Уравнение реакции изомеризации бутена 1

Алкены

Алкены – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна двойная связь между атомами углерода С=С.

Наличие двойной связи между атомами углерода очень сильно меняет свойства углеводородов. В этой статье мы подробно остановимся на свойствах, способах получения и особенностях строения алкенов.

Видео:КАЖДЫЙ ШКОЛЬНИК поймет химию — Типы ИзомерииСкачать

КАЖДЫЙ ШКОЛЬНИК поймет химию — Типы Изомерии

Гомологический ряд алкенов

Все алкены имеют некоторые общие или похожие физические и химические свойства. Схожие по строению алкены, которые отличаются на одну или несколько групп –СН2–, называют гомологами. Такие алкены образуют гомологический ряд.

Самый первый представитель гомологического ряда алкенов – этен (этилен) C2H4, или СH2=СH2.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь.

Название алкена Формула алкена
Этилен (этен)C2H4
Пропилен (пропен)C3H6
Бутилен (бутен)C4H8
ПентенC5H10
ГексенC6H12
ГептенC7H14
ОктенC8H16
НоненC9H18

Общая формула гомологического ряда алкенов CnH2n.

Первые четыре члена гомологического ряда алкенов – газы, начиная с C5 – жидкости.

Алкены легче воды, не растворимы в воде и не смешиваются с ней.

Видео:ЭТО ПОМОЖЕТ разобраться в Органической Химии — Алкены, Урок ХимииСкачать

ЭТО ПОМОЖЕТ разобраться в Органической Химии — Алкены, Урок Химии

Строение алкенов

Рассмотрим особенности строения алкенов на примере этилена.

В молекуле этилена присутствуют химические связи C–H и С=С.

Связь C–H ковалентная слабополярная одинарная σ-связь. Связь С=С – двойная, ковалентная неполярная, одна из связей σ, вторая π-связь. Атомы углерода при двойной связи образуют по три σ-связи и одну π-связь. Следовательно, гибридизация атомов углерода при двойной связи в молекулах алкенов – sp 2 :

Уравнение реакции изомеризации бутена 1

При образовании связи σ-связи между атомами углерода происходит перекрывание sp 2 -гибридных орбиталей атомов углерода:

Уравнение реакции изомеризации бутена 1

При образовании π-связи между атомами углерода происходит перекрывание негибридных орбиталей атомов углерода:

Уравнение реакции изомеризации бутена 1

Три sp 2 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому три гибридные орбитали атомов углерода при двойной связи в алкенах направлены в пространстве под углом 120 о друг к другу:

Уравнение реакции изомеризации бутена 1

Изображение с сайта orgchem.ru

Это соответствует плоско-треугольному строению молекулы.

Например, молекуле этилена C2H4 соответствует плоское строение.

Уравнение реакции изомеризации бутена 1

Изображение с сайта orgchem.ru

Молекулам линейных алкенов с большим числом атомов углерода соответствует пространственное строение.

Например, в молекуле пропилена присутствует атом углерода в sp 3 -гибридном состоянии, в составе метильного фрагмента СН3. Такой фрагмент имеет тетраэдрическое строение и располагается вне плоскости двойной связи.

Уравнение реакции изомеризации бутена 1

Изображение с сайта orgchem.ru

Видео:Реакции изомеризации углеводородовСкачать

Реакции изомеризации углеводородов

Изомерия алкенов

Для алкенов характерна структурная и пространственная изомерия.

Видео:Видео №3. Как составить изомерыСкачать

Видео №3. Как составить изомеры

Структурная изомерия

Для алкенов характерна структурная изомерия – изомерия углеродного скелета, изомерия положения кратной связи и межклассовая изомерия.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета отличаются строением углеродного скелета.

Например.

Изомеры с различным углеродным скелетом и с формулой С4Н8 — бутен-1 и метилпропен

Бутен-1Метилпропен
Уравнение реакции изомеризации бутена 1Уравнение реакции изомеризации бутена 1

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Алкены являются межклассовыми изомерами с циклоалканами. Общая формула и алкенов, и циклоалканов — CnH2n.

Например.

Межклассовые изомеры с общей формулой С3Н6 — пропилен и циклопропан

ПропиленЦиклопропан
Уравнение реакции изомеризации бутена 1Уравнение реакции изомеризации бутена 1

Изомеры с различным положением двойной связи отличаются положением двойной связи в углеродном скелете.

Например.

Изомеры положения двойной связи, которые соответствуют формуле С4Н8 — бутен-1 и бутен-2

Бутен-1Бутен-2
Уравнение реакции изомеризации бутена 1Уравнение реакции изомеризации бутена 1

Видео:Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакцийСкачать

Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакций

Пространственная изомерия

Для алкенов характерна пространственная изомерия: цис-транс-изомерия и оптическая.

Алкены, которые обладают достаточно большим углеродным скелетом, могут существовать в виде оптических изомеров. В молекуле алкена должен присутствовать асимметрический атом углерода (атом углерода, связанный с четырьмя различными заместителями).

Цис-транс-изомерия обусловлена отсутствием вращения по двойной связи у алкенов.

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители, могут существовать в виде двух изомеров, отличающихся расположением заместителей относительно плоскости π-связи.

Алкены, в которых одинаковые заместители располагаются по одну сторону от плоскости двойной связи, это цис-изомеры. Алкены, в которых одинаковые заместители располагаются по разные стороны от плоскости двойной связи, это транс-изомеры.

Например.

Для бутена-2 характерна цис- и транс-изомерия. В цис-изомере м етильные радикалы CH3 располагаются по одну сторону от плоскости двойной связи, в транс-изомере — по разные стороны.

цис-Бутен-2транс-Бутен-2
Уравнение реакции изомеризации бутена 1

Цис-транс-изомерия не характерна для тех алкенов, у которых хотя бы один из атомов углерода при двойной связи имеет два одинаковых соседних атома.

Например.

Для пентена-1 цис-транс-изомерия не характерна, так как у одного из атомов углерода при двойной связи есть два одинаковых заместителя (два атома водорода)

Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Уравнение реакции изомеризации бутена 1

Видео:ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и Получение

Номенклатура алкенов

В названиях алкенов для обозначения двойной связи используется суффикс -ЕН.

Например, алкен имеет название 2-метилпропен.

Уравнение реакции изомеризации бутена 1

При этом правила составления названий (номенклатура) для алкенов в целом такие же, как и для алканов, но дополняются некоторыми пунктами:

1. Углеродная цепь, в составе которой есть двойная связь, считается главной.

2. Нумеруют атомы углерода в главной цепи так, чтобы атомы углерода при двойной связи получили наименьший номер. Нумерацию следует начинать с более близкого к двойной связи конца цепи.

3. В конце молекулы вместо суффикса АН добавляют суффикс ЕН и указывают наименьший номер атома углерода при двойной связи в углеродной цепи.

4. Для простейших алкенов применяются также исторически сложившиеся (тривиальные) названия:

Тривиальное названиеФормула алкена
ЭтиленУравнение реакции изомеризации бутена 1
ПропиленУравнение реакции изомеризации бутена 1
Бутилен-1Уравнение реакции изомеризации бутена 1

Радикалы, содержащие двойную связь, также носят тривиальные названия:

Формула радикалаТривиальное название
CH 2 =CH-винил
CH2=CH-CH2аллил

Видео:Химия с нуля — Химические свойства АлкеновСкачать

Химия с нуля — Химические свойства Алкенов

Химические свойства алкенов

Алкены – непредельные углеводороды, в молекулах которых есть одна двойная связь. Строение и свойства двойной связи определяют характерные химические свойства алкенов.

Двойная связь состоит из σ-связи и π-связи. Рассмотрим характеристики одинарной связи С-С и двойной связи С=С:

Энергия связи, кДж/мольДлина связи, нм
С-С3480,154
С=С6200,133

Можно примерно оценить энергию π-связи в составе двойной связи С=С:

Таким образом, π-связь — менее прочная, чем σ-связь. Поэтому алкены вступают в реакции присоединения, сопровождающиеся разрывом π-связи. Присоединение к алкенам может протекать по ионному и радикальному механизмам.

Для алкенов также характерны реакции окисления и изомеризации. Окисление алкенов протекает преимущественно по двойной связи, хотя возможно и жесткое окисление (горение).

Видео:Составление уравнений реакций. 1 часть. 10 класс.Скачать

Составление уравнений реакций. 1 часть. 10 класс.

1. Реакции присоединения

Для алкенов характерны реакции присоединения по двойной связи С=С, при которых протекает разрыв пи-связи в молекуле алкена.

1.1. Гидрирование

Алкены реагируют с водородом при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt, Pd и др.).

Например, при гидрировании бутена-2 образуется бутан.

Уравнение реакции изомеризации бутена 1

Реакция протекает обратимо. Для смещения равновесия в сторону образования бутана используют повышенное давление.

1.2. Галогенирование алкенов

Присоединение галогенов к алкенам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкенами красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на двойную связь.
Например, при бромировании пропилена образуется 1,2-дибромпропан, а при хлорировании — 1,2-дихлорпропан.

Уравнение реакции изомеризации бутена 1

Уравнение реакции изомеризации бутена 1

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкенов

Алкены присоединяют галогеноводороды. Реакция идет по механизму электрофильного присоединения с образованием галогенопроизводного алкана.

Например, при взаимодействии этилена с бромоводородом образуется бромэтан.

Уравнение реакции изомеризации бутена 1

При присоединении полярных молекул к несимметричным алкенам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкенам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.
Например, при присоединении хлороводорода HCl к пропилену атом водорода преимущественно присоединяется к атому углерода группы СН2=, поэтому преимущественно образуется 2-хлорпропан.

Уравнение реакции изомеризации бутена 1

1.4. Гидратация

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

Уравнение реакции изомеризации бутена 1

Гидратация алкенов также протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.

Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2.

Уравнение реакции изомеризации бутена 1

1.5. Полимеризация

Полимеризация — это процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn (M – это молекула мономера)

Например, при полимеризации этилена образуется полиэтилен, а при полимеризации пропилена — полипропилен.

Уравнение реакции изомеризации бутена 1

Уравнение реакции изомеризации бутена 1

Видео:Расчеты по уравнениям химических реакций. 1 часть. 8 класс.Скачать

Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

2. Окисление алкенов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

2.1. Каталитическое окисление

Каталитическое окисление протекает под действием катализатора.

Взаимодействие этилена с кислородом в присутствии солей палладия протекает с образованием этаналя (уксусного альдегида)

Уравнение реакции изомеризации бутена 1

Взаимодействие этилена с кислородом в присутствии серебра протекает с образованием эпоксида

Уравнение реакции изомеризации бутена 1

2.2. Мягкое окисление

Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Уравнение реакции изомеризации бутена 1

Например, этилен реагирует с водным раствором перманганата калия при низкой температуре с образованием этиленгликоля (этандиол-1,2)

Уравнение реакции изомеризации бутена 1

2.2. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) происходит полный разрыв двойной связи С=С и связей С-Н у атомов углерода при двойной связи. При этом вместо разрывающихся связей образуются связи с кислородом.

Так, если у атома углерода окисляется одна связь, то образуется группа С-О-Н (спирт). При окислении двух связей образуется двойная связь с атомом углерода: С=О, при окислении трех связей — карбоксильная группа СООН, четырех — углекислый газ СО2.

Поэтому можно составить таблицу соответствия окисляемого фрагмента молекулы и продукта:

Окисляемый фрагмент KMnO4, кислая среда KMnO4, H2O, t
>C=>C=O>C=O
-CH=-COOH-COOK
CH2=CO2K2CO3

При окислении бутена-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента –CH=, поэтому образуется уксусная кислота:

Уравнение реакции изомеризации бутена 1

При окислении метилпропена перманганатом калия в присутствии серной кислоты окислению подвергаются фрагменты >C= и CH2=, поэтому образуются углекислый газ и кетон:

Уравнение реакции изомеризации бутена 1

При жестком окислении алкенов в нейтральной среде образующаяся щелочь реагирует с продуктами реакции окисления алкена, поэтому образуются соли (кроме реакций, где получается кетон — кетон со щелочью не реагирует).

Например, п ри окислении бутена-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента –CH=, поэтому образуется соль уксусной кислоты – ацетат калия:

Уравнение реакции изомеризации бутена 1

Например, при окислении метилпропена перманганатом калия в воде при нагревании окислению подвергаются фрагменты >C= и CH2=, поэтому образуются карбонат калия и кетон:

Уравнение реакции изомеризации бутена 1

Взаимодействие алкенов с хроматами или дихроматами протекает с образованием аналогичных продуктов окисления.

2.3. Горение алкенов

Алкены, как и прочие углеводороды, горят в присутствии кислорода с образованием углекислого газа и воды.

В общем виде уравнение сгорания алкенов выглядит так:

Например, уравнение сгорания пропилена:

3. Замещение в боковой цепи

Алкены с углеродной цепью, содержащей более двух атомов углерода, могут вступать в реакции замещения в боковой цепи, как алканы.

Уравнение реакции изомеризации бутена 1

При взаимодействии алкенов с хлором или бромом при нагревании до 500 о С или на свету происходит не присоединение, а радикальное замещение атомов водорода в боковой цепи. При этом хлорируется атом углерода, ближайший к двойной связи.

Например, при хлорировании пропилена на свету образуется 3-хлорпропен-1

Уравнение реакции изомеризации бутена 1

4. Изомеризация алкенов

При нагревании в присутствии катализаторов (Al2O3) алкены вступают в реакцию изомеризации. При этом происходит либо перемещение двойной связи, либо изменение углеродного скелета. При изомеризации из менее устойчивых алкенов образуются более устойчивые. Как правило, двойная связь перемещается в центр молекулы.

Например, при изомеризации бутена-1 может образоваться бутен-2 или 2-метилпропен

Уравнение реакции изомеризации бутена 1

Видео:5.1. Циклоалканы: Строение, изомерия. ЕГЭ по химииСкачать

5.1. Циклоалканы: Строение, изомерия. ЕГЭ по химии

Получение алкенов

Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

1. Дегидрирование алканов

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, образуются двойные и тройные связи.

Например, при дегидрировании этана может образоваться этилен или ацетилен:

Уравнение реакции изомеризации бутена 1

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Уравнение реакции изомеризации бутена 1

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

Уравнение реакции изомеризации бутена 1

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

2. Крекинг алканов

Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы и алкены с более короткой углеродной цепью.

Крекинг бывает термический и каталитический.

Термический крекинг протекает при сильном нагревании без доступа воздуха.

При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Например, при крекинге н-пентана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды.

Уравнение реакции изомеризации бутена 1

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).

Видео:Химические свойства алканов | Химия ЕГЭ для 10 класса | УмскулСкачать

Химические свойства алканов | Химия ЕГЭ для 10 класса | Умскул

3. Дегидрогалогенирование галогеналканов

Галогеналканы взаимодействуют с щелочами в спиртовом растворе. При этом происходит дегидрогалогенирование – отщепление (элиминирование) атомов водорода и галогена от галогеналкана.

Например, при взаимодействии хлорэтана с спиртовым раствором гидроксида натрия образуется этилен.

Видео:Составление уравнений реакций. 1 часть. 8 класс.Скачать

Составление уравнений реакций. 1 часть. 8 класс.

Уравнение реакции изомеризации бутена 1

При отщеплении галогена и водорода от некоторых галогеналканов могут образоваться различные органические продукты. В таком случае выполняется правило Зайцева.

Правило Зайцева: отщепление атома водорода при дегидрогалогенировании и дегидратации происходит преимущественно от наименее гидрогенизированного атома углерода.
Например, при взаимодействии 2-хлорбутана со спиртовым раствором гидроксида натрия преимущественно образуется бутен-2. Бутен-1 образуется в небольшом количестве (примерно 20%). В реакции мы указываем основной продукт.

Уравнение реакции изомеризации бутена 1

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

4. Дегидратация спиртов

При нагревании спиртов (выше 140 о С) в присутствии водоотнимающих веществ (концентрированная серная кислота, фосфорная кислота) или катализаторов (оксид алюминия) протекает дегидратация. Дегидратация — это отщепление молекул воды.

При дегидратации спиртов образуются алкены.

Например, при дегидратации этанола при высокой температуре образуется этилен.

Уравнение реакции изомеризации бутена 1

Дегидратация более сложных молекул также протекает по правилу Зайцева.

Например, при дегидратации бутанола-2 преимущественно образуется бутен-2.

Уравнение реакции изомеризации бутена 1

Видео:Получение алканов. Реакция Вюрца (механизм + сложные случаи). ЕГЭ по химии.Скачать

Получение алканов. Реакция Вюрца (механизм + сложные случаи). ЕГЭ по химии.

5. Дегалогенирование дигалогеналканов

Дигалогеналканы, в молекулах которых два атома галогена расположены у соседних атомов углерода, реагируют с активными металлами с образованием алкенов.

Как правило, для отщепления используют двухвалентные активные металлы — цинк или магний.

Например, 1,2-дихлорпропан реагирует с цинком с образованием пропилена

Уравнение реакции изомеризации бутена 1

Видео:Химия с нуля — АЛКИНЫ, Тройная связь, Типы Гибридизации // Органическая ХимияСкачать

Химия с нуля — АЛКИНЫ, Тройная связь, Типы Гибридизации // Органическая Химия

6. Гидрирование алкинов

Гидрирование алкинов протекает в присутствии катализаторов (Ni, Pt) с образованием алкенов, а затем сразу алканов.

При использовании менее активного катализатора (Pd, СaCO3, Pb(CH3COO)2) гидрирование останавливается на этапе образования алкенов.

Например, при гидрировании бутина-1 в присутствии палладия преимущественно образуется бутен-1.

Уравнение реакции изомеризации бутена 1

Видео:8 класс.Ч.1.Решение задач по уравнению реакций.Скачать

8 класс.Ч.1.Решение задач по уравнению реакций.

7. Гидрирование алкадиенов

Гидрирование алкадиенов протекает в присутствии металлических катализаторов, при нагревании и под давлением.

При присоединении одной молекулы водорода к дивинилу образуется смесь продуктов (бутен-1 и бутен-2):

Уравнение реакции изомеризации бутена 1

Соотношение продуктов 1,2- и 1,4- присоединения зависит от условий реакции.

При комнатной и повышенной температуре основным продуктом реакции является 1,4-продукт (бутен-2).

При полном гидрировании дивинила образуется бутан:

Видео:Уравнивание органических ОВР за 12 минут | ХИМИЯ ЕГЭ | СОТКАСкачать

Уравнивание органических ОВР за 12 минут | ХИМИЯ ЕГЭ | СОТКА

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Уравнение реакции изомеризации бутена 1

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

химические свойства алканов

Химические свойства любого соединения определяются его строением, т.е. природой входящих в его состав атомов и характером связей между ними .

Во-первых, предельная насыщенность алканов не допускает реакций присоединения, но не препятствует реакциям разложения, изомеризации и замещения.

Во-вторых, симметричность неполярных С–С и слабополярных С–Н ковалентных связей предполагает их гомолитический (симметричный) разрыв на свободные радикалы.

Следовательно, для реакций алканов характерен радикальный механизм.

Поскольку гетеролитический разрыв связей С–С и С–Н в обычных условиях не происходит, то в ионные реакции алканы практически не вступают. Это проявляется в их устойчивости к действию полярных реагентов (кислот, щелочей, окислителей ионного типа: КMnO 4, К 2Сr 2O 7 и т.п.). Такая инертность алканов в ионных реакциях и послужила ранее основанием считать их неактивными веществами и назвать парафинами.

Видеоопыт «Отношение метана к раствору перманганата калия и бромной воде».

Итак, алканы проявляют свою реакционную способность в основном в радикальных реакциях. Условия проведения таких реакций: повышенная температура (часто реакцию проводят в газовой фазе), действие света или радиоактивного излучения, присутствие соединений – источников свободных радикалов (инициаторов), неполярные растворители.

В зависимости от того, какая связь в молекуле разрывается в первую очередь, реакции алканов подразделяются на следующие типы :

С разрывом связей С–С происходят реакции разложения (крекинг алканов) и изомеризации углеродного скелета.

По связям С–Н возможны реакции замещения атома водорода или его отщепления (дегидрирование алканов).

Кроме того, атомы углерода в алканах находятся в наиболее восстановленной форме (степень окисления углерода, например, в метане равна –4, в этане –3 и т.д.) и в присутствии окислителей в определенных условиях будут происходить реакции окисления алканов с участием связей С–С и С–Н.

1. Крекинг алканов

Крекинг алканов является основой переработки нефти с целью получения продуктов меньшей молекулярной массы, которые используются в качестве моторных топлив, смазочных масел и т.п., а также сырья для химической и нефтехимической промышленности. Для осуществления этого процесса используются два способа: термический крекинг (при нагревании без доступа воздуха) и каталитический крекинг (более умеренное нагревание в присутствии катализатора).

Термический крекинг . При температуре 450–700 o С алканы распадаются за счет разрыва связей С–С (более прочные связи С–Н при такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов.

Например: C 6 H 14 C 2 H 6 + C 4 H 8

Распад связей происходит гомолитически с образованием свободных радикалов:

Свободные радикалы очень активны. Один из них (например, этил) отщепляет атомарный водород Н· от другого (н-бутила) и превращается в алкан (этан). Другой радикал, став двухвалентным, превращается в алкен (бутен-1) за счет образования π–связи при спаривании двух электронов у соседних атомов:

Разрыв С–С-связи возможен в любом случайном месте молекулы. Поэтому образуется смесь алканов и алкенов с меньшей, чем у исходного алкана, молекулярной массой.

В общем виде этот процесс можно выразить схемой:

C n H 2n+2 C m H 2m + C p H 2p+2 , где m + p = n

При более высокой температуре (свыше 1000°С) происходит разрыв не только связей С–С, но и более прочных связей С–Н.Например, термический крекинг метана используется для получения сажи (чистыйу глерод) и водорода:

СН 4 C + 2H 2

Термический крекинг был открыт русским инженером В.Г. Шуховым в 1891 г.

Каталитический крекинг проводят в присутствии катализаторов (обычно оксидов алюминия и кремния) при температуре 500°С и атмосферном давлении. При этом наряду с разрывом молекул происходят реакции изомеризации и дегидрирования.

При дегидрировании алканов образуются циклические углеводороды (реакция дегидроциклизации). Наличие в составе бензина разветвлённых и циклических углеводородов повышает его качество (детонационную устойчивость, выражаемую октановым числом). При крекинг-процессах образуется большое количество газов, которые содержат главным образом предельные и непредельные углеводороды. Эти газы используются в качестве сырья для химической промышленности.

Основополагающие работы по каталитическому крекингу в присутствии хлорида алюминия проведены Н.Д. Зелинским .

Поделиться или сохранить к себе: