Уравнение логарифмической спирали в декартовых координатах

Видео:Логарифмическая спиральСкачать

Логарифмическая спираль

Упражнения

1. Нарисуйте кривую, задаваемую уравнением r = sin 4 φ .

2. Нарисуйте кривую, задаваемую уравнением r = cos φ .

3. Для параболы x 2 = 4 ay выберем в качестве полярной оси луч, идущий по оси Oy с началом в фокусе F (0, a ) параболы. Переходя от де­картовых к полярным координатам, покажите, что парабола с выколотой вершиной задается уравнением

Уравнение логарифмической спирали в декартовых координатах .

4. Докажите, что уравнение

Уравнение логарифмической спирали в декартовых координатах

задает эллипс, если 0 Уравнение логарифмической спирали в декартовых координатах Уравнение логарифмической спирали в декартовых координатах > 1.

5. Нарисуйте спираль Архимеда, заданную уравнением r = — φ . Чему равно расстояние между соседними витками этой спирали?

6. Человек идет с постоянной скоростью вдоль радиуса вращающейся карусели. Какой будет траектория его движения относительно земли?

7. Нарисуйте гиперболическую спираль , задаваемую уравнением r = Уравнение логарифмической спирали в декартовых координатах .

8. Нарисуйте спираль Галилея , которая задается уравнением r = a Уравнение логарифмической спирали в декартовых координатах 2 ( a > 0). Она вошла в историю математики в XVII веке в связи с задачей нахождения формы кривой, по которой двигается свободно падающая в области экватора точка, не обладающая начальной скоростью, сообщаемой ей вращением земного шара.

9. Нарисуйте кривую, задаваемую уравнением r = | Уравнение логарифмической спирали в декартовых координатах |.

10. Нарисуйте кривую, задаваемую уравнением r = Уравнение логарифмической спирали в декартовых координатах .

11. Нарисуйте кривую, задаваемую уравнением r = Уравнение логарифмической спирали в декартовых координатах .

12. Найдите параметрические уравнения: а) спирали Архимеда; б) логарифмической спирали.

1. Березин В. Кардиоида //Квант. – 1977. № 12.

2. Березин В. Лемниската Бернулли //Квант. – 1977. № 1.

3. Берман Г.Н. Циклоида. – М.: Наука, 1975.

4. Бронштейн И. Эллипс. Гипербола. Парабола / Такая разная геометрия. Составитель А.А. Егоров. – М.: Бюро Квантум, 2001. — / Приложение к журналу «Квант» № 2/2001.

5. Васильев Н.Б., Гутенмахер В.Л. Прямые и кривые. – 3-е изд. – М.: МЦНМО, 2000.

6. Маркушевич А.И. Замечательные кривые. – М.- Л.: Гос. изд. течн. – теор. лит., 1951. — / Популярные лекции по математике, выпуск 4.

7. Савелов А.А. Плоские кривые. – М.: ФИЗМАТЛИТ, 1960.

8. Смирнова И.М., Смирнов В.А. Кривые. Курс по выбору. 9 класс. – М.: Мнемозина, 2007.

9. Смирнова И.М., Смирнов В.А. Геометрия. Учебник для 7-9 классов общеобразовательных учреждений. – М.: Мнемозина, 2011.

10. Смирнова И.М., Смирнов В.А. Компьютер помогает геометрии. – М.: Дрофа, 2003.

Видео:Как проиллюстрировать отображение параметра для логарифмической спирали в декартовых координатах.Скачать

Как проиллюстрировать отображение параметра для логарифмической спирали в декартовых координатах.

Исследовательская работа:» Логарифмическая спираль.»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

МБОУ «СОШ №1 им. Героя Советского Союза

П.В. Масленникова ст. Архонская».

Уравнение логарифмической спирали в декартовых координатах

учащийся 10 «А» класса

Архимед (287 г. до н. э. — 212г. до н. э.) — древнегреческий математик, физик и инженер из Сиракуз (остров Сицилия). Он сделал множество открытий в геометрии. Заложил основы механики, гидростатики, автор ряда важных изобретений.

Архимедова спираль была открыта Архимедом. Это произошло в III веке до н.э., когда он экспериментировал с компасом. Он тянул стрелку компаса с постоянной скоростью, вращая сам компас по часовой стрелке. Получившаяся кривая была спиралью, которая сдвигались на ту же величину, на которую поворачивался компас, и между витками спирали сохранялось одно и то же расстояние.

Архимедову спираль использовали в древности, как наилучший способ определения площади круга. С ее помощью был улучшен древний греческий метод нахождения площади круга через измерение длины окружности. Спираль дала возможность более точного измерения длины окружности, а следовательно, и площади круга.

В III веке да нашей эры Архимед на основе своей спирали изобрёл винт, который успешно применяли для передачи воды в оросительные каналы из водоёмов, расположенных ниже. Позже на основе винта Архимеда создали шнек («улитку»). Его очень известная разновидность — винтовой ротор в мясорубке. Шнек используют в механизмах для перемешивания материалов различной консистенции.

Уравнение логарифмической спирали в декартовых координатах

Определение спирали Архимеда

Кривую можно рассматривать как траекторию точки, равномерно движущейся по лучу, исходящему из полюса, в то время как этот луч равномерно вращается вокруг полюса.

Представим себе циферблат часов с длинной стрелкой. Стрелка движется по окружности циферблата. А по стрелке в это время перемещается с постоянной скоростью маленький жучок. Траектория движения жучка представляет собой спираль Архимеда.

Построение спирали Архимеда

Чтобы понять, как получается спираль Архимеда, отметим на чертеже точку, которая является центром спирали Архимеда.

Построим из центра спирали окружность, радиус которой равен шагу спирали. Шаг спирали Архимеда равен расстоянию, которое проходит точка по поверхности круга за один его полный оборот.

Разделим окружность на несколько равных частей с помощью прямых линий. На первой линии откладываем одно деление, на второй-два деления, на третьей-три деления и т. д. Затем чертим соответствующее число дуг из центра окружности, проходящих через первое деление,2-ое и т. д.

Расстояния витков правой спирали, считая по лучу, равны ,а расстояния соседних витков, равны.

Уравнение Архимедовой спирали имеет вид:

В полярных координатах кривая может быть записана как

Уравнение логарифмической спирали в декартовых координатах

Уравнение логарифмической спирали в декартовых координатах,

где Уравнение логарифмической спирали в декартовых координатах— угол отклонения точки от нуля, r — радиус-вектор точки, a — коэффициент, отвечающий за расстояние между витками, b — коэффициент, отвечающий за густоту витков.

В параметрической форме может быть записана как

Уравнение логарифмической спирали в декартовых координатах

Уравнение логарифмической спирали в декартовых координатах

где a , b — действительные числа, t — аналог Уравнение логарифмической спирали в декартовых координатахв выражении в полярный координатах

Полярный угол мы отсчитываем от полярной оси, считая его положительным против часовой стрелки.

При вращении луча против часовой стрелки получается правая спираль (синяя линия) при вращении — по часовой стрелке — левая спираль (красная линия).

Полярный радиус-вектор мы будем брать как положительным, так и отрицательным; в первом случае его откладывают в направлении, определяемом углом , а во втором в противоположном направлении.

Уравнение логарифмической спирали в декартовых координатах

Логарифмическая спираль была впервые описана Декартом (1638 г., опубликовано в 1657 г). Декарт искал кривую, обладающую свойством, подобным свойству окружности, так чтобы касательная в каждой точке образовывала с радиус-вектором в каждой точке один и тот же угол. Отсюда и название равноугольная. Он показал, что это условие равносильно тому, что полярные углы для точек кривой пропорциональны логарифмам радиус-векторов. Отсюда и второе название: логарифмическая спираль. Независимо от Декарта она была открыта Э. Торричелли в 1644 г. Свойства логарифмической спирали исследовал Я. Бернулли (1692 г.). Её название предложено П. Вариньоном (1704 г.).

Определение логарифмической спирали

Логарифмическая спираль — кривая, которая пересекает все лучи, выходящие из одной точки О, под одним и тем же углом.

Уравнение логарифмической спирали в декартовых координатах

Основные свойства логарифмической спирали

1.Угол, составляемый касательной в произвольной точке логарифмической спирали с радиус-вектором точки касания, постоянный и зависит лишь от параметра .

Уравнение логарифмической спирали в декартовых координатах

2.Параметр m определяет, насколько плотно и в каком направлении закручивается спираль. В предельном случае, когда =0 спираль вырождается в окружность радиуса . Наоборот, когда стремится к бесконечности ( спираль стремится к прямой линии. Угол, дополняющий до 90°, называется наклоном спирали.

3.Размер витков логарифмической спирали постепенно увеличивается, но их форма остаётся неизменной.

4. Если угол возрастает или убывает в арифметической прогрессии, то возрастает (убывает) в геометрической.

Уравнение логарифмической спирали в декартовых координатах

5.Поворачивая полярную ось вокруг полюса, можно добиться полного уничтожения параметра a и привести уравнение к виду r=, где — новый параметр.

6. Радиус кривизны в каждой точке спирали пропорционален длине дуги спирали от ее начала до этой точки.

Логарифмическая спираль в природе.

Логарифмическая спираль — единственный тип спирали, не меняющей своей формы при увеличении размеров. Это свойство объясняет, почему логарифмическая спираль так часто встречается в природе.

Царство животных предоставляет нам примеры спиралей раковин, улиток и моллюсков.

Уравнение логарифмической спирали в декартовых координатах

Все эти формы указывают на природное явление: процесс накручивания связан с процессом роста. В самом деле, раковина улитки — это не больше, не меньше, чем конус, накрученный на себя. Если мы внимательно посмотрим на рост раковин и рогов, то заметим еще одно любопытное свойство: рост происходит только на одном конце. И это свойство сохраняет форму полностью уникальную среди кривых в математике, форму логарифмической, или равноугольной спирали.

Галактики, штормы и ураганы дают впечатляющие примеры логарифмических спиралей.

Уравнение логарифмической спирали в декартовых координатах

И наконец, в любом месте, где есть природное явление, в котором сочетаются расширение или сжатие с вращением появляется логарифмическая спираль.

В растительном мире примеры еще более бросаются в глаза, потому что у растения может быть бесконечное число спиралей, а не только одна спираль у каждого.

Расположение семечек в любом подсолнечнике, чешуек в любом ананасе и другие разнообразные виды растений, простые ромашки… дают нам настоящий парад переплетающихся спиралей.

Уравнение логарифмической спирали в декартовых координатахУравнение логарифмической спирали в декартовых координатах

Логаpифмическую спиpаль называют самой кpасивой из математических кpивых. Эта спиpаль встpечается в пpиpоде уже миллионы лет, ведь это единственная математическая кpивая, следующая фоpме pоста, выpаженной в “чудесной спиpали” (Spira Mirabilis), котоpую обычно называют pаковиной наутилуса. Две части этой спиpали могут отличаться pазмеpами, но никак не фоpмой. У этой спиpали нет пpедельной точки.

Видео:Спираль Архимеда построениеСкачать

Спираль Архимеда построение

Уравнение логарифмической спирали в декартовых координатах

Уравнение логарифмической спирали в декартовых координатах

Логарифмическая спираль – плоская трансцендентная кривая. Ее уравнение в полярных координатах имеет вид
ρ = ае kφ , (*)
где k = ctg a (см. рис.).
При a = p /2 параметр k = 0 и кривая «вырождается» в окружность. Она пересекает все свои радиус-векторы под одним и тем же углом a ; по этой причине ее называют иногда «равноугольной».

Полюс О системы полярных координат (в которых уравнение кривой имеет вид (*)) – асимптотическая точка кривой (кривая к ней неограниченно приближается при φ → –∞).

Длина L дуги кривой между ее точками (ρ1; φ1) и (ρ2; φ2) вычисляется по формуле
Уравнение логарифмической спирали в декартовых координатах
а длину L0 дуги от точки (ρ; φ) до асимптотической точки – полюса – можно вычислить так:
Уравнение логарифмической спирали в декартовых координатах

🌟 Видео

Длина параболы и спирали Архимеда: что у них общего?Скачать

Длина параболы и спирали Архимеда: что у них общего?

§6 Спираль АрхимедаСкачать

§6 Спираль Архимеда

Почему простые числа образуют спирали? [3Blue1Brown]Скачать

Почему простые числа образуют спирали? [3Blue1Brown]

Логарифмическая спираль и числа Фибоначчи в творчестве Н.К.РерихаСкачать

Логарифмическая спираль и числа Фибоначчи в творчестве Н.К.Рериха

9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6Скачать

9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6

Скорость и ускорение точки в полярных координатахСкачать

Скорость и ускорение точки в полярных координатах

Построение кривой в полярной системе координатСкачать

Построение кривой в полярной системе координат

Полярная Система Координат.Скачать

Полярная Система Координат.

Полярная система координатСкачать

Полярная система координат

Модель декартовой системы координат.Скачать

Модель декартовой системы координат.

§55 Цилиндрическая система координатСкачать

§55 Цилиндрическая система координат

Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать

Матан за час. Шпаргалка для первокурсника. Высшая математика

Площадь фигуры, заданной в полярной системе координатСкачать

Площадь фигуры, заданной в полярной системе координат

Модель спирали КорнюСкачать

Модель спирали Корню

Полярная система координат, построение графика, примерыСкачать

Полярная система координат, построение графика, примеры

Лекальные кривые. Спираль Архимеда. Эвольвента окружности. ЦиклоидаСкачать

Лекальные кривые. Спираль Архимеда. Эвольвента окружности. Циклоида
Поделиться или сохранить к себе: