Линейное уравнение первой степени с двумя переменными.
Линейное уравнение первой степени с двумя переменными – это уравнение вида ax + by = c, где x и y – неизвестные, a, b, c – некоторые числа, при этом хотя бы одно из чисел a и b не равно нулю. Числа a и b называются коэффициентами при неизвестных, c – свободным членом.
Подобное определение не всегда сразу понятно, и, безусловно, требует дополнительных разъяснений. Попробуем объяснить.
Что означает уравнение с двумя переменными?
Тут все просто. Это уравнение, в котором присутствует сразу два неизвестных числа. Для какой задачи мы можем использовать подобную математическую модель? Например, в 7 Б классе учатся 18 человек. Причем неизвестно, сколько девочек и сколько мальчиков. Пусть мальчиков будет x, а девочек y. Таким образом, у нас получается такое уравнение:
x + y = 18. Заметим, что у нас много вариантов значений x и y, при которых наше уравнение обратится в верное числовое равенство. Например, x = 10, y = 8 или x = 5, y = 13 и т.д.
Такую пару чисел, при которой уравнение с двумя переменными обращается в верное равенство, называют решением уравнения. К примеру, x = 2 и y = 16 – решение уравнения x + y = 18. Это решение можно записать и в кратком виде — (2; 16). Важно при этом соблюдать порядок записи чисел. В уравнении вида ax + by = c решение записывается именно в таком порядке – (x; y). То есть сначала x, потом y.
Насколько много решений у уравнения с двумя переменными?
Обычно, если коэффициенты a и b не равны нулю, решений уравнения с двумя переменными бесконечное множество. Действительно, если подставлять в уравнение значения x, всегда можно будет определить соответствующее значение y, при котором уравнение обратится в верное равенство. Но бывает и такое, когда уравнение с двумя переменными не имеет решений. Такое возможно, когда, например, коэффициенты a и b равны нулю, а свободный член c ≠ 0.
Что означает уравнение первой степени?
Это означает что степень, в которую возводятся переменные этого уравнения – 1. То есть, у нас нет в уравнении переменных, которые мы возводим в квадрат, куб, четвертую степень, извлекаем корень и т.д.
Что означает линейное уравнение?
Линейное уравнение – это уравнение прямой линии. В этом легко убедиться, вспомнив понятие координатной плоскости. Мы знаем, что каждой паре чисел соответствует единственная точка на координатной плоскости. Теперь возьмем, к примеру, уравнение x + y = 2. Во множество решений данного уравнения попадают такие пары чисел: (0; 2), (2; 0), (1; 1), (5; -3), (-2; 4). Построим эти точки и проведем через них прямую m.
Мы получили график прямой m. Каждая точка этой прямой имеет координаты, являющиеся решением уравнения x + y = 2, или еще говорят, что каждая точка удовлетворяет уравнению x + y = 2. Вообще для того чтобы построить прямую, достаточно найти 2 пары чисел, удовлетворяющих линейному уравнению. И через точки с данными координатами можно строить прямую.
Видео:Алгебра.7 класс (Урок№42 - Уравнения первой степени с одним неизвестным.)Скачать
Алгебра. 7 класс
Уравнения первой степени с двумя неизвестными
Математические термины
Стандартный вид
Стандартный вид
Определение
Значение переменной
Необходимо запомнить
Уравнение вида $ax + by =c$, где $x$ и $y$ – неизвестные и свободный член c – любые действительные числа, называется линейным уравнением с двумя неизвестными.
$ax + by =c$ – нормальный вид такого уравнения.
Каждая пара значений x и y, удовлетворяющая уравнению с двумя неизвестными, называется решением этого уравнения.
Линейное уравнение с двумя неизвестными обычно имеет бесконечное множество решений и поэтому называется неопределенным уравнением.
Если в уравнении первой степени с двумя неизвестными коэффициент при y равен нулю, то получим уравнение с одним неизвестным ($x$). Например:
Графиком последнего уравнения, а поэтому и двух других равносильных ему уравнений, является прямая, параллельная оси ординат.
Итак, графиком уравнения $ax + by = c$, если $a$ и $b$ не равны нулю одновременно, является прямая линия. Ее обычно строят по точкам пересечения с осями координат. Если $a = 0$ и $b = 0$, то возможны два случая:
1) $0x + 0y =17$ или $0 = 17$ – уравнение не имеет ни одного решения и ему не удовлетворяют координаты ни одной точки плоскости;
2) $0x + 0y = 0$ или $0 = 0$ – уравнение имеет бесчисленное множество решений (причём значения $x$ и $y$ здесь даже не зависят друг от друга) и ему удовлетворяют координаты всех точек плоскости.
Задача на составление неопределенного уравнения
Трёхногие инопланетяне выгуливают на лужайке своих двуногих питомцев. Кто-то подсчитал, сколько ног ходит по лужайке. Их оказалось $15$. Сколько было инопланетян и сколько их питомцев?
Необходимо ввести две переменные: $x$ – число инопланетян, $y$ – число питомцев, тогда получим уравнение $3x + 2y = 15$.
Давайте же узнаем сколько инопланетян выгуливало своих питомцев.
$3x + 2y = 15$. Выразим y через $x$: $y=frac$, далее воспользуемся методом перебора: при $x = 1$, $y = 6$, при $x = 2$, $y: notin : N$ , при $x = 3$, $y = 3$.
Ответ: $1$ инопланетянин и $6$ питомцев; $3$ инопланетянина и $3$ питомца.
Подобные уравнения встречаются часто, они-то и называются неопределенными. Особенность их состоит в том, что уравнение содержит две или более переменных и требуется найти все целые или натуральные их решения. Такими уравнениями и занимался Диофант. Он изобрел большое число способов решения подобных уравнений, поэтому их часто называют диофантовыми уравнениями.
Видео:Алгебра 7 класс (Урок№45 - Уравнения первой степени с двумя неизвестными.)Скачать
Уравнение с двумя переменными
Уравнение с двумя переменными и его решение
Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y.
Например: 2x+5y = 6; -x+1,5y = 0; $frac$ x-8y = 7
Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y.
Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$
Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.
О тождествах – см. §3 данного справочника
Например: для уравнения 2x+5y=6 решениями являются пары
x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.
Уравнение имеет бесконечное множество решений.
Свойства уравнения с двумя переменными
Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.
Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной:
- если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному;
- если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному.
Например: $2x+5y = 6 ⟺5y = -2x+6 iff y = -0,4x+1,2$
Примеры
Пример 1. Из данного линейного уравнения выразите y через x и x через y:
Алгоритм: рассмотрим 3x+4y=10
1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10
2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).
Аналогично для x(y): $3x+4y = 10 iff 3x = -4y+10 iff x = -1 frac y+3 frac$
💡 Видео
ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Неполные квадратные уравнения. Алгебра, 8 классСкачать
Уравнения первой степени с двумя неизвестнымиСкачать
Решение биквадратных уравнений. 8 класс.Скачать
Линейное уравнение с двумя переменными. 7 класс.Скачать
Линейное уравнение с двумя переменными ax+by=cСкачать
7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать
Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать
Уравнения первой степени с двумя неизвестными. Системы уравнений.Скачать
1 Как решать уравнения всех видов Решите уравнение Виды уравнений МАТЕМАТИКА ОНЛАЙНСкачать
Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Как решить уравнение #россия #сша #америка #уравненияСкачать
МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать
Как решать линейные уравнения (первой степени) с одним неизвестнымСкачать
7 класс. Уравнения первой степени с двумя неизвестными.Скачать