Предлагаю вам воспользоваться онлайн калькулятором для вычисления координат точки пересечения прямых.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление координат точки пересечения двух прямых и закрепить пройденный материал.
- Найти точку пересечения прямых
- Ввод данных в калькулятор для вычисления координат точки пересечения прямых
- Дополнительные возможности калькулятора вычисления координат точки пересечения прямых
- Теория. Координаты точки пересечения двух прямых
- Точка пересечения прямых в пространстве онлайн
- Предупреждение
- Точка пересечения прямых в пространстве − теория, примеры и решения
- 1. Точка пересечения прямых в пространстве, заданных в каноническом виде.
- 2. Точка пересечения прямых в пространстве, заданных в параметрическом виде.
- 3. Точка пересечения прямых в пространстве, заданных в разных видах.
- 4. Примеры нахождения точки пересечения прямых в пространстве.
- Пересечение прямых
- Пересечение прямых, примеры
- 📽️ Видео
Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Найти точку пересечения прямых
Уравнение 1-ой прямой:
Уравнение 2-ой прямой:
Ввод данных в калькулятор для вычисления координат точки пересечения прямых
В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора вычисления координат точки пересечения прямых
- Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.
Теория. Координаты точки пересечения двух прямых
Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Точка пересечения прямых в пространстве онлайн
С помощю этого онлайн калькулятора можно найти точку пересечения прямых в пространстве. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямых задайте вид уравнения прямых («канонический» или «параметрический» ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:№976. Найдите координаты точки пересечения прямых 4x + 3y-6 = 0 и 2х+у-4 = 0.Скачать
Точка пересечения прямых в пространстве − теория, примеры и решения
- Содержание
- 1. Точка пересечения прямых, заданных в каноническом виде.
- 2. Точка пересечения прямых, заданных в параметрическом виде.
- 3. Точка пересечения прямых, заданных в разных видах.
- 4. Примеры нахождения точки пересечения прямых в пространстве.
1. Точка пересечения прямых в пространстве, заданных в каноническом виде.
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:
, | (1) |
, | (2) |
Найти точку пересечения прямых L1 и L2 (Рис.1).
Запишем уравнение (1) в виде системы двух линейных уравнений:
, | (3) |
(4) |
Сделаем перекрестное умножение в уравнениях (3) и (4):
p1(x−x1)=m1(y−y1) |
l1(y−y1)=p1(z−z1) |
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
p1x−m1y=p1x1−m1y1, | (5) |
l1y−p1z=l1y1−p1z1. | (6) |
Аналогичным образом преобразуем уравнение (2):
Запишем уравнение (2) в виде системы двух линейных уравнений:
, | (7) |
(8) |
Сделаем перекрестное умножение в уравнениях (7) и (8):
p2(x−x2)=m2(y−y2) |
l2(y−y2)=p2(z−z2) |
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
p2x−m2y=p2x2−m2y2, | (9) |
l2y−p2z=l2y2−p2z2. | (10) |
Решим систему линейных уравнений (5), (6), (9), (10) с тремя неизвестными x, y, z. Для этого представим эту систему в матричном виде:
(11) |
Как решить систему линейных уравнений (11)(или (5), (6), (9), (10)) посмотрите на странице Метод Гаусса онлайн. Если система линейных уравнениий (11) несовместна, то прямые L1 и L2 не пересекаются. Если система (11) имеет множество решений, то прямые L1 и L2 совпадают. Единственное решение системы линейных уравнений (11) указывает на то, что это решение определяет координаты точки пересечения прямых L1 и L2 .
2. Точка пересечения прямых в пространстве, заданных в параметрическом виде.
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 в параметрическом виде:
(12) |
(13) |
Задачу нахождения нахождения точки пересечения прямых L1 и L2 можно решить разными методами.
Метод 1. Приведем уравнения прямых L1 и L2 к каноническому виду.
Для приведения уравнения (12) к каноническому виду, выразим параметр t через остальные переменные:
(14) |
Так как левые части уравнений (14) равны, то можем записать:
(15) |
Аналогичным образом приведем уравнение прямой L2 к каноническому виду:
(16) |
Далее, для нахождения точки пересечения прямых, заданных в каноническом виде нужно воспользоваться параграфом 1.
Метод 2. Для нахождения точки пересечения прямых L1 и L2 решим совместно уравнения (12) и (13). Из уравнений (12) и (13) следует:
(17) |
(18) |
(19) |
Из каждого уравнения (17),(18),(19) находим переменную t. Далее из полученных значений t выбираем те, которые удовлетворяют всем уравнениям (17)−(19). Если такое значение t не существует, то прямые не пересекаются. Если таких значений больше одного, то прямые совпадают. Если же такое значение t единственно, то подставляя это зачение t в (12) или в (13), получим координаты точки пересечения прямых (12) и (13).
3. Точка пересечения прямых в пространстве, заданных в разных видах.
Если уравнения прямых заданы в разных видах, то можно их привести к одному виду (к каноническому или к параметрическому) и найти точку пересечения прямых, описанных выше.
4. Примеры нахождения точки пересечения прямых в пространстве.
Пример 1. Найти точку пересечения прямых L1 и L2:
(20) |
(21) |
Представим уравнение (20) в виде двух уравнений:
(22) |
(23) |
Сделаем перекрестное умножение в уравнениях (22) и (23):
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Аналогичным образом поступим и с уравнением (2).
Представим уравнение (2) в виде двух уравнений:
(26) |
(27) |
Сделаем перекрестное умножение в уравнениях (7) и (8)
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Решим систему линейных уравнений (24), (25), (28), (29) с тремя неизвестными x, y, z. Для этого представим эту систему в виде матричного уравнения:
(30) |
Решим систему линейных уравнений (30) отностительно x, y, z. Для решения системы, построим расширенную матрицу:
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строку 3 со строкой 1, умноженной на −1:
Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 4 со строкой 2, умноженной на −1/4:
Сделаем перестановку строк 3 и 4.
Второй этап. Обратный ход Гаусса.
Исключим элементы 3-го столбца матрицы выше элемента a33. Для этого сложим строку 2 со строкой 3, умноженной на −4/3:
Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на 3/4:
Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):
Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:
Пример 2. Найти точку пересечения прямых L1 и L2:
(31) |
(32) |
Приведем параметрическое уравнение прямой L1 к каноническому виду. Выразим параметр t через остальные переменные:
Из равентсв выше получим каноническое уравнение прямой:
(33) |
Представим уравнение (33) в виде двух уравнений:
(34) |
(35) |
Сделаем перекрестное умножение в уравнениях (34 и (35):
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
(36) |
. | (37) |
Аналогичным образом поступим и с уравнением (2).
Представим уравнение (2) в виде двух уравнений:
(38) |
(39) |
Сделаем перекрестное умножение в уравнениях (38) и (39)
Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:
Решим систему линейных уравнений (36), (37), (40), (41) с тремя неизвестными x, y, z. Для этого представим эту систему в виде матричного уравнения:
(42) |
Решим систему линейных уравнений (42) отностительно x, y, z. Для решения системы, построим расширенную матрицу:
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строку 3 со строкой 1, умноженной на −1/6:
Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строки 3 и 4 со строкой 2, умноженной на 8/21 и −1/7, соответственно:
Исключим элементы 3-го столбца матрицы ниже элементаa33. Для этого сложим строку 4 со строкой 3, умноженной на -1/16:
Из расширенной матрицы восстановим последнюю систему линейных уравнений:
(43) |
Уравнение (43) несовместна, так как несуществуют числа x, y, z удовлетворяющие уравнению (43). Следовательно система линейных уравнений (42) не имеет решения. Тогда прямые L1 и L2 не пересекаются. То есть они или параллельны, или скрещиваются.
Прямая L1 имеет направляющий вектор q1=, а прямая L2 имеет направляющий вектор q2=. Эти векторы не коллинеарны. Следовательно прямые L1 и L2 скрещиваются .
Видео:Найти точку пересечения прямой и плоскостиСкачать
Пересечение прямых
Для разыскания точки пересечения прямых
Эта система, как правило, дает единственное решение, и мы получим искомую точку.
Исключение возможно лишь при равенстве отношений
т.е. в случае параллельности данных прямых.
Если данные прямые параллельны и не совпадают, то система не имеет решений, а если совпадают, то решений бесконечно много.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Пересечение прямых, примеры
Найти точки пересечения прямых
Решая систему уравнений, находим
Прямые пересекаются в точке (1; -1).
параллельны и не совпадают, так как отношения 2:1 и (-7):(-3,5) равны между собой, но не равны отношению 12:10.
Данная система уравнений не имеет решения.
совпадают, так как отношения 3:6, 2:4 и (-6):(-12) равны друг другу.
Второе уравнение получается из первого умножением на 2.
Данная система имеет бесчисленное множество решений.
📽️ Видео
Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать
Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать
7 класс, 25 урок, Признаки параллельности двух прямыхСкачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Как найти абсциссу точки пересечения двух прямых?Скачать
7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать
Точки пересечения графиков линейных функций. 7 класс.ОбразовательныйСкачать
Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
6 класс, 23 урок, Пересечение прямыхСкачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
ПЕРЕСЕЧЕНИЕ прямых | ТОЧКА пересечения | Линейные функцииСкачать
Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Взаимное расположение прямых на плоскости. 7 класс.Скачать