Уравнение конуса в цилиндрических координатах

Примеры применения цилиндрических и сферических координат
Примеры применения цилиндрических и сферических координат
  1. Услуги проектирования
  2. Тройной интеграл
  3. Примеры применения цилиндрических и сферических координат

Видео:Объем параболоида: тройной интеграл в цилиндрической системе координатСкачать

Объем параболоида: тройной интеграл в цилиндрической системе координат

Примеры применения цилиндрических и сферических координат

Как и в случае перехода к полярным координатам в двойном интеграле, дать однозначный рецепт того, когда следует применять цилиндрические или сферические координаты, нельзя, это дело опыта. Можно попробовать применить цилиндрические координаты, если подынтегральная функция и/или уравнения поверхностей, ограничивающих объём $mathbf < textit > $, зависят от комбинации $mathbf < textit > ^ +mathbf < textit > ^ =mathbf < textit > ^ $; сферические — если эти уравнения зависят от $mathbf < textit > ^ +mathbf < textit > ^ +mathbf < textit > ^ =mathbf < textit > ^ $. Рассмотрим ряд примеров.

Найти объём $mathbf < textit > $ общей части двух шаров, ограниченных сферами

Уравнение конуса в цилиндрических координатах

Решение:

Пересечение сфер находится на уровне $2Rz=R^2Rightarrow z=R/2$ и представляет собой круг радиуса $Rfrac $. Объём $mathbf < textit > $ограничен сверху поверхностью $z=sqrt $, снизу — поверхностью $z=R-sqrt $. Вычисления в декартовых координатах дают $V=iiintlimits_V =iiintlimits_V =intlimits_ < -Rfrac > ^ < Rfrac > < dxintlimits_ < -sqrt < frac R^2-x^2 > > ^ < sqrt < frac R^2-x^2 > > < dyintlimits_ < R-sqrt > ^ < sqrt > > > $ — достаточно громоздкие выкладки.

В цилиндрических координатах объём $mathbf < textit > $ ограничен сверху поверхностью $z=sqrt $, снизу — поверхностью $z=R-sqrt $, поэтому

В сферических координатах уравнение нижней сферы принимает вид $r=R$, верхней — $r^2=2Rrcos theta Rightarrow r=2Rcos theta $, их пересечение соответствует значению $cos theta =1/2Rightarrow theta =pi /3$. В интервале $0leqslant theta leqslant pi /3 quad mathbf < textit > $ меняется от $0$ до $mathbf < textit > $, в интервале $pi /3leqslant theta leqslant pi /2 quad mathbf < textit > $ меняется от $0$ до $2Rcos theta $, поэтому

Уравнение конуса в цилиндрических координатах

В этом примере трудоёмкость вычислений в цилиндрических и сферических координатах примерно одинакова.

Уравнение конуса в цилиндрических координатах

Решение:

Параболоид и конус пересекаются в плоскости $x=2-x^2Rightarrow x=1$ по кругу радиуса 1. Осью симметрии объёма $mathbf < textit > $ служит ось $mathbf < textit > $, поэтому цилиндрические координаты вводим формулами $x=x,quad y=rcos varphi ,quad z=rsin varphi ; quad I=iiintlimits_V =iiintlimits_V =intlimits_0^ < dvarphi intlimits_0^1 < rdrintlimits_r^ > > =$ $ =intlimits_0^ < dvarphi intlimits_0^1 < left. < frac >right|_r^ rdr > > +intlimits_0^ < (cos varphi +sin varphi )dvarphi intlimits_0^1 < left. x right|_r^ r^2dr > > =pi intlimits_0^1 < left( right)dr > =frac . $ Применение сферических координат в этом примере нецелесообразно .

Решение:

Здесь область интегрирования — шар радиуса 1/2, сдвинутый по оси $mathbf < textit > $ на 1/2 единицы, подынтегральная функция зависит от выражения $mathbf < textit > ^ +mathbf < textit > ^ +mathbf < textit > ^ $, поэтому применим сферические координаты. Уравнение сферы $x^2+y^2+z^2=zRightarrow r^2=rcos theta Rightarrow r=cos theta left( right)$ , поэтому $I=iiintlimits_V < sqrt dxdydz > =iiintlimits_V =intlimits_0^ < dvarphi intlimits_0^ intlimits_0^ > =frac intlimits_0^ < left. right|_0^ sin theta dtheta > = \ =frac intlimits_0^ =-frac left. right|_0^ =frac $.

Вычислить объём тела, ограниченного поверхностью $left( right)^ =a^3z,;a=const>0$

Уравнение конуса в цилиндрических координатах

Решение:

Здесь тоже для того, чтобы понять, как устроено тело, и найти его объём, надо перейти к сферическим координатам < на это указывает комбинация $mathbf < textit > ^ +mathbf < textit > ^ +mathbf < textit > ^ =mathbf < textit > ^ )$. Уравнение поверхности $left( right)^ =a^3zRightarrow r^4=a^3rcos vartheta Rightarrow r=asqrt[3] ;left( right)$. По этому уравнению поверхность построить уже можно; отсутствие координаты $varphi $ в уравнении показывает, что это — тело вращения вокруг оси $mathbf < textit > $. Находим объём: $ V=iiintlimits_V =intlimits_0^ < dvarphi intlimits_0^ > theta dtheta intlimits_0^ < asqrt[3] > =frac intlimits_0^ < left. right|_0^ < asqrt[3] > sin theta dtheta = > $ $ =frac intlimits_0^ frac . $

Вычислить интеграл $iiintlimits_U < left( < + 2 + >right)dxdydz > ,$ где область (U) ограничена поверхностью ( + le 1) и плоскостями (z = 0,) (z = 1).

Уравнение конуса в цилиндрических координатах

Решение:

Данный интеграл удобно вычислить в цилиндрических координатах. Проекция области интегрирования на плоскость (Oxy) представляет собой круг ( + le 1) или (0 le rho le 1).

Уравнение конуса в цилиндрических координатах

Заметим, что подынтегральное выражение записывается в виде $ < left( < + 2 + >right) > = < < left( < + >right)^2 > > = < < left( < >right)^2 > = > $

Тогда интеграл будет равен $I = intlimits_0^ intlimits_0^1 < rho drho > intlimits_0^1 .$

Здесь во втором интеграле добавлен множитель (rho) якобиан преобразования декартовых координат в цилиндрические. Все три интеграла по каждой из переменной не зависят друг от друга.

Вычислить интеграл $iiintlimits_U < left( < + >right)dxdydz > ,$ где область (U) ограничена поверхностями ( + = 3z,) (z = 3)

Решение:

Область интегрирования изображена на рисунке

Уравнение конуса в цилиндрических координатах

Для вычисления интеграла перейдем к цилиндрическим координатам: $ ;; ;; $ Дифференциал при этом равен $dxdydz = rho drho dvarphi dz;;left( < rho — text >right).$

Уравнение параболической поверхности принимает вид: $ varphi + varphi = 3z;;text ;; = 3z.$ Проекция области интегрирования (U) на плоскость (Oxy) представляет собой окружность ( + le 9) радиусом (rho = 3).

Уравнение конуса в цилиндрических координатах

Координата (rho) изменяется в пределах от (0) до (3,) угол (varphi) от (0) до (2pi) и координата (z) от (largefrac < < > > normalsize) до (3.)

Используя цилиндрические координаты, найти значение интеграла $ I = intlimits_ ^2 intlimits_ < — sqrt < 4 — > > ^ < sqrt < 4 — > > intlimits_0^ < 4 — — > < dz > $

Решение:

Область интегрирования (U) изображена на рисунке:

Уравнение конуса в цилиндрических координатах

Ее проекция на плоскость (Oxy) представляет собой круг ( + = ):

Уравнение конуса в цилиндрических координатах

Новые переменные в цилиндрических координатах будут изменяться в пределах $ ;; ;; < 0 le z le 4 — . > $

Вычислить интеграл, используя цилиндрические координаты: $iiintlimits_U < sqrt < + > dxdydz > .$ Область (U) ограничена параболоидом (z = 4 — — ,) цилиндром ( + = 4) и плоскостями (y = 0,) (z = 0)

Уравнение конуса в цилиндрических координатах

Решение:

Изобразив схематически область интегрирования (U,) находим, что ее проекция на плоскость (Oxy) представляет собой полукруг радиусом (rho = 2).

Уравнение конуса в цилиндрических координатах

Найти интеграл $iiintlimits_U ,$ где область (U) ограничена плоскостями (z = x + 1,) (z = 0) и цилиндрическими поверхностями ( + = 1,) ( + = 4)

Уравнение конуса в цилиндрических координатах

Решение:

Вычислим данный интеграл в цилиндрических координатах. Из условия $0 le z le x + 1$ следует, что $0 le z le rho cos varphi + 1.$ Область интегрирования в плоскости (Oxy) представляет собой кольцо, ограниченное окружностями ( + = 1) и ( + = 4)

Уравнение конуса в цилиндрических координатах

Следовательно, переменные (rho) и (varphi) изменяются в интервале $1 le rho le 2,;;0 le varphi le 2pi .$

Этот результат закономерен, поскольку область (U) симметрична относительно плоскости (Oxz,) а подынтегральная функция является четной.

Найти интеграл (iiintlimits_U < sqrt < + + > dxdydz > ,) где область интегрирования (U) шар, заданный уравнением ( < + + > = 25.)

Решение:

Поскольку область (U) представляет собой шар, и к тому же подынтегральное выражение является функцией, зависящей от $fleft( < + + >right),$ то перейдем к сферическим координатам.

Вычислить интеграл $iiintlimits_U < < e^ < < < left( < + + >right) > ^ < frac > > > > dxdydz > ,$ где область (U) представляет собой единичный шар ( < + + > le 1.)

Решение:

Центр данного шара расположен в начале координат. Следовательно, в сферических координатах область интегрирования (U) описывается неравенствами $ ;; ;; $

Как видно, тройной интеграл вырождается в произведение трех однократных интегралов, каждый из которых вычисляется независимо. В результате находим $ < I = intlimits_0^ intlimits_0^1 < < e^ < > > drho > intlimits_0^pi > = < left[ < left. varphi right|_0^ >right] cdot intlimits_0^1 < left( < < e^ < > > cdot frac d >right) > cdot left[ < left. < left( right) >right|_0^pi >right] > = < 2pi cdot frac left[ < left. < left( < < e^ < > > >right) >right|_ < = 0 > ^ < = 1 > >right] cdot left( right) > = < frac < > cdot left( right) cdot 2 > = < frac < > left( right). > $

Вычислить интеграл (iiintlimits_U ,) где область (U) представляет собой часть шара ( + + le ,) расположенную в первом октанте (x ge 0, y ge 0, z ge 0.)

Решение:

Найти тройной интеграл $iiintlimits_U < left( < frac < < > > < < > > + frac < < > > < < > > + frac < < > > < < > > >right)dxdydz > ,$ где область (U) ограничена эллипсоидом $ < frac < < > > < < > > + frac < < > > < < > > + frac < < > > < < > > > = 1.$

Решение:

Для вычисления интеграла перейдем к обобщенным сферическим координатам путем следующей замены переменных: $ ;; ;; $ Модуль якобиана данного преобразования равен (left| I right| = abc sin theta .) Поэтому для дифференциалов справедливо соотношение $dxdydz = abc sin theta drho dvarphi dtheta .$ В новых координатах интеграл принимает вид: $ < I = iiintlimits_U < left( < frac < < > > < < > > + frac < < > > < < > > + frac < < > > < < > > >right)dxdydz > > = < iiintlimits_ < left[ < frac < < < < left( right) > ^2 > > > < < > > + frac < < < < left( right) > ^2 > > > < < > > + frac < < < < left( right) > ^2 > > > < < > > >right]abc sin theta drho dvarphi dtheta > > = \ = < iiintlimits_ < left[ < < ^2 > varphi , < ^2 > theta + varphi , < ^2 > theta + < ^2 > theta >right]abc sin theta drho dvarphi dtheta > > = \ = < iiintlimits_ < left[ < < ^2 > theta underbrace < left( < < ^2 > varphi + varphi >right) > _1 + < ^2 > theta >right]abc sin theta drho dvarphi dtheta > > = \ = < iiintlimits_ < underbrace < left( < theta + < ^2 > theta >right) > _1abc sin theta drho dvarphi dtheta > > = < abciiintlimits_ < sin theta drho dvarphi dtheta > . > $

Вычислить интеграл $intlimits_0^1 intlimits_0^ < sqrt < 1 — > > intlimits_0^ < sqrt < 1 — — > > < < < left( < + + >right) > ^2 > dz > ,$ используя сферические координаты.

Уравнение конуса в цилиндрических координатах

Решение:

Область интегрирования представляет собой часть шара, расположенная в первом октанте и, следовательно, ограничена неравенствами $ ;; < 0 le varphi le frac , > ;; < 0 le theta le frac . > $

Уравнение конуса в цилиндрических координатах

Далее:

Формула Гаусса — Остроградского

Класс $S$. Теорема о замкнyтости класса $S$

Поток векторного поля через поверхность

Класс M. Теорема о замкнутости класса M

Несобственные интегралы по неограниченной области

Логические операции над высказываниями

Специальные векторные поля

Вычисление объёмов

Вычисление площади поверхности

Выражение площади плоской области через криволинейный интеграл

Вычисление криволинейного интеграла второго рода. Примеры.

Вычисление поверхностного интеграла первого рода

Теорема о предполных классах

Равносильные формулы алгебры высказываний

Огравление $Rightarrow $

Конусы: определение, сечения, построение

Конусом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением

где — положительные параметры, характеризующие конус, причем .

Начало координат называется центром конуса (рис.4.44,а).

Конус является конической фигурой, поскольку вместе с любой своей точкой уравнению (4.50) удовлетворяют также все точки при луча . Точка является вершиной конуса (4.50), а любой луч , принадлежащий конусу, является его образующей .

Видео:§55 Цилиндрическая система координатСкачать

§55 Цилиндрическая система координат

Плоские сечения конуса

Сечения конуса координатными плоскостями представляют собой пары пересекающихся прямых, удовлетворяющих в этих плоскостях уравнениям (при ) или (при ) соответственно.

Рассмотрим теперь сечение конуса плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.50), получаем

При этому уравнению удовлетворяет одна вещественная точка — начало координат. При любом отличном от нуля значении параметра уравнение определяет эллипс с полуосями . Следовательно, сечение конуса плоскостью представляет с собой эллипс, центр которого лежит на оси аппликат, а вершины принадлежат координатным плоскостям и .

Таким образом, конус можно представить как поверхность, образованную эллипсами, центры которых лежат на оси аппликат, а вершины принадлежат координатным плоскостям и (см. рис.4.44,а).

Видео:Полярные координаты. Полярное уравнение эллипса.Скачать

Полярные координаты. Полярное уравнение эллипса.

Круговой конус

При все сечения конуса плоскостями становятся окружностями. Такой конус является фигурой вращения и называется прямым круговым конусом . Он может быть получен в результате вращения, например, прямой (образующей) вокруг оси аппликат (рис.4.44,б).

1. Конус является линейчатой поверхностью, поскольку может быть получен при помощи перемещения прямой.

2. Конус, образованный асимптотами гипербол, получающихся при пересечении гиперболоида плоскостями, проходящими через ось , называется асимптотическим конусом этого гиперболоида. На рис.4.44,в изображен асимптотический конус для однополостного и двуполостного гиперболоидов.

3. Конус (4.50) может быть получен из прямого кругового конуса (у которого ) в результате двух сжатий (растяжений) к координатным плоскостям и .

4. Начало канонической системы координат является центром симметрии конуса, координатные оси — осями симметрии конуса, координатные плоскости — плоскостями симметрии конуса.

В самом деле, если точка принадлежит конусу, то точки с координатами при любом выборе знаков также принадлежат конусу, поскольку их координаты удовлетворяют уравнению (4.50).

5. Рассмотрим сечение прямого кругового конуса плоскостями, не проходящими через его вершину, например, плоскостями , где — произвольная постоянная (параметр) — угловой коэффициент прямой в плоскости . Заметим, что образующие рассматриваемого конуса в плоскости описываются уравнением с угловым коэффициентом . Подставляя в уравнение конуса, получаем

Это уравнение проекции на координатную плоскость линии пересечения плоскости с конусом. Вычисляем инварианты

taucdotDelta=k^2-2 . По таблице 3.2 определяем, что рассматриваемое сечение, которое пересекает все образующие прямого кругового конуса, является эллипсом. При 1″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAVBAMAAADlb+D4AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAwAFBgwIcMaGw61tx0C5PF/kAAADbSURBVCjPY2DAD45D6Sasss4MDI7CQFoUXYIdIstq+ByLbHifAkQv4yJMWeaF66CyehNgsiUJcGklOais3QGYLLMEXJoJJutXkCEONZlZwgBNlklKffYSmL3sjQZosi9LWF7DXRXWuAlFlvltA1sBws1svRuQZVlerkxA8hGbL4os46KsCQhZti5Uk/Um8AqchsmyobvK7oDWhGkwH000gpqhcE8JLHuugGflBlhoFMBC8t27dw4gWTYGhjSovRVIIakE0QsEoTBXBWDGLxiI4op9PLLuUHoSFjkA6I4yBZZKaW0AAAAASUVORK5CYII=» style=»vertical-align: middle;» /> имеем . По таблице 3.2 определяем, что рассматриваемое сечение, которое параллельно двум образующим кругового конуса, является гиперболой. При имеем . По таблице 3.2 определяем, что рассматриваемое сечение, которое параллельно одной образующей кругового конуса, является параболой. Поскольку при аффинных преобразованиях тип линий не изменяется, такой же вывод можно сделать для произвольного конуса (4.50):

– сечение конуса плоскостью, пересекающей все его образующие, является эллипсом (рис.4.45,а);

– сечение конуса плоскостью, параллельной двум его образующим, является гиперболой (рис.4.45,б);

– сечение конуса плоскостью, параллельной одной его образующей, является параболой (рис.4.45,в).

6. Конические сечения могут быть взяты в качестве эквивалентных определений эллипса, гиперболы, параболы.

Видео:Пример решения тройного интеграла в цилиндрических координатах - bezbotvyСкачать

Пример решения тройного интеграла в цилиндрических координатах - bezbotvy

Поверхности второго порядка. Конические поверхности.

Поверхность S называется конической поверхностью с вершиной в точке O, если для любой точки M0

этой поверхности прямая, проходящая через M0 и O, целиком принадлежит этой поверхности.

Функция F(x,y,z) называется однородной порядка m, если Уравнение конуса в цилиндрических координатахвыполняется следующее:

Теорема (об уравнении конической поверхности).

Если в некоторой декартовой прямоугольной системе координат поверхность S задана

Если поверхность S задана функцией F(x,y,z), являющейся однородным алгебраическим многочленом

второго порядка, то S называется конической поверхностью второго порядка.

Каноническое уравнение конуса

второго порядка имеет вид:

Уравнение конуса в цилиндрических координатах

Уравнение конуса в цилиндрических координатах Уравнение конуса в цилиндрических координатах

Мнимая коническая поверхность.

Уравнение конуса в цилиндрических координатах

где a > 0, b > 0, c > 0. Эта поверхность не имеет ни одной вещественной точки.

🔥 Видео

§30 Уравнения кривых второго порядка в полярных координатахСкачать

§30 Уравнения кривых второго порядка в полярных координатах

Объем через тройной интеграл в сферической системе координатСкачать

Объем через тройной интеграл в сферической системе координат

Тройной интеграл в цилиндрических координатах.Скачать

Тройной интеграл в цилиндрических координатах.

Сферические координатыСкачать

Сферические координаты

Тройной интеграл в цилиндрических и сферических координатах | Решение задач 2.3 | ИнтФНПСкачать

Тройной интеграл в цилиндрических и сферических координатах | Решение задач 2.3 | ИнтФНП

Полярная система координатСкачать

Полярная система координат

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Оператор Лапласа в полярных координатахСкачать

Оператор Лапласа в полярных координатах

§12 Полярное уравнение прямойСкачать

§12 Полярное уравнение прямой

Поверхности второго порядкаСкачать

Поверхности второго порядка

Тройной интеграл в цилиндрических координатах. Вычисление тройного интеграла.Скачать

Тройной интеграл в  цилиндрических  координатах. Вычисление тройного интеграла.

Построение кривой в полярной системе координатСкачать

Построение кривой в полярной системе координат

Цилиндрические поверхностиСкачать

Цилиндрические поверхности

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядка

Площадь фигуры через двойной интеграл в полярных координатахСкачать

Площадь фигуры через двойной интеграл в полярных координатах
Поделиться или сохранить к себе: