Уравнение методом полуреакций в щелочной среде

Химия, Биология, подготовка к ГИА и ЕГЭ

Видео:Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.

Метод полуреакций

Как решать такие окислительно-восстановительные реакции?

В щелочной среде раствора : OH — H2O

Давайте разберем на примере:

1. Определяем участников окислительно-восстановительного процесса:

H2O2 — O находится в степени окисления -1, в результате реакции становится O2, т.е. идет процесс окисления.

Ртуть — Hg 2+
будет восстанавливаться до Hg +1

2. Выписываем участников овр в ионной форме (!) (Т.е., те вещества. которые нельзя разбить на ионы, пишем в том виде, в каком они представлены)

3. Уравниваем количество атомов — участников овр (атомы — участники овр в данном случае — O и Hg) :

4. Определяем среду реакции. У нас один из реагентов — NaOH, значит, среда раствора у нас однозначно щелочная.

В щелочной среде раствора уравнивание недостающих атомов идет по схеме: OH — H2O
H2O2 + 2OH — → O2 + 2H2O

5. Уравниваем заряды:

H2O2 + 2OH — → O2 + 2H2O

-2 → 0, значит, уравнение будет иметь вид:

H2O2 + 2OH — —2e — → O2 + 2H2O
&nbsp
6. Теперь надо уравнять реакции восстановления и окисления между собой ( чтобы “количество принятых электронов было равно количеству отданных”)

1•| H2O2 + 2OH — —2e — → O2 + 2H2O

7. Выписываем все реагенты с учетом коэффициентов и все продукты овр:

H2O2 + 2OH — + 2Hg 2+ → O2 + 2H2O + 2Hg +

8. Дописываем к каждому иону его “половинку” с учетом коэффициентов и сочетаем продукты реакции:

H2O2 + 2OH — + 2Hg 2+ → O2 + 2H2O + 2Hg +

Теперь вы знаете как решать такие окислительно-восстановительные реакции для щелочной среды раствора. Но, признаюсь честно, знать мало… надо УМЕТЬ решать такие примеры. А для того, чтобы уметь, надо тренироваться.

Вот несколько примеров для тренировки — решайте, будут вопросы, пишите в комментариях — все разберем.

  1. Cl2 + KOH = KClO3 + …
  2. K2Cr2O7 + Cl2 + NaOH = …
  3. KMnO4 + H2S + NaOH = …
  • в ЕГЭ это вопрос C1— примеры окислительно-восстановительных реакций

Видео:Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 5ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 5ч. 10 класс.

Метод электронного баланса и ионно-электронный метод (метод полуреакций)

Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.

Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.

Видео:Решение ОВР методом полуреакцийСкачать

Решение ОВР методом полуреакций

Метод электронного баланса

В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .

В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):

Найдем степень окисления элементов:

Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.

3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.

S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления

Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления

Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:

  • Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
  • Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.

Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:

4) Уравнять количества атомов элементов, не изменяющих степень окисления

Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.

Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.

По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.

В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .

Таким образом, серной кислоты надо взять 3 молекулы:

Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты

6H + + 3O -2 = 3H2O

Окончательный вид уравнения следующий:

Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.

Видео:ВСЯ ХИМИЯ 10 КЛАСС / ОВР метод полуреакций в щелочной среде / WannaBeTeacher Усенов УланСкачать

ВСЯ ХИМИЯ 10 КЛАСС / ОВР метод полуреакций в щелочной среде / WannaBeTeacher Усенов Улан

Ионно-электронный метод (метод полуреакций)

Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.

При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).

При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:

H +кислая среда, OH —щелочная среда и H2Oнейтральная среда.

Пример 1.

Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции:

2) Записать уравнение в ионном виде

В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:

SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O

3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.

В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O

Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :

SO3 2- + H2O — 2e — = SO4 2- + 2H +

4) Найти коэффициенты для окислителя и восстановителя

Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления

SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления

5) Просуммировать обе полуреакции

Предварительно умножая на найденные коэффициенты, получаем:

2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +

Сократив подобные члены, находим ионное уравнение:

2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O

6) Записать молекулярное уравнение

Молекулярное уравнение имеет следующий вид:

Пример 2.

Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.

В ионном виде уравнение принимает вид:

Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .

В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Пример 3.

Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.

В ионном виде уравнение принимает вид:

В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.

Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции

Видео:Окислительно-восстановительные реакции в нейтральной среде. Продвинутый подход.Скачать

Окислительно-восстановительные реакции в нейтральной среде. Продвинутый подход.

«Метод полуреакций, или электронно-ионного баланса»

Разделы: Химия

Тема: метод полуреакций или электронно-ионного баланса

Цель: расширить и углубить знания об ОВР.

Задачи:

  • научить определять возможность протекания ОВР между данными веществами;
  • научить устанавливать продукты реакции с опорой на схемы;
  • раскрыть сущность метода полуреакций;
  • рассмотреть правила и алгоритмы составления уравнений ОВР;
  • научить применять полученные знания для решения конкретных задач.

Формы обучения: разъяснение, рассуждение, общая характеристика.

Методы обучения: словесные (беседа, объяснение), наглядные (компьютерные), практические (упражнения).

Общедидактические методы: объяснительно-иллюстративный, частично-поисковый, проблемный.

Ход урока.

1. Проверка домашнего задания.

Опрос у доски:

1) Самостоятельная работа у доски : определите тип следующих ОВР:

Уравнение методом полуреакций в щелочной среде

Подготовка устного ответа: классификация ОВР.

2) Самостоятельная работа у доски: расставить коэффициенты методом электронного баланса, указать окислитель и восстановитель, процессы окисления и восстановления:

Уравнение методом полуреакций в щелочной среде

3) Устный ответ: теория ОВР.

2. Новый материал.

Сегодня на уроке мы познакомимся со способами прогнозирования продуктов в ОВР и новом методе расстановки коэффициентов в ОВР – методе полуреакций или электронно-ионного баланса.
Чтобы написать уравнение реакции, протекающей в смеси заданных веществ, нужно ответить на следующие вопросы:

а) возможна ли в принципе ОВР между данными веществами;
б) если да, то установить продукты реакции;
в) подобрать коэффициенты в уравнении реакции.

Рассмотрим эти вопросы по порядку.
Что касается первого из них, вспомним, что в любой ОВР один из участников окисляется, т.е. повышает свою валентность, а другой – восстанавливается, т.е. понижает валентность. Поэтому реакция невозможна, если оба ее участника находятся в состояниях наиболее высокой или наиболее низкой степени окисления.
Исходя из сказанного, попробуем предположить возможность протекания ОВР.
Например, определим возможна ли ОВР между Уравнение методом полуреакций в щелочной среде.

Определите степени окисления элементов.

Учащиеся определяют степени окисления элементов по формулам соединений. Рассматривают строение атомов серы и хлора, определяют высшую и низшую степень окисления элементов.

Формулируем вывод: степени окисления серы (-2) и хлора (-1) являются для них предельно низкими, следовательно, и сера, и хлор могут выступать только в роли восстановителя. Т.е. реакция между Уравнение методом полуреакций в щелочной среденевозможна.

Рассмотрим другой пример. Возможно ли взаимодействие между ионами Уравнение методом полуреакций в щелочной среде?

Учащиеся рассматривают степени окисления марганца и хрома в ионах, определяют исходя из строения атомов, что оба металла находятся в высшей степени окисления, следовательно, могут выступать только в роли окислителя. Делают вывод: реакция между ионами Уравнение методом полуреакций в щелочной средеи Уравнение методом полуреакций в щелочной среденевозможна.

Если же один из участников может повысить, а другой понизить свои степени окисления, реакция в принципе возможна.
Указать продукты реакции только из общих соображений в таких реакциях практически невозможно. Исследование химических свойств элементов как раз и представляет собой экспериментальное выяснение того, при каких условиях его соединения вступают в реакцию с другими элементами и соединениями и какие продукты при этом получаются.
Часто в ОВР участвуют соединения хрома и марганца. Особый интерес представляет поведение пероксида водорода в ОВР. Для прогнозирования продуктов реакций с их участием можно использовать следующие схемы.

Учитель проецирует с помощью видеопроектора схемы на экран, учащиеся для удобства имеют схемы на партах (Приложение 1).

Что касается собственно процедуры подбора коэффициентов в уравнениях, то для реакций в растворах удобен так называемый метод полуреакций, или электронно-ионный. В нем сначала записывают и уравнивают отдельно процессы окисления и восстановления, а полная реакция получается их сложением.

Учитель проецирует с помощью видеопроектора схемы на экран, учащиеся для удобства имеют схемы на партах (Приложение 2).

Кроме алгоритма составления полуреакций, необходимо придерживаться нескольких очевидных правил:

  1. В кислой среде ни в левой, ни в правой части не должно быть ионов Уравнение методом полуреакций в щелочной средеУравнивание осуществляется за счет ионов Уравнение методом полуреакций в щелочной средеи молекул воды.
  2. В щелочной среде ни в левой, ни в правой части не должно быть ионов Уравнение методом полуреакций в щелочной среде. Уравнивание осуществляется за счет ионов Уравнение методом полуреакций в щелочной средеи молекул воды.
  3. В нейтральной среде ни ионов Уравнение методом полуреакций в щелочной среде, ни Уравнение методом полуреакций в щелочной средев левой части быть не должно. Однако в правой части среди продуктов реакции они могут появиться.

Рассмотрим, как работают предложенные схемы на конкретных примерах.

Задача. Закончить уравнение реакции между бихроматом калия и соляной кислотой.

Ион Уравнение методом полуреакций в щелочной средесодержит хром в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда кислотная (HCl).
Полуреакция восстановления: Уравнение методом полуреакций в щелочной среде

Ионы Уравнение методом полуреакций в щелочной средемогут только окисляться, т.к. хлор имеет самую низшую степень окисления. Составим полуреакцию окисления: Уравнение методом полуреакций в щелочной среде

Уравнение методом полуреакций в щелочной среде

Суммируем сначала левые, а затем правые части полуреакций, не забывая предварительно умножить множитель на коэффициент, если он стоит перед формулой.

Уравнение методом полуреакций в щелочной среде

Получили сокращенное ионное уравнение.

Добавляем недостающие катионы или анионы, учитывая, что количество добавляемых ионов в правую и левую части ионного уравнения должно быть одинаковым.

В данном случае источником ионов Уравнение методом полуреакций в щелочной среде─ была соль Уравнение методом полуреакций в щелочной среде, поэтому с каждым молем Уравнение методом полуреакций в щелочной средев раствор попадает 2 моль ионов Уравнение методом полуреакций в щелочной среде. В реакции они участия не принимают, поэтому в неизменном виде должны перейти в правую часть уравнения. Вместе с 14 моль ионов Уравнение методом полуреакций в щелочной средев раствор вносится 14 моль ионов Уравнение методом полуреакций в щелочной среде. Из них 6 участвует в реакции в качестве восстановителя, а остальные 8, как и ионы Уравнение методом полуреакций в щелочной среде, в неизменном виде остаются после реакции, т.е. дописываются в правую часть.

В результате получаем:

Уравнение методом полуреакций в щелочной среде

После этого можно объединить ионы в формулы реальных веществ:
Уравнение методом полуреакций в щелочной среде

Рассмотрим другой пример.

Задача. Закончить уравнение реакции Уравнение методом полуреакций в щелочной среде→ …

Ион Уравнение методом полуреакций в щелочной средесодержит марганец в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда нейтральная.

Полуреакция восстановления: Уравнение методом полуреакций в щелочной среде

Если ион Уравнение методом полуреакций в щелочной средебудет выступать в роли окислителя, то пероксид водорода — в роли восстановителя. По схеме составляем полуреакцию восстановления:

Уравнение методом полуреакций в щелочной среде

Оформляем уравнение ОВР, протекающей в нейтральной среде:

  • Т.к в нейтральной среде ни ионов Уравнение методом полуреакций в щелочной среде, ни Уравнение методом полуреакций в щелочной средев левой части быть не должно, значит, для уравнивания атомов кислорода в правую часть добавляем воду:

Уравнение методом полуреакций в щелочной среде

  • Оформление полуреакции становится подобным оформлению полуреакции в щелочной среде: в противоположную часть добавляем удвоенное число гидроксид-ионов:

Уравнение методом полуреакций в щелочной среде

  • Перед Уравнение методом полуреакций в щелочной средеставим коэффициент, показывающий разницу в числе атомов кислорода в правой и левой частях полуреакций, а перед Уравнение методом полуреакций в щелочной среде— его удвоенный коэффициент:

Уравнение методом полуреакций в щелочной среде

  • Подсчитываем заряды в полуреакциях, уравниваем заряд. Балансируем (уравниваем) число отданных и принятых электронов в полуреакциях:

Уравнение методом полуреакций в щелочной среде

  • Суммируем сначала левые, а затем правые части полуреакций, не забывая предварительно умножить множитель на коэффициент, если он стоит перед формулой:

Уравнение методом полуреакций в щелочной среде

  • Сокращаем в правой и левой части одинаковые молекулы и ионы:

Уравнение методом полуреакций в щелочной среде

Таким образом, получаем ионное уравнение.

  • Добавляем недостающие катионы или анионы, учитывая, что количество добавляемых ионов в правую и левую части ионного уравнения должно быть одинаковым:

Уравнение методом полуреакций в щелочной среде

Также рассмотрим пример ОВР, протекающей с щелочной среде.

Задача. Закончить уравнение реакции: Уравнение методом полуреакций в щелочной среде

Определяем окислитель и восстановитель в данной ОВР. В нитрате ртути (II) ртуть содержится в ее высшей степени окисления, следовательно, может выступать только в роли окислителя. Составим полуреакцию восстановления.
Полуреакция восстановления:

Уравнение методом полуреакций в щелочной среде

  • Если ион Уравнение методом полуреакций в щелочной средебудет выступать в роли окислителя, то пероксид водорода — в роли восстановителя. По схеме составляем полуреакцию восстановления пероксида водорода в щелочной среде:

Уравнение методом полуреакций в щелочной среде

  • Оформляем уравнение ОВР, протекающей в щелочной среде:

Уравнение методом полуреакций в щелочной среде

  • Добавляем недостающие катионы и анионы.

Уравнение методом полуреакций в щелочной среде

Преимущества электронно-ионного метода при составлении уравнений реакций и подборе коэффициентов в сравнении с методом электронного баланса особенно проявляются при составлении уравнений реакций с участием органических соединений.

Задача. Составьте уравнение окисления ацетилена раствором Уравнение методом полуреакций в щелочной средедо щавелевой кислоты в нейтральной среде.

Составляем схему реакции:

Уравнение методом полуреакций в щелочной среде

Уравнение методом полуреакций в щелочной средевыступаем в роли окислителя, т.к. содержит марганец в его высшей степени окисления.
Следовательно, схема полуреакции восстановления имеет вид:

Уравнение методом полуреакций в щелочной среде

Схема полуреакции окисления:

Уравнение методом полуреакций в щелочной среде

Оформляем уравнение ОВР, протекающей в нейтральной среде:

  • Т.к в нейтральной среде ни ионов Уравнение методом полуреакций в щелочной среде, ни Уравнение методом полуреакций в щелочной средев левой части быть не должно, значит, для уравнивания атомов кислорода в правую часть добавляем воду:

Уравнение методом полуреакций в щелочной среде

  • Оформление полуреакции становится подобным оформлению полуреакции в щелочной среде: в противоположную часть добавляем удвоенное число гидроксид-ионов. Перед Уравнение методом полуреакций в щелочной средеставим коэффициент, показывающий разницу в числе атомов кислорода в правой и левой частях полуреакций, а перед Уравнение методом полуреакций в щелочной средеего удвоенный коэффициент. Подсчитываем заряды в полуреакциях, уравниваем заряд. Балансируем (уравниваем) число отданных и принятых электронов в полуреакциях:

Уравнение методом полуреакций в щелочной среде

  • Составляем ионное уравнение:

Уравнение методом полуреакций в щелочной среде

  • Сокращаем в правой и левой части одинаковые молекулы, добавляем недостающие катионы:

Уравнение методом полуреакций в щелочной среде

Задача. Составьте уравнение реакции окисления фенола дихроматом калия в кислой среде до хинона:

Уравнение методом полуреакций в щелочной среде

Ион Уравнение методом полуреакций в щелочной средесодержит хром в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда кислотная Уравнение методом полуреакций в щелочной среде.

Уравнение методом полуреакций в щелочной среде

Используем правила оформления уравнений ОВР, протекающих в кислотной среде.

Уравнение методом полуреакций в щелочной среде
Сокращаем в правой и левой части одинаковые молекулы, добавляем недостающие катионыи анионы:

Уравнение методом полуреакций в щелочной среде

Рассмотрев метод электронно-ионного баланса или метод полуреакций можно выделить следующие достоинства данного метода:

  1. Рассматриваются реально существующие ионы и вещества.
  2. Не нужно знать все получающиеся вещества, они появляются в уравнении реакции при его выводе.
  3. Необязательно знать степени окисления. Понятие степени окисления в органической химии употребляется реже, чем о неорганической химии.
  4. Этот метод дает сведения не только о числе электронов, участвующих в каждой полуреакции, но и о том, как изменяется среда.
  5. Сокращенные ионные уравнения лучше передают смысл протекающих процессов и позволяют делать определенные предположения о строении продуктов реакции.

Домашнее задание: Закончить уравнения:

Уравнение методом полуреакций в щелочной среде

В качестве проверочной работы по изученной теме предлагаю учащимся лабораторные опыты. Учащимся необходимо провести ОВР, объяснить происходящие явления, составив уравнения реакций с помощью метода полуреакций.

Лабораторные опыты «Окислительно-восстановительные реакции»

В три стакана налейте малиновый раствор перманганата калия. Добавьте в первый стакан немного раствора серной кислоты, во второй – воду, в третий – концентрированный раствор гидроксида калия. Окраска растворов при этом не изменяется. Добавьте во все стаканы по 5 мл сульфита калия и хорошо перемешайте смеси стеклянной палочкой.

Задание: объясните изменение окраски растворов, составив ОВР методом полуреакций.

Литература:

Д.Д. Друзцова, Л.Б. Бестаева Окислительно-восстановительные реакции. – М.:Дрофа,2005.

💥 Видео

Основы метода полуреакций для 30 заданияСкачать

Основы метода полуреакций для 30 задания

(2) ОВР. Метод полуреакций.Скачать

(2) ОВР. Метод полуреакций.

(6). ОВР. Хром. Щелочная среда.Скачать

(6). ОВР. Хром. Щелочная среда.

Окислительно-восстановительные реакции в щелочноной среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в щелочноной среде. Упрощенный подход.

Окислительно-восстановительные реакции. Метод электронно-ионного баланса.Скачать

Окислительно-восстановительные реакции. Метод электронно-ионного баланса.

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 6ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 6ч. 10 класс.

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 3ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 3ч. 10 класс.

Окислительно-восстановительные реакции в кислой среде. Продвинутый подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Продвинутый подход.

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 2ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 2ч. 10 класс.

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 4ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 4ч. 10 класс.

метод полуреакций для составления ОВРСкачать

метод полуреакций для составления ОВР

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Метод электронно-ионного балансаСкачать

Метод электронно-ионного баланса

ОВР 8 органика + KMnO4 в щелочной средеСкачать

ОВР 8 органика + KMnO4  в щелочной среде

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.
Поделиться или сохранить к себе: