Линии второго порядка
1. Основные понятия.
6. Общее уравнение линий второго порядка.
ОСНОВНЫЕ ПОНЯТИЯ
Рассмотрим линии, определяемые уравнениями второй степени относительно текущих координат
.
Коэффициенты уравнения – действительные числа, но, по крайней мере, одно из чисел отлично от нуля. Такие линии называются линиями (кривыми) второго порядка.
ОКРУЖНОСТЬ
Простейшей кривой второго порядка является окружность.
Определение. Окружностью радиуса R с центром в точке называется множество всех точек плоскости, удовлетворяющих условию .
Каноническое уравнение окружности .
Эллипс
Определение. Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная и большая, чем расстояние между фокусами.
Каноническое уравнение эллипса .
у
с – половина расстояния между фокусами; a – большая полуось; b – малая полуось.
и называются фокальными радиусами. ,
Теорема. Фокусное расстояние и полуоси эллипса связаны соотношением:
Определение.Характеристикой эллипса, показывающей меру его вытянутости, является эксцентриситет – величина, определяемая отношением: .
Замечание. Для эллипса .
Определение.Прямые называются директрисами эллипса.
Теорема. Если – расстояние от произвольной точки эллипса до какого-нибудь фокуса, – расстояние от этой же точки до соответствующей этому фокусы директрисы, то отношение есть постоянная величина, равная эксцентриситету эллипса: .
Замечание. Если a = b, то c = 0, а значит, фокусы сливаются, и эллипс превращается в окружность.
Если же , то уравнение определяет эллипс, большая ось которого лежит на оси Оу, а малая ось – на оси Ох. Фокусы такого эллипса находятся в точках F1 (0;с); F2(0;-с), где b 2 = a 2 + c 2 .
Пример. Составьте уравнение эллипса, если его фокусы F1(0; 0), F2(1; 1), а большая ось равна 2.
Уравнение эллипса имеет вид: .
Расстояние между фокусами: 2c = , таким образом,
a 2 – b 2 = c 2 = .
По условию большая ось равна 2, то есть 2а = 2, откуда получаем, что
а = 1, b = .
Тогда искомое уравнение эллипса имеет вид: .
Гипербола
Определение. Гиперболойназывается линия, для всех точек которой модуль разности расстояний от двух данных точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.
Каноническое уравнение гиперболы .
y
Теорема. Фокусное расстояние и полуоси гиперболы связаны соотношением:
Ось 2а называется действительной осью гиперболы.
Ось 2b называется мнимой осью гиперболы.
Прямоугольник со сторонами 2а и2b называется основным прямоугольником гиперболы.
Гипербола имеет две асимптоты, уравнения которых
Замечание.Для гиперболы эксцентриситет .
Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/ε от него, называются директрисами гиперболы. Их уравнения: .
Определение. Гипербола называется равносторонней, если ее полуоси равны ( ).
Ее каноническое уравнение .
Определение. Эксцентриситетом гиперболы называется отношение расстояние между фокусами к величине действительной оси гиперболы, обозначается : .
Кривая, определяемая уравнением , также есть гипербола, действительная ось которой расположена на оси , а мнимая ось – на оси .
Гиперболы и имеют общие асимптоты. Такие гиперболы называются сопряженными.
Пример. Составьте уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса, заданного уравнением
Найдем фокусное расстояние для эллипса:
Тогда искомое уравнение гиперболы .
Парабола
Определение. Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.
Каноническое уравнение параболы y 2 = 2px .
у
Видео:Кривые второго порядкаСкачать
03.9.2. Линии первого порядка
К линиям первого порядка относятся те линии, для которых задающее их уравнение (3.9) содержит переменные X и у только в первой степени. Иными словами, такие линии описываются уравнениями вида
Где А, В и С — постоянные числа. Из этого уравнения можно выразить переменную У как функцию от аргумента Х При В ≠ 0:
Уравнение (3.11) называют Уравнением прямой с угловым коэффициентом K = tg φ, где φ — угол наклона прямой к положительному направлению оси Ох (рис. 3.9). Если K = 0, то прямая параллельна оси Ох и отстоит от нее на B масштабных единиц.
Определим самые необходимые элементы знания о прямых на плоскости.
1. Кроме «классического» уравнения прямой (3.11) следует знать еще две его разновидности. Первая из них — это уравнение прямой с заданным угловым коэффициентом K, проходящей через заданную точку М0(X0, У0):
Другой вид — это уравнение прямой, проходящей через две заданные точки на плоскости M1(X1, Y1) и М2(х2, у2):
2. Угол между прямыми. Рассмотрим две прямые, заданные уравнениями У = K1X + B1 и У = K2X + B2, где K1 = tg φ1 И K2 = tg φ2 (рис. 3.10). Пусть φ — угол между этими прямыми. Тогда φ = φ2 — φ1 и мы получаем tg φ = tg (φ2 — φ1) = Или, что то же самое,
Формула (3.12) определяет один из углов между пересекающимися прямыми; второй угол равен π — φ.
Из равенства (3.12) вытекают условия параллельности и перпендикулярности прямых. В самом деле, если прямые параллельны, то
Если прямые перпендикулярны, то α2 = π/2 + α1, откуда tg α2 = — ctg α1 = -1 / tg α1, или окончательно
Пример 1. Найти угол между прямыми, заданными уравнениями У = 2X — 5 и У = -3X + 4.
Решение. Подставляя в формулу (3.12) значения K1 = 2 и K2 = -3, имеем
Откуда получаем, что один из углов равен φ = π / 4.
3. Расстояние от точки до прямой. Пусть прямая задана уравнением общего вида (3.10). Тогда расстояние D От произвольной точки М0(X0, Y0) до прямой (рис. 3.11) дается формулой
Видео:Аналитическая геометрия, 7 урок, Линии второго порядкаСкачать
Кривые второго порядка — определение и построение с примерами решения
Содержание:
Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде
- Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения
- если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.
Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если , то есть (а, b) — решение уравнения F(x,y) = 0.
Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.
Возможны два вида задач:
- дано уравнение и надо построить фигуру Ф, уравнением которой является ;
- дана фигура Ф и надо найти уравнение этой фигуры.
Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.
Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:
- Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
- Записать в координатах условие, сформулированное в первом пункте.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Эллипс
Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между ).
Точки называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с b. В этом случае а называется большой полуосью, a b — малой.
Если а =Ь, то уравнение (7.3) можно переписать в виде:
(7.5)
Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами будет окружность (4) переводить в эллипс, заданный соотношением
Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым
Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами . Их длины и задаются формулами Прямые называются директрисами эллипса. Директриса называется левой, а — правой. Так как для эллипса и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая — правее правой вершины.
Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать
Гипербола
Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между ).
Точки называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов обозначим через а. По условию, а 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А — произвольная точка плоскости с координатами (х, у) и пусть . Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты .
Тогда А расстояние Подставив в формулу r=d, будем иметь. Возведя обе части равенства в квадрат, получим
или
(9.4.1)
Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.
Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а О. Для этого выделим полный квадрат:
и сделаем параллельный перенос по формулам
В новых координатах преобразуемое уравнение примет вид: где р — положительное число, определяется равенством .
Пример:
Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстоянию, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F — фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условию, запишем это равенство с помощью координат: , или после упрощения . Это уравнение геометрического места точек, образующих параболу (рис. 9.8).
Видео:Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать
Кривые второго порядка на плоскости
Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:
где коэффициенты А, В и С не равны одновременно нулю
Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.
Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.
Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению
которое называют каноническим уравнением эллипса.
Число а называют большей полуосью эллипса, число — мень-
шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки называют вершинами эллипса, а — его фокусами (рис. 12).
Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.
Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.
В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.
Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.
Так, в случае а>b эксцентриситет эллипса выражается формулой:
Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности Чем больше эксцентриситет, тем более вытянут эллипс.
Пример:
Показать, что уравнение
является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.
Решение:
Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:
— каноническое уравнение эллипса с центром в точке большей полуосью а=3 и меньшей полуосью
Найдем эксцентриситет эллипса:
Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.
В новой системе координат координаты вершин и фокусов гиперболы будут следующими:
Переходя к старым координатам, получим:
Построим график эллипса.
Задача решена.
Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.
Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
💥 Видео
Лекция 31.1. Кривые второго порядка. ЭллипсСкачать
Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать
Видеоурок "Общее уравнение кривой 2 порядка"Скачать
Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
13. Как решить дифференциальное уравнение первого порядка?Скачать
Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать
9 класс, 5 урок, Уравнение линии на плоскостиСкачать
Лекция 31.2. Кривые второго порядка. Гипербола.Скачать
Видеоурок "Гипербола"Скачать
Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать
Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать
Математика без Ху!ни. Уравнение плоскости.Скачать