирт). При окислении двух связей образуется двойная связь с атомом углерода: С=О, при окислении трех связей — карбоксильная группа СООН, четырех — углекислый газ СО2.

Поэтому можно составить таблицу соответствия окисляемого фрагмента молекулы и продукта:

Окисляемый фрагмент KMnO4, кислая среда KMnO4, H2O, t
>C=>C=O>C=O
-CH=-COOH-COOK
CH2=CO2K2CO3

При окислении бутена-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента –CH=, поэтому образуется уксусная кислота:

Уравнение реакции окисления пропена кислородом

При окислении метилпропена перманганатом калия в присутствии серной кислоты окислению подвергаются фрагменты >C= и CH2=, поэтому образуются углекислый газ и кетон:

Уравнение реакции окисления пропена кислородом

При жестком окислении алкенов в нейтральной среде образующаяся щелочь реагирует с продуктами реакции окисления алкена, поэтому образуются соли (кроме реакций, где получается кетон — кетон со щелочью не реагирует).

Например, при окислении бутена-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента –CH=, поэтому образуется соль уксусной кислоты – ацетат калия:

Уравнение реакции окисления пропена кислородом

Например, при окислении метилпропена перманганатом калия в воде при нагревании окислению подвергаются фрагменты >C= и CH2=, поэтому образуются карбонат калия и кетон:

Уравнение реакции окисления пропена кислородом

Взаимодействие алкенов с хроматами или дихроматами протекает с образованием аналогичных продуктов окисления.

2.3. Горение алкенов

Алкены, как и прочие углеводороды, горят в присутствии кислорода с образованием углекислого газа и воды.

В общем виде уравнение сгорания алкенов выглядит так:

Например, уравнение сгорания пропилена:

3. Замещение в боковой цепи

Алкены с углеродной цепью, содержащей более двух атомов углерода, могут вступать в реакции замещения в боковой цепи, как алканы.

Уравнение реакции окисления пропена кислородом

При взаимодействии алкенов с хлором или бромом при нагревании до 500 о С или на свету происходит не присоединение, а радикальное замещение атомов водорода в боковой цепи. При этом хлорируется атом углерода, ближайший к двойной связи.

Например, при хлорировании пропилена на свету образуется 3-хлорпропен-1

Уравнение реакции окисления пропена кислородом

4. Изомеризация алкенов

При нагревании в присутствии катализаторов (Al2O3) алкены вступают в реакцию изомеризации. При этом происходит либо перемещение двойной связи, либо изменение углеродного скелета. При изомеризации из менее устойчивых алкенов образуются более устойчивые. Как правило, двойная связь перемещается в центр молекулы.

🌟 Видео

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Химия 9 класс — Как определять Степень Окисления?Скачать

Химия 9 класс — Как определять Степень Окисления?

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и Получение

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Составление уравнений реакций горения. 11 класс.Скачать

Составление уравнений реакций горения. 11 класс.

Окисление органических веществ | Химия ЕГЭ для 10 класса | УмскулСкачать

Окисление органических веществ | Химия ЕГЭ для 10 класса | Умскул

Окисление органических соединений перманганатом калияСкачать

Окисление органических соединений перманганатом калия

Химия с нуля — Химические свойства АлкеновСкачать

Химия с нуля — Химические свойства Алкенов

Окисление ВСЕХ органических веществ за 4 часа | Химия ЕГЭ 2023 | УмскулСкачать

Окисление ВСЕХ органических веществ за 4 часа | Химия ЕГЭ 2023 | Умскул

Уравнивание органических ОВР за 12 минут | ХИМИЯ ЕГЭ | СОТКАСкачать

Уравнивание органических ОВР за 12 минут | ХИМИЯ ЕГЭ | СОТКА

ЭТО ПОМОЖЕТ разобраться в Органической Химии — Алкены, Урок ХимииСкачать

ЭТО ПОМОЖЕТ разобраться в Органической Химии — Алкены, Урок Химии

Реакции металлов с кислородом и водой. 8 класс.Скачать

Реакции металлов с кислородом и водой. 8 класс.

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

ЕГЭ ХИМИЯ/Окисление пропена в жестких условиях/органикаСкачать

ЕГЭ ХИМИЯ/Окисление пропена в жестких условиях/органика
Поделиться или сохранить к себе: