Уравнение реакции между двумя оксидами

Уроки по неорганической химии для подготовки к ЕГЭ

Свойства простых веществ:

Свойства сложных веществ:

Особенности протекания реакций:

Содержание
  1. Химические свойства оксидов
  2. Взаимодействие оксидов с водой
  3. Взаимодействие оксидов друг с другом
  4. Взаимодействие оксидов с кислотами
  5. Взаимодействие оксидов с основаниями
  6. Взаимодействие оксидов с солями
  7. Восстановление слабых металлов и металлов средней активности из их оксидов возможно с помощью водорода, углерода, угарного газа или более активного металла (все реакции проводятся при нагревании):
  8. Особенности свойств оксидов CO2 и SO2
  9. Особенности свойств оксидов азота (N2O5, NO2, NO, N2O)
  10. Химические свойства CO как сильного восстановителя
  11. Химические свойства SiO2
  12. Свойства оксида P2O5 как сильного водоотнимающего средства
  13. Термическое разложение некоторых оксидов
  14. Особенности оксидов NO2, ClO2 и Fe3O4
  15. 2.4. Характерные химические свойства оксидов: основных, амфотерных, кислотных.
  16. Какие оксиды реагируют с водой?
  17. Взаимодействие оксидов друг с другом
  18. Взаимодействие оксидов с кислотами
  19. Когда все-таки кислотный оксид реагирует с кислотой?
  20. Взаимодействие оксидов с гидроксидами металлов
  21. Взаимодействие оксидов со средними солями
  22. ОВР с участием оксидов
  23. Восстановление оксидов металлов и неметаллов
  24. Взаимодействие оксидов с кислородом
  25. Приведи пример окислительно — восстановительной реакции между двумя оксидами?
  26. Окислительно — восстановительная реакция на примере реакции разложения воды ?
  27. Уравнения реакций восстановления марганца из оксида марганца?
  28. Почему оксид углерода 2 проявляет восстановительные свойства?
  29. Может ли участвовать в окислительно — восстановительной реакции окислитель без восстановителя?
  30. Поясните сущность окислительно — восстановительных реакций Приведите пример?
  31. Окислительно — восстановительные реакции?
  32. Что такое восстановительно — окислительные реакции?
  33. Окислительно — восстановительные реакции Окислитель и востановитель(на примере двух реакции)?
  34. Окислительно — восстановительные реакции ( на примере взаимодействия натрия с серной кислотой)?
  35. Приведите по два примера реакции соединения и разложения, которые не являются окислительно — восстановительными?
  36. 🌟 Видео

Видео:Оксиды. Химические свойства. 8 класс.Скачать

Оксиды. Химические свойства. 8 класс.

Химические свойства оксидов

Взаимодействие оксидов с водой

Реакция идет, если образуется растворимое основание, а также Ca(OH)2:
Li2O + H2O → 2LiOH
Na2O + H2O → 2NaOH
K2O + H2O → 2KOH

CaO + H2O → Ca(OH)2
SrO + H2O → Sr(OH)2
BaO + H2O → Ba(OH)2

MgO + H2O → Реакция не идет, ак как Mg(OH)2 нерастворим*
FeO + H2O → Реакция не идет, так как Fe(OH)2 нерастворим
CrO + H2O → Реакция не идет, так как Cr(OH)2 нерастворим
CuO + H2O → Реакция не идет, так как Cu(OH)2 нерастворим

Все реакции идут за исключением SiO2 (кварц, песок):
SO3 + H2O → H2SO4
N2O5 + H2O → 2HNO3
P2O5 + 3H2O → 2H3PO4 и т.д.

SiO2 + H2O → реакция не идет

* Источник: [2] «Я сдам ЕГЭ. Курс самоподготовки», стр. 143.

Взаимодействие оксидов друг с другом

1. Оксиды одного типа друг с другом не взаимодействуют:

Na2O + CaO → реакция не идет
CO2 + SO3 → реакция не идет

2. Как правило, оксиды разных типов взаимодействуют друг с другом (исключения: CO2, SO2, о них подробнее ниже):

Na2O + SO3 → Na2SO4
CaO + CO2 → CaCO3
Na2O + ZnO → Na2ZnO2

Взаимодействие оксидов с кислотами

1. Как правило, основные и амфотерные оксиды взаимодействуют с кислотами:

Na2O + HNO3 → NaNO3 + H2O
ZnO + 2HCl → ZnCl2 + H2O
Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O

Исключением является очень слабая нерастворимая (мета)кремниевая кислота H2SiO3. Она реагирует только с щелочами и оксидами щелочных и щелочноземельных металлов.
CuO + H2SiO3 → реакция не идет.

2. Кислотные оксиды не вступают в реакции ионного обмена с кислотами, но возможны некоторые окислительно-восстановительные реакции:

SO2 + 2H2S → 3S + 2H2O
SO3 + H2S → SO2­ + H2O

SiO2 + 4HF(нед.) → SiF4 + 2H2O

С кислотами-окислителями (только если оксид можно окислить):
SO2 + HNO3 + H2O → H2SO4 + NO

Взаимодействие оксидов с основаниями

1. Основные оксиды с щелочами и нерастворимыми основаниями НЕ взаимодействуют.

2. Кислотные оксиды взаимодействуют с основаниями с образованием солей:

SiO2 + 2NaOH → Na2SiO3 +H2O
CO2 + 2NaOH → Na2CO3 + H2O
CO2 + NaOH → NaHCO3 (если CO2 в избытке)

3. Амфотерные оксиды взаимодействуют с щелочами (т.е. только с растворимыми основаниями) с образованием солей или комплексных соединений:

а) Реакциях с растворами щелочей:

ZnO + 2NaOH + H2O → Na2[Zn(OH)4] (тетрагидроксоцинкат натрия)
BeO + 2NaOH + H2O → Na2[Be(OH)4] (тетрагидроксобериллат натрия)
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4] (тетрагидроксоалюминат натрия)

б) Сплавление с твердыми щелочами:

ZnO + 2NaOH → Na2ZnO2 + H2O (цинкат натрия)
(кислота: H2ZnO2)
BeO + 2NaOH → Na2BeO2 + H2O (бериллат натрия)
(кислота: H2BeO2)
Al2O3 + 2NaOH → 2NaAlO2 + H2O (алюминат натрия)
(кислота: HAlO2)

Взаимодействие оксидов с солями

1. Кислотные и амфотерные оксиды взаимодействуют с солями при условии выделения более летучего оксида, например, с карбонатами или сульфитами все реакции протекают при нагревании:

SiO2 + CaCO3 → CaSiO3 + CO2­
P2O5 + 3CaCO3 → Ca3(PO4)2 + 3CO2­
Al2O3 + Na2CO3 → 2NaAlO2 + CO2
Cr2O3 + Na2CO3 → 2NaCrO2 + CO2
ZnO + 2KHCO3 → K2ZnO2 + 2CO2 + H2O

SiO2 + K2SO3 → K2SiO3 + SO2­
ZnO + Na2SO3 → Na2ZnO2 + SO2­

Если оба оксида являются газообразными, то выделяется тот, который соответствует более слабой кислоте:
K2CO3 + SO2 → K2SO3 + CO2­ (H2CO3 слабее и менее устойчива, чем H2SO3)

2. Растворенный в воде CO2 растворяет нерастворимые в воде карбонаты (с образованием растворимых в воде гидрокарбонатов):
CO2 + H2O + CaCO3 → Ca(HCO3)2
CO2 + H2O + MgCO3 → Mg(HCO3)2

В тестовых заданиях такие реакции могут быть записаны как:
MgCO3 + CO2 (р-р), т.е. используется раствор с углекислым газом и, следовательно, в реакцию необходимо добавить воду.

Это один из способов получения кислых солей.

Восстановление слабых металлов и металлов средней активности из их оксидов возможно с помощью водорода, углерода, угарного газа или более активного металла (все реакции проводятся при нагревании):

1. Реакции с CO, C и H2:

CuO + C → Cu + CO­
CuO + CO → Cu + CO2
CuO + H2 → Cu + H2O­

ZnO + C → Zn + CO­
ZnO + CO → Zn + CO2
ZnO + H2 → Zn + H2O­

PbO + C → Pb + CO
PbO + CО → Pb + CO2­
PbO + H2 → Pb + H2O

FeO + C → Fe + CO
FeO + CО → Fe + CO2­
FeO + H2 → Fe + H2O

Fe2O3 + 3C → 2Fe + 3CO
Fe2O3 + 3CО → 2Fe + 3CO2
Fe2O3 + 3H2 → 2Fe + 3H2O­

WO3 + 3H2 → W + 3H2O

2. Восстановление активных металлов (до Al включительно) приводит к образованию карбидов, а не свободного металла:

CaO + 3C → CaC2 + 3CO
2Al2O3 + 9C → Al4C3 + 6CO

3. Восстановление более активным металлом:

3FeO + 2Al → 3Fe + Al2O3
Cr2O3 + 2Al → 2Cr + Al2O3.

4. Некоторые оксиды неметаллов также возможно восстановить до свободного неметалла:

2P2O5 + 5C → 4P + 5CO2
SO2 + C → S + CO2
2NO + C → N2 + CO2
2N2O + C → 2N2 + CO2
SiO2 + 2C → Si + 2CO

Только оксиды азота и углерода реагируют с водородом:

2NO + 2H2 → N2 + 2H2O
N2O + H2 → N2 + H2O

SiO2 + H2 → реакция не идет.

В случае углерода восстановления до простого вещества не происходит:
CO + 2H2 CH3OH (t, p, kt)

Особенности свойств оксидов CO2 и SO2

1. Не реагируют с амфотерными гидроксидами:

CO2 + Al(OH)3 → реакция не идет

2. Реагируют с углеродом:

CO2 + C → 2CO­
SO2 + C → S + CO2­

3. С сильными восстановителями SO2 проявляет свойства окислителя:

SO2 + 2H2S → 3S + 2H2O
SO2 + 4HI → S + 2I2 + 2H2O
SO2 + 2C → S + CO2
SO2 + 2CO → S + 2CO2 (Al2O3, 500°C)

4. Сильные окислители окисляют SO2:

SO2 + Cl2 SO2Cl2
SO2 + Br2 SO2Br2
SO2 + NO2 → SO3 + NO
SO2 + H2O2 → H2SO4

5SO2 + 2KMnO4 +2H2O → 2MnSO4 + K2SO4 + 2H2SO4
SO2 + 2KMnO4 + 4KOH → 2K2MnO4 +K2SO4 + 2H2O

SO2 + HNO3 + H2O → H2SO4 + NO

6. Оксид углерода (IV) CO2 проявляет менее выраженные окислительные свойства, реагируя только с активными металлами, например:

CO2 + 2Mg → 2MgO + C (t)

Особенности свойств оксидов азота (N2O5, NO2, NO, N2O)

1. Необходимо помнить, что все оксиды азота являются сильными окислителями. Совсем необязательно помнить какие продукты образуются в подобных реакциях, так как подобные вопросы возникают только в тестах. Нужно лишь знать основные восстановители, такие как C, CO, H2, HI и йодиды, H2S и сульфиды, металлы (и т.д.) и знать, что оксиды азота их с большой вероятностью окислят.

2NO2 + 4CO&nbsp → N2 + 4CO2
2NO2 + 2S → N2 + 2SO2
2NO2 + 4Cu → N2 + 4CuO

N2O5 + 5Cu → N2 + 5CuO
2N2O5 + 2KI → I2 + 2NO2 + 2KNO3
N2O5 + H2S → 2NO2 + S + H2O

2NO + 2H2 → N2 + 2H2O
2NO + C → N2 + CO2
2NO + Cu → N2 + 2Cu2O
2NO + Zn → N2 + ZnO
2NO + 2H2S → N2 + 2S + 2H2O

N2O + H2 → N2 + H2O
2N2O + C → 2N2 + CO2
N2O + Mg → N2 + MgO

2. Могут окисляться сильными окислителями (кроме N2O5, так как степень окисления уже максимальная):
2NO + 3KClO + 2KOH → 2KNO3 + 3KCl + H2O
8NO + 3HClO4 + 4H2O → 8HNO3 + 3HCl
14NO + 6HBrO4 + 4H2O → 14HNO3 + 3Br2
NO + KMnO4 + H2SO4 → HNO3 + K2SO4 + MnSO4 + H2O
5N2O + 2KMnO4 + 3H2SO4 → 10NO + 2MnSO4 + K2SO4 + 3H2O.

3. Несолеобразующие оксиды N2O и NO не реагируют ни с водой, ни с щелочами, ни с обычными кислотами (кислотами-неокислителями).

Химические свойства CO как сильного восстановителя

1. Реагирует с некоторыми неметаллами:

2CO + O2 → 2CO2
CO + 2H2 CH3OH (t, p, kt)
CO + Cl2 COCl2 (фосген)

2. Реагирует с некоторыми сложными соединениями:

CO + KOH → HCOOK
CO + Na2O2 → Na2CO3
CO + Mg → MgO + C (t)

3. Восстанавливает некоторые металлы (средней и малой активности) и неметаллы из их оксидов:

CO + CuO → Cu + CO2
3CO + Fe2O3 → 2Fe + 3CO2
3CO + Cr2O3 → 2Cr + 3CO2

2CO + SO2 → S + 2CO2­ (Al2O3, 500°C)
5CO + I2O5 → I2 + 5CO2­
4CO + 2NO2 → N2 + 4CO2

3. С обычными кислотами и водой CO (также как и другие несолеобразующие оксиды) не реагирует.

Химические свойства SiO2

1. Взаимодействует с активными металлами:

SiO2 + 2Mg → 2MgO + Si
SiO2 + 2Ca → 2CaO + Si
SiO2 + 2Ba → 2BaO + Si

2. Взаимодействует с углеродом:

SiO2 + 2C → Si + 2CO
(Согласно пособию «Курс самоподготовки» Каверина, SiO2 + CO → реакция не идет)

3 С водородом SiO2 не взаимодействует.

4. Реакции с растворами или расплавами щелочей, с оксидами и карбонатами активных металлов:

SiO2 + 2NaOH → Na2SiO3 +H2O
SiO2 + CaO → CaSiO3
SiO2 + BaO → BaSiO3
SiO2 + Na2CO3 → Na2SiO3 + CO2
SiO2 + CaCO3 → CaSiO3 + CO2

SiO2 + Cu(OH)2 → реакция не идет (из оснований оксид кремния реагирует только с щелочами).

5. Из кислот SiO2 взаимодействует только с плавиковой кислотой:

SiO2 + 4HF → SiF4 + 2H2O.

Свойства оксида P2O5 как сильного водоотнимающего средства

HCOOH + P2O5 → CO + H3PO4
2HNO3 + P2O5 → N2O5 + 2HPO3
2HClO4 + P2O5 → Cl2O7 + 2HPO3.

Термическое разложение некоторых оксидов

В вариантах экзамена такое свойство оксидов не встречается, но рассмотрим его для полноты картины:
Основные:
4CuO → 2Cu2O + O2 (t)
2HgO → 2Hg + O2 (t)

Кислотные:
2SO3 → 2SO2 + O2 (t)
2N2O → 2N2 + O2 (t)
2N2O5 → 4NO2 + O2 (t)

Амфотерные:
4MnO2 → 2Mn2O3 + O2 (t)
6Fe2O3 → 4Fe3O4 + O2 (t).

Особенности оксидов NO2, ClO2 и Fe3O4

1. Диспропорционирование: оксидам NO2 и ClO2 соответствуют две кислоты, поэтому при взаимодействии с щелочами или карбонатами щелочных металлов образуются две соли: нитрат и нитрит соответствующего металла в случае NO2 и хлорат и хлорит в случае ClO2:

2N +4 O2 + 2NaOH → NaN +3 O2 + NaN +5 O3 + H2O

4NO2 + 2Ba(OH)2 → Ba(NO2)2 + Ba(NO3)2 + 2H2O

2NO2 + Na2CO3 → NaNO3 + NaNO2 + CO2

В аналогичных реакциях с кислородом образуются только соединения с N +5 , так как он окисляет нитрит до нитрата:

4NO2 + O2 + 4NaOH → 4NaNO3 + 2H2O

4NO2 + O2 + 2H2O → 4HNO3 (растворение в избытке кислорода)

2Cl +4 O2 + H2O → HCl +3 O2 + HCl +5 O3
2ClO 2 + 2NaOH → NaClO2 + NaClO3 + H2O

2. Оксид железа (II,III) Fe3O4 (FeO·Fe2O3) содержит железо в двух степенях окисления: +2 и +3, поэтому в реакциях с кислотами образуются две соли:

Видео:ОКСИДЫ ХИМИЯ — Что такое Оксиды? Химические свойства Оксидов | Реакция ОксидовСкачать

ОКСИДЫ ХИМИЯ — Что такое Оксиды? Химические свойства Оксидов | Реакция Оксидов

2.4. Характерные химические свойства оксидов: основных, амфотерных, кислотных.

Прежде чем начать говорить про химические свойства оксидов, нужно вспомнить о том, что все оксиды делятся на 4 типа, а именно основные, кислотные, амфотерные и несолеобразующие. Для того чтобы определить тип какого-либо оксида, прежде всего нужно понять — оксид металла или неметалла перед вами, а затем воспользоваться алгоритмом (его надо выучить!), представленным в следующей таблице:

ПравилоКомментарий
Основный оксид + H2O → Щелочь
Амфотерный оксидАмфотерные оксиды, также как и амфотерные гидроксиды, с водой не взаимодействуют
Кислотный оксид + H2O → Кислота
Оксид неметаллаОксид металла
1) Степень окисления неметалла +1 или +2 Вывод: оксид несолеобразующий Исключение: Cl2O не относится к несолеобразующим оксидам1) Степень окисления металла +1 или +2 Вывод: оксид металла — основный Исключение: BeO, ZnO и PbO не относятся к основным оксидам
2) Степень окисления больше либо равна +3 Вывод: оксид кислотный Исключение: Cl2O относится к кислотным оксидам, несмотря на степень окисления хлора +12) Степень окисления металла +3 или +4 Вывод: оксид амфотерный Исключение: BeO, ZnO и PbO амфотерны, несмотря на степень окисления +2 у металлов 3) Степень окисления металла +5, +6, +7 Вывод: оксид кислотный

Помимо типов оксидов, указанных выше, введем также еще два подтипа основных оксидов, исходя из их химической активности, а именно активные основные оксиды и малоактивные основные оксиды.

  • К активным основным оксидам отнесем оксиды щелочных и щелочноземельных металлов (все элементы IA и IIA групп, кроме водорода H, бериллия Be и магния Mg). Например, Na2O, CaO, Rb2O, SrO и т.д.
  • К малоактивным основным оксидам отнесем все основные оксиды, которые не попали в список активных основных оксидов. Например, FeO, CuO, CrO и т.д.

Логично предположить, что активные основные оксиды часто вступают в те реакции, в которые не вступают малоактивные.

Следует отметить, что несмотря на то что фактически вода является оксидом неметалла (H2O), обычно ее свойства рассматривают в отрыве от свойств иных оксидов. Обусловлено это ее специфически огромным распространением в окружающем нас мире, в связи с чем в большинстве случаев вода является не реагентом, а средой, в которой может осуществляться бесчисленное множество химических реакций. Однако нередко она принимает и непосредственное участие в различных превращениях, в частности, некоторые группы оксидов с ней реагируют.

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Какие оксиды реагируют с водой?

Из всех оксидов с водой реагируют только:

1) все активные основные оксиды (оксиды ЩМ и ЩЗМ);

2) все кислотные оксиды, кроме диоксида кремния (SiO2);

т.е. из вышесказанного следует, что с водой точно не реагируют:

1) все малоактивные основные оксиды;

2) все амфотерные оксиды;

3) несолеобразующие оксиды (NO, N2O, CO, SiO).

Оксид магния медленно реагирует с водой при кипячении. Без сильного нагревания реакция MgO с H2O не протекает.

Способность определить то, какие оксиды могут реагировать с водой даже без умения писать соответствующие уравнения реакций, уже позволяет получить баллы за некоторые вопросы тестовой части ЕГЭ.

Теперь давайте разберемся, как же все-таки те или иные оксиды реагируют с водой, т.е. научимся писать соответствующие уравнения реакций.

Активные основные оксиды, реагируя с водой, образуют соответствующие им гидроксиды. Напомним, что соответствующим оксиду металла является такой гидроксид, который содержит металл в той же степени окисления, что и оксид. Так, например, при реакции с водой активных основных оксидов K +1 2O и Ba +2 O образуются соответствующие им гидроксиды K +1 OH и Ba +2 (OH)2:

K2O + H2O = 2KOH – гидроксид калия

BaO + H2O = Ba(OH)2 – гидроксид бария

Все гидроксиды, соответствующие активным основным оксидам (оксидам ЩМ и ЩЗМ), относятся к щелочам. Щелочами называют все хорошо растворимые в воде гидроксиды металлов, а также малорастворимый гидроксид кальция Ca(OH)2 (как исключение).

Взаимодействие кислотных оксидов с водой так же, как и реакция активных основных оксидов с водой, приводит к образованию соответствующих гидроксидов. Только в случае кислотных оксидов им соответствуют не основные, а кислотные гидроксиды, чаще называемые кислородсодержащими кислотами. Напомним, что соответствующей кислотному оксиду является такая кислородсодержащая кислота, которая содержит кислотообразующий элемент в той же степени окисления, что и в оксиде.

Таким образом, если мы, например, хотим записать уравнение взаимодействия кислотного оксида SO3 с водой, прежде всего мы должны вспомнить основные, изучаемые в рамках школьной программы, серосодержащие кислоты. Таковыми являются сероводородная H2S, сернистая H2SO3 и серная H2SO4 кислоты. Cероводородная кислота H2S, как легко заметить, не является кислородсодержащей, поэтому ее образование при взаимодействии SO3 с водой можно сразу исключить. Из кислот H2SO3 и H2SO4 серу в степени окисления +6, как в оксиде SO3, содержит только серная кислота H2SO4. Поэтому именно она и будет образовываться в реакции SO3 с водой:

Аналогично оксид N2O5, содержащий азот в степени окисления +5, реагируя с водой, образует азотную кислоту HNO3, но ни в коем случае не азотистую HNO2, поскольку в азотной кислоте степень окисления азота, как и в N2O5, равна +5, а в азотистой — +3:

Исключение:

Оксид азота (IV) (NO2) является оксидом неметалла в степени окисления +4, т.е. в соответствии с алгоритмом, описанным в таблице в самом начале данной главы, его нужно отнести к кислотным оксидам. Однако не существует такой кислоты, которая содержала бы азот в степени окисления +4.

В случае оксида NO2 принято считать, что ему соответствуют сразу две кислоты, поскольку его взаимодействие с водой приводит к одновременному образованию двух кислот:

Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Взаимодействие оксидов друг с другом

Прежде всего нужно четко усвоить тот факт, что среди солеобразующих оксидов (кислотных, основных, амфотерных) практически никогда не протекают реакции между оксидами одного класса, т.е. в подавляющем большинстве случаев невозможно взаимодействие:

1) основный оксид + основный оксид ≠

2) кислотный оксид + кислотный оксид ≠

3) амфотерный оксид + амфотерный оксид ≠

В то время, как практически всегда возможно взаимодействие между оксидами, относящимися к разным типам, т.е. практически всегда протекают реакции между:

1) основным оксидом и кислотным оксидом;

2) амфотерным оксидом и кислотным оксидом;

3) амфотерным оксидом и основным оксидом.

В результате всех таких взаимодействий всегда продуктом является средняя (нормальная) соль.

Рассмотрим все указанные пары взаимодействий более детально.

В результате взаимодействия:

MexOy + кислотный оксид, где MexOy – оксид металла (основный или амфотерный)

образуется соль, состоящая из катиона металла Me (из исходного MexOy) и кислотного остатка кислоты, соответствующей кислотному оксиду.

Для примера попробуем записать уравнения взаимодействия следующих пар реагентов:

В первой паре реагентов мы видим основный оксид (Na2O) и кислотный оксид (P2O5). Во второй – амфотерный оксид (Al2O3) и кислотный оксид (SO3).

Как уже было сказано, в результате взаимодействия основного/амфотерного оксида с кислотным образуется соль, состоящая из катиона металла (из исходного основного/амфотерного оксида) и кислотного остатка кислоты, соответствующей исходному кислотному оксиду.

Таким образом, при взаимодействии Na2O и P2O5 должна образоваться соль, состоящая из катионов Na + (из Na2O) и кислотного остатка PO4 3- , поскольку оксиду P +5 2O5 соответствует кислота H3P +5 O4. Т.е. в результате такого взаимодействия образуется фосфат натрия:

В свою очередь, при взаимодействии Al2O3 и SO3 должна образоваться соль, состоящая из катионов Al 3+ (из Al2O3) и кислотного остатка SO4 2- , поскольку оксиду S +6 O3 соответствует кислота H2S +6 O4. Таким образом, в результате данной реакции получается сульфат алюминия:

Более специфическим является взаимодействие между амфотерными и основными оксидами. Данные реакции осуществляют при высоких температурах, и их протекание возможно благодаря тому, что амфотерный оксид фактически берет на себя роль кислотного. В результате такого взаимодействия образуется соль специфического состава, состоящая из катиона металла, образующего исходный основный оксид и «кислотного остатка»/аниона, в состав которого входит металл из амфотерного оксида. Формулу такого «кислотного остатка»/аниона в общем виде можно записать как MeO2 x — , где Me – металл из амфотерного оксида, а х = 2 в случае амфотерных оксидов с общей формулой вида Me +2 O (ZnO, BeO, PbO) и x = 1 – для амфотерных оксидов с общей формулой вида Me +3 2O3 (например, Al2O3, Cr2O3 и Fe2O3).

Попробуем записать в качестве примера уравнения взаимодействия

ZnO + Na2O и Al2O3 + BaO

В первом случае ZnO является амфотерным оксидом с общей формулой Me +2 O, а Na2O – типичный основный оксид. Согласно сказанному выше, в результате их взаимодействия должна образоваться соль, состоящая из катиона металла, образующего основный оксид, т.е. в нашем случае Na + (из Na2O) и «кислотного остатка»/аниона c формулой ZnO2 2- , поскольку амфотерный оксид имеет общую формулу вида Me +2 O. Таким образом, формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Na2ZnO2:

В случае взаимодействующей пары реагентов Al2O3 и BaO первое вещество является амфотерным оксидом с общей формулой вида Me +3 2O3, а второе — типичным основным оксидом. В этом случае образуется соль, содержащая катион металла из основного оксида, т.е. Ba 2+ (из BaO) и «кислотного остатка»/аниона AlO2 — . Т.е. формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Ba(AlO2)2, а само уравнение взаимодействия запишется как:

Как мы уже писали выше, практически всегда протекает реакция:

MexOy + кислотный оксид,

где MexOy – либо основный, либо амфотерный оксид металла.

Однако следует запомнить два «привередливых» кислотных оксида – углекислый газ (CO2) и сернистый газ (SO2). «Привередливость» их заключается в том, что несмотря на явные кислотные свойства, активности CO2 и SO2 недостаточно для их взаимодействия с малоактивными основными и амфотерными оксидами. Из оксидов металлов они реагируют только с активными основными оксидами (оксидами ЩМ и ЩЗМ). Так, например, Na2O и BaO, являясь активными основными оксидами, могут с ними реагировать:

В то время, как оксиды CuO и Al2O3, не относящиеся к активным основным оксидам, в реакцию с CO2 и SO2 не вступают:

CO2 + CuO ≠

SO2 + CuO ≠

Видео:8 класс. Составление уравнений химических реакций.Скачать

8 класс. Составление уравнений химических реакций.

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

а в случае недостатка HF:

2) SO2, будучи кислотным оксидом, легко реагирует с сероводородной кислотой H2S по типу сопропорционирования:

S +4 O2 + 2H2S -2 = 3S 0 + 2H2O

3) Оксид фосфора (III) P2O3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P2O3+2H2SO4+H2O=t o =>2SO2+2H3PO4
(конц.)
3P2O3+4HNO3+7H2O=t o =>4NO↑+6H3PO4
(разб.)
P2O3+4HNO3+H2O=t o =>2H3PO4+4NO2
(конц.)

4) Оксид серы (IV) SO2 может быть окислен азотной кислотой, взятой в любой концентрации. При этом степень окисления серы повышается с +4 до +6.

2HNO3+SO2=t o =>H2SO4+2NO2
(конц.)
2HNO3+3SO2+2H2O=t o =>3H2SO4+2NO↑
(разб.)

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Взаимодействие оксидов с гидроксидами металлов

С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.

Кислотные оксиды, которым соответствуют многоосновные кислоты, с щелочами могут образовывать как нормальные, так и кислые соли:

CO2 + NaOH = NaHCO3

«Привередливые» оксиды CO2 и SO2, активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами в виде их суспензии в воде. При этом образуются только основные соли, называемые гидроксокарбонатами и гидроксосульфитами, а образование средних (нормальных) солей невозможно:

Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH)3, Cr(OH)3 и т.д., углекислый и сернистый газ не реагируют вовсе.

Следует отметить также особую инертность диоксида кремния (SiO2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей, а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:

Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:

ZnO + 2NaOH + H2O = Na2[Zn(OH)4] — тетрагидроксоцинкат натрия

BeO + 2NaOH + H2O = Na2[Be(OH)4] — тетрагидроксобериллат натрия

Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4] — тетрагидроксоалюминат натрия

А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO2 x — , где x = 2 в случае амфотерного оксида типа Me +2 O и x = 1 для амфотерного оксида вида Me2 +2 O3:

Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:

Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Взаимодействие оксидов со средними солями

Чаще всего средние соли с оксидами не реагируют.

Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.

Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO2) и углекислый (CO2) газы соответственно. Например:

Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей — сульфитов и карбонатов, приводящее к образованию кислых солей:

Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:

Видео:Получение и химические свойства ОКСИДОВ 8 класс | ПРИНЦИП составления реакций с участием оксидовСкачать

Получение и химические свойства ОКСИДОВ 8 класс | ПРИНЦИП составления реакций с участием оксидов

ОВР с участием оксидов

Восстановление оксидов металлов и неметаллов

Аналогично тому, как металлы могут реагировать с растворами солей менее активных металлов, вытесняя последние в свободном виде, оксиды металлов при нагревании также способны реагировать с более активными металлами.

Напомним, что сравнить активность металлов можно либо используя ряд активности металлов, либо, если одного или сразу двух металлов нет в ряду активности, по их положению относительно друг друга в таблице Менделеева: чем ниже и левее металл, тем он более активен. Также полезно помнить, что любой металл из семейства ЩМ и ЩЗМ будет всегда активнее металла, не являющегося представителем ЩМ или ЩЗМ.

В частности, на взаимодействии металла с оксидом менее активного металла основан метод алюмотермии, используемый в промышленности для получения таких трудновосстанавливаемых металлов, как хром и ванадий:

При протекании процесса алюмотермии образуется колоссальное количество тепла, а температура реакционной смеси может достигать более 2000 o C.

Также оксиды практически всех металлов, находящихся в ряду активности правее алюминия, могут быть восстановлены до свободных металлов водородом (H2), углеродом (C) и угарным газом (CO) при нагревании. Например:

CuO + C =t o => Cu + CO

Следует отметить, что в случае, если металл может иметь несколько степеней окисления, при недостатке используемого восстановителя возможно также неполное восстановление оксидов. Например:

Оксиды активных металлов (щелочных, щелочноземельных, магния и алюминия) с водородом и угарным газом не реагируют.

Однако оксиды активных металлов реагируют с углеродом, но иначе, чем оксиды менее активных металлов.

В рамках программы ЕГЭ, чтобы не путаться, следует считать, что в результате реакции оксидов активных металлов (до Al включительно) с углеродом образование свободного ЩМ, ЩЗМ, Mg, а также Al невозможно. В таких случаях происходит образование карбида металла и угарного газа. Например:

CaO + 3C =t o => CaC2 + CO

Оксиды неметаллов нередко могут быть восстановлены металлами до свободных неметаллов. Так, например, оксиды углерода и кремния при нагревании реагируют с щелочными, щелочноземельными металлами и магнием:

CO2 + 2Mg =t o => 2MgO + C

SiO2 + 2Mg =t o => Si + 2MgO

При избытке магния последнее взаимодействие может приводить также к образованию силицида магния Mg2Si:

SiO2 + 4Mg =t o => Mg2Si + 2MgO

Оксиды азота могут быть относительно легко восстановлены даже менее активными металлами, например, цинком или медью:

Zn + 2NO =t o => ZnO + N2

Взаимодействие оксидов с кислородом

Для того чтобы в заданиях реального ЕГЭ суметь ответить на вопрос, реагирует ли какой-либо оксид с кислородом (O2), прежде всего нужно запомнить, что оксиды, способные реагировать с кислородом (из тех, что могут попасться вам на самом экзамене) могут образовать только химические элементы из списка:

углерод С, кремний Si, фосфор P, сера S, медь Cu, марганец Mn, железо Fe, хром Cr, азот N

Встречающиеся в реальном ЕГЭ оксиды любых других химических элементов с кислородом реагировать не будут (!).

Для более наглядного удобного запоминания перечисленных выше списка элементов, на мой взгляд, удобна следующая иллюстрация:

Уравнение реакции между двумя оксидамиВсе химические элементы, способные образовывать оксиды, реагирующие с кислородом (из встречающегося на экзамене)

В первую очередь, среди перечисленных элементов следует рассмотреть азот N, т.к. отношение его оксидов к кислороду заметно отличается от оксидов остальных элементов приведенного выше списка.

Следует четко запомнить тот факт, что всего азот способен образовать пять оксидов, а именно:

Уравнение реакции между двумя оксидами

Из всех оксидов азота с кислородом может реагировать только NO. Данная реакция протекает очень легко при смешении NO как с чистым кислородом, так и с воздухом. При этом наблюдается быстрое изменение окраски газа с бесцветной (NO) на бурую (NO2):

2NO+O2=2NO2
бесцветныйбурый

Для того чтобы дать ответ на вопрос — реагирует ли с кислородом какой-либо оксид любого другого из перечисленных выше химических элементов (т.е. С, Si, P, S, Cu, Mn, Fe, Cr) — прежде всего обязательно нужно запомнить их основные степени окисления (СО). Вот они:

элементСSiPSCuCrMnFe
его основные положительные СО+2, +4+2, +4+3, +5+4, +6+1, +2+2, +3, +6+2, +4, +6, +7+2, +3, +6

Далее нужно запомнить тот факт, что из возможных оксидов указанных выше химических элементов, с кислородом будут реагировать только те, которые содержат элемент в минимальной, среди указанных выше, степени окисления. При этом степень окисления элемента повышается до ближайшего положительного значения из возможных:

Отношение его оксидов к кислороду

Минимальная среди основных положительных степеней окисления углерода равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов C +2 O и C +4 O2 реагирует только CO. При этом протекает реакция:

2C +2 O + O2 =t o => 2C +4 O2

CO2 + O2 — реакция невозможна в принципе, т.к. +4 – высшая степень окисления углерода.

Минимальная среди основных положительных степеней окисления кремния равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов Si +2 O и Si +4 O2 реагирует только SiO. Из-за некоторых особенностей оксидов SiO и SiO2 возможно окисление лишь части атомов кремния в оксиде Si +2 O. Т.е. в результате его взаимодействия с кислородом, образуется смешанный оксид, содержащий как кремний в степени окисления +2, так и кремний в степени окисления +4, а именно Si2O3 (Si +2 O·Si +4 O2):

SiO2 + O2 — реакция невозможна в принципе, т.к. +4 – высшая степень окисления кремния.

Минимальная среди основных положительных степеней окисления фосфора равна +3, а ближайшая к нему положительная — +5. Таким образом, с кислородом из оксидов P +3 2O3 и P +5 2O5 реагирует только P2O3. При этом протекает реакция доокисления фосфора кислородом от степени окисления +3 до степени окисления +5:

P +5 2O5 + O2 — реакция невозможна в принципе, т.к. +5 – высшая степень окисления фосфора.

Минимальная среди основных положительных степеней окисления серы равна +4, а ближайшая к ней по значению положительная — +6. Таким образом, с кислородом из оксидов S +4 O2, S +6 O3 реагирует только SO2. При этом протекает реакция:

2S +6 O3 + O2 — реакция невозможна в принципе, т.к. +6 – высшая степень окисления серы.

Минимальная среди положительных степеней окисления меди равна +1, а ближайшая к ней по значению — положительная (и единственная) +2. Таким образом, с кислородом из оксидов Cu +1 2O, Cu +2 O реагирует только Cu2O. При этом протекает реакция:

2Cu +1 2O + O2 =t o => 4Cu +2 O

CuO + O2 — реакция невозможна в принципе, т.к. +2 – высшая степень окисления меди.

Минимальная среди основных положительных степеней окисления хрома равна +2, а ближайшая к ней по значению положительная равна +3. Таким образом, с кислородом из оксидов Cr +2 O, Cr +3 2O3 и Cr +6 O3 реагирует только CrO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +3:

Cr +3 2O3 + O2 — реакция не протекает, несмотря на то что существует оксид хрома и в большей, чем +3, степени окисления (Cr +6 O3). Невозможность протекания данной реакции связана с тем, что требуемый для ее гипотетического осуществления нагрев сильно превышает температуру разложения оксида CrO3.

Cr +6 O3 + O2 ≠ — данная реакция не может протекать в принципе, т.к. +6 – высшая степень окисления хрома.

Минимальная среди основных положительных степеней окисления марганца равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из возможных оксидов Mn +2 O, Mn +4 O2, Mn +6 O3 и Mn +7 2O7 реагирует только MnO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +4:

2Mn +2 O + O2 =t o => 2Mn +4 O2

Mn +4 O2 + O2 и Mn +6 O3 + O2 — реакции не протекают, несмотря на то что существует оксид марганца Mn2O7, содержащий Mn в большей, чем +4 и +6, степени окисления. Связанно это с тем, что требуемый для дальнейшего гипотетического окисления оксидов Mn +4 O2 и Mn +6 O3 нагрев существенно превышает температуру разложения получаемых оксидов MnO3 и Mn2O7.

Mn +7 2O7 + O2 — данная реакция невозможна в принципе, т.к. +7 – высшая степень окисления марганца.

Минимальная среди основных положительных степеней окисления железа равна +2, а ближайшая к ней среди возможных — +3. Несмотря на то что для железа существует степень окисления +6, кислотного оксида FeO3, впрочем, как и соответствующей ему «железной» кислоты не существует.

Таким образом, из оксидов железа с кислородом могут реагировать только те оксиды, которые содержат Fe в степени окисления +2. Это либо оксид Fe +2 O, либо смешанный оксид железа Fe +2 ,+3 3O4 (железная окалина):

смешанный оксид Fe +2,+3 3O4 может быть доокислен до Fe +3 2O3:

Fe +3 2O3 + O2≠ — протекание данной реакции невозможно в принципе, т.к. оксидов, содержащих железо в степени окисления выше, чем +3, не существует.

Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Приведи пример окислительно — восстановительной реакции между двумя оксидами?

Химия | 10 — 11 классы

Приведи пример окислительно — восстановительной реакции между двумя оксидами.

Уравнение реакции между двумя оксидами

4NaO + 2CO2 — &gt ; 2Na2CO3.

Уравнение реакции между двумя оксидами

Видео:Кислотный оксид + вода = ??? Основной оксид + вода = ???Скачать

Кислотный оксид + вода = ??? Основной оксид + вода = ???

Окислительно — восстановительная реакция на примере реакции разложения воды ?

Окислительно — восстановительная реакция на примере реакции разложения воды .

Уравнение реакции между двумя оксидами

Видео:Проклятая химическая реакция 😜 #shortsСкачать

Проклятая химическая реакция 😜 #shorts

Уравнения реакций восстановления марганца из оксида марганца?

Уравнения реакций восстановления марганца из оксида марганца.

Разберите реакцию как окислительно — восстановительный процесс.

Уравнение реакции между двумя оксидами

Видео:Типы Химических Реакций — Химия // Урок Химии 8 КлассСкачать

Типы Химических Реакций — Химия // Урок Химии 8 Класс

Почему оксид углерода 2 проявляет восстановительные свойства?

Почему оксид углерода 2 проявляет восстановительные свойства?

Приведите пример реакции.

Уравнение реакции между двумя оксидами

Видео:Химия | Молекулярные и ионные уравненияСкачать

Химия | Молекулярные и ионные уравнения

Может ли участвовать в окислительно — восстановительной реакции окислитель без восстановителя?

Может ли участвовать в окислительно — восстановительной реакции окислитель без восстановителя?

Уравнение реакции между двумя оксидами

Видео:КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и МеталламиСкачать

КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и Металлами

Поясните сущность окислительно — восстановительных реакций Приведите пример?

Поясните сущность окислительно — восстановительных реакций Приведите пример.

Уравнение реакции между двумя оксидами

Видео:Химические Цепочки — Решение Цепочек Химических Превращений // Химия 8 классСкачать

Химические Цепочки —  Решение Цепочек Химических Превращений // Химия 8 класс

Окислительно — восстановительные реакции?

Окислительно — восстановительные реакции.

Уравнение реакции между двумя оксидами

Видео:ОКСИДЫ, КИСЛОТЫ, СОЛИ И ОСНОВАНИЯ ХИМИЯ 8 класс / Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ОКСИДЫ, КИСЛОТЫ, СОЛИ И ОСНОВАНИЯ ХИМИЯ 8 класс / Подготовка к ЕГЭ по Химии - INTENSIV

Что такое восстановительно — окислительные реакции?

Что такое восстановительно — окислительные реакции?

Что с чем реагирует?

Приведите несколько примеров.

Уравнение реакции между двумя оксидами

Видео:Химические уравнения. СЕКРЕТНЫЙ СПОСОБ: Как составлять химические уравнения? Химия 8 классСкачать

Химические уравнения. СЕКРЕТНЫЙ СПОСОБ: Как составлять химические уравнения? Химия 8 класс

Окислительно — восстановительные реакции Окислитель и востановитель(на примере двух реакции)?

Окислительно — восстановительные реакции Окислитель и востановитель(на примере двух реакции).

Уравнение реакции между двумя оксидами

Видео:Химические уравнения - Как составлять уравнения реакций // Составление Уравнений Химических РеакцийСкачать

Химические уравнения - Как составлять уравнения реакций // Составление Уравнений Химических Реакций

Окислительно — восстановительные реакции ( на примере взаимодействия натрия с серной кислотой)?

Окислительно — восстановительные реакции ( на примере взаимодействия натрия с серной кислотой).

Уравнение реакции между двумя оксидами

Видео:Решение задач на термохимические уравнения. 8 класс.Скачать

Решение задач на термохимические уравнения. 8 класс.

Приведите по два примера реакции соединения и разложения, которые не являются окислительно — восстановительными?

Приведите по два примера реакции соединения и разложения, которые не являются окислительно — восстановительными.

ОЧЕНЬ ПРОШУ ПОМОГИТЕ.

Если вам необходимо получить ответ на вопрос Приведи пример окислительно — восстановительной реакции между двумя оксидами?, относящийся к уровню подготовки учащихся 10 — 11 классов, вы открыли нужную страницу. В категории Химия вы также найдете ответы на похожие вопросы по интересующей теме, с помощью автоматического «умного» поиска. Если после ознакомления со всеми вариантами ответа у вас остались сомнения, или полученная информация не полностью освещает тематику, создайте свой вопрос с помощью кнопки, которая находится вверху страницы, или обсудите вопрос с посетителями этой страницы.

🌟 Видео

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по ХимииСкачать

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по Химии
Поделиться или сохранить к себе:
элемент