Уравнение изотермы и его анализ

ИЗОТЕРМА ВАНТ — ГОФФА, ВЫВОД И АНАЛИЗ

Константа равновесия определяют условия равновесия, когда концентрация (парциальные давления) является равновесными. В каком направлении пойдёт химическая реакция, если парциальное давление исходных веществ и продуктов реакции отличаются от равновесных? Ответить на этот вопрос поможет уравнение изотермы химической реакции.

Рассмотрим уравнение реакции: aA + bB ↔ cC + dD

Для изобарно-изотермического процесса изменение Гиббса равно:

Уравнение изотермы и его анализ

Уравнение изотермы и его анализP’- неравновесное, парциальное давление компонентов.

где Уравнение изотермы и его анализ= Уравнение изотермы и его анализ

Уравнение изотермы и его анализ

Уравнение изотермы и его анализ

Уравнение изотермы и его анализ— по форме записи напоминает константу равновесия, но отличается тем, что вместо равновесных давлений в него входят величины давления в данный момент времени.

Уравнение изотермы и его анализ

( Уравнение изотермы и его анализ) — это выражение, куда входят величины концентраций в данный момент времени.

Уравнение изотермы и его анализ

АНАЛИЗ ИЗОТЕРМЫ ВАНТ-ГОФФА

1. Главное значение изотермы реакции состоит в том, что она позволяет рассчитать ∆Gили ∆Fобратимый реакции для заданного состава реакционной смеси и определить, в каком направлении, и до какого предела протекает реакция при известных условиях.

а) Если Кр˃Кр’, то lnКр˃lnКр’; ∆G˂0- реакция идет самопроизвольно в прямом направлении.

б) Если Кр˂Кр’, то lnКр˂lnКр’; ∆G˃0- реакция протекает самопроизвольно в обратном направлении, в сторону образования продуктов.

в) Если Кр=Кр’, то lnКр=lnКр’; ∆G=0- равновесие.

Если парциальное давление всех участников реакции в данный момент времени равны атмосферному давлению

Пусть PA’=PB’=PC’=PD’=1( 1,013*10 5 Па), тоKp’=1; Тогда логарифм этого выражения будет равен нулю (lnKp’=0), а уравнение изотермы Вант – Гоффа примет вид:

∆G⁰=RTlnKp-стандартная энергия Гиббса

Выразм константу равновесия из последнего уравнения и получим:

Уравнение изотермы и его анализ

Уравнение изотермы и его анализ

Уравнение изотермы и его анализПример решения задачи:

В объеме 10л, взяли: 320(г) О2 , 10(г) Н2 и 180(г) паров воды . Определите, в какую направлении пойдёт химическая реакция: Уравнение изотермы и его анализ, если при температуре Т

(Кс=10). Процесс изохорный.

Уравнение изотермы и его анализ

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ

Уравнение изотермы и его анализ˂0 — реакция идет в прямом направлении.

ВЛИЯНИЕ ВНЕШНИХ УСЛОВИЙ НА КОНСТАНТУ

РАВНОВЕСИЯ. УРАВНЕНИЕ ИЗОБАРЫ И ИЗОХОРЫ ВАНТ-ГОФФА (В-Г)

Константы равновесия — это величины постоянные при данной температуре. При изменении температуры константа равновесия изменяется, и довольно существенно.

Изменение константы равновесия и направления химической реакции в зависимости от температуры количественно характеризует уравнение изобары изохоры химической реакции.

ВЫВОД УРАВНЕНИЯ ИЗОБАРЫ И ИЗОХОРЫ

Разделим уравнение изотермы Вант- Гоффа на температуру:

Уравнение изотермы и его анализ

Продифференцируем его по Т и перепишем:

Уравнение изотермы и его анализ

Представим уравнение Гиббса – Гельмгольца в виде:

Уравнение изотермы и его анализ

Из уравнения (1) вычтем уравнение (2):

Уравнение изотермы и его анализ

Уравнение изотермы и его анализ

Уравнение изотермы и его анализ

Эти уравнения показывают влияния температуры на константу равновесия, где определяющим фактором является тепловой эффект химической реакции.

Влияние температуры на константу равновесия определяется типом реакци.

1. Если тепловой эффект реакци ∆H(∆U)˃0(эндотермическая, поглощение), то Уравнение изотермы и его анализ˃0, тогда при увеличении температуры (Т↑) константа равновесия Кр увеличивается.

В обратном — Т↓,Кр↓.

2. Если ∆H(∆U)˂0 (экзотермическая, выделение), то Уравнение изотермы и его анализ˂0, тогда при повышении температуры константа равновесия Кр уменьшается или Кр увеличивается при понижении температуры.

В обратном — Т↑,Кр↓.

3. Если ∆H(∆U)=0 , тов этом случае константа равновесия не зависит от температуры Кp ≠ f(T).

ИНТЕГРИРОВАНИЕ ИЗОБАРЫ В-Г

1. Приближенное интегрирование ∆Н ≠ f(Т),

тогда Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализ.

Уравнение изотермы и его анализ

С помощью этого уравнения можно найти:

1. ∆Н (тепловой эффект реакции), если известны равновесия при двух различных температурах (Кр11) и Кр22))

2. Кр22) – константу равновесия при температуре Т2, если известна константа равновесия при другой температуре и тепловой эффект реакции (Кр11) и ∆Н).

Так как после интегрирования мы получили уравнение прямой, то эта зависимость может быть представлена на графике: lnKp(1) lnKp(2)

Уравнение изотермы и его анализ

Тангенс угла наклона прямой реакции, исходя из уравнения прямой:

Уравнение изотермы и его анализ;.

Зависимость теплового эффекта от температуры выражается уравнением:

Уравнение изотермы и его анализ

Подставим это уравнение в уравнение изобары Вант- Гоффа:

Уравнение изотермы и его анализ;

Уравнение изотермы и его анализпри Т=0(К)

Проинтегрируем это уравнение и получим:

Уравнение изотермы и его анализ;

где В — постоянная интегрирования, для нахождения необходимо знать значения константы равновесия Кр при любой фиксированной температуре.

Однако проводить расчеты с использованием данного уравнения довольно сложно и используется довольно редко.

Пример. Определим изменение эффекта реакции Fe+H2O+FeO+H2, если для Т1=900К, Кр1=1,452, а для Т2=1025К Кр2=1,285.

Используем уравнение: Уравнение изотермы и его анализ

При повышении температуры от 900 до 1025К выделится дополнительно 7,5 кДж/моль теплоты.

|следующая лекция ==>
Коэффициент обратного рассеяния|Нагревание поверхности Земли

Дата добавления: 2017-09-19 ; просмотров: 3350 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)Скачать

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)

Изотерма реакции. Ее анализ

Рассмотрим произвольную реакцию:

аА + вВ = сС + мМ (7.4)

Любая реакция идет до тех пор, пока не установится состояние равновесия, которому будет отвечать ∆ μi = 0. Это равновесие не является устойчивым, любое изменение внешних термодинамических параметров влечет за собою изменение положения равновесия. Поэтому химические реакции можно рассматривать как термодинамически равновесные. В ходе реакции количество молей исходных веществ уменьшается (берутся с минусом), количество продуктов увеличивается, поэтому в изобарно изотермических условиях:

Введем для упрощения Х – химическую переменную – количества молей прореагировавшего вещества к его стехиометрическому коэффициенту (изменяется от 0 до 1). dXa = dnA/a, dnA = dXa*a. (7.5)

Проведем замену и разделим на dX .

Для того чтобы вывести уравнение изотермы, вспомним характеристические функции

V = (δG/δP)T , для одного моля

dμ = Vdp или dμ = (RT/P)dp, (7.7)

f – фугитивность то, что мы используем для уравнений выведенных для идеальных газов чтобы иметь возможность применить их для реальных газов. f = γp. γ – коэффициент активности суммарно учитывает все отличая реального газа от идеального.

μ = μ 0 + RTlnf (7.9)

μ 0 – стандартное значение химического потенциала. При стандартный условиях P = 1 атм, Т = 298 О К.

После подстановки (7.9) для каждого компонента в (7.6):

Уравнение (7.9) называется уравнением изотермы реакции оно подходит для любых систем, только если реакция проходит в среде идеальных газов то вместо фугитивности используется давление, если в жидких или твердых идеальных растворах по концентрации, если в реальных растворах то активности.

Если Пf/ > Kf то ∆G > 0. Реакция идет в обратном направлении.

Если Пf/ = Kf то ∆G = 0. Реакция не идет, состояние равновесия

Количественной характеристикой химического равновесия является константа равновесия, которая может быть выражена через равновесные концентрации С, парциальные давления P или мольные доли X реагирующих веществ. Для некоторой реакции

Уравнение изотермы и его анализ

соответствующие константы равновесия выражаются следующим образом:

Уравнение изотермы и его анализ(I.78) Уравнение изотермы и его анализ(I.79)

Уравнение изотермы и его анализ(I.80)

Константа равновесия есть характерная величина для каждой обратимой химической реакции; величина константы равновесия зависит только от природы реагирующих веществ и температуры. Выражение для константы равновесия для элементарной обратимой реакции может быть выведено из кинетических представлений.

Рассмотрим процесс установления равновесия в системе, в которой в начальный момент времени присутствуют только исходные вещества А и В. Скорость прямой реакции V1 в этот момент максимальна, а скорость обратной V2 равна нулю:

Уравнение изотермы и его анализ(I.81)

Уравнение изотермы и его анализ(I.82)

По мере уменьшения концентрации исходных веществ растет концентрация продуктов реакции; соответственно, скорость прямой реакции уменьшается, скорость обратной реакции увеличивается. Очевидно, что через некоторое время скорости прямой и обратной реакции сравняются, после чего концентрации реагирующих веществ перестанут изменяться, т.е. установится химическое равновесие.

Приняв, что V1 = V2, можно записать:

Уравнение изотермы и его анализ(I.83)

Уравнение изотермы и его анализ(I.84)

Т.о., константа равновесия есть отношение констант скорости прямой и обратной реакции. Отсюда вытекает физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л.

Теперь рассмотрим (с некоторыми упрощениями) более строгий термодинамический вывод выражения для константы равновесия. Для этого необходимо ввести понятие химический потенциал. Очевидно, что величина свободной энергии системы будет зависеть как от внешних условий (T, P или V), так и от природы и количества веществ, составляющих систему. В случае, если состав системы изменяется во времени (т.е. в системе протекает химическая реакция), необходимо учесть влияние изменения состава на величину свободной энергии системы. Введем в некоторую систему бесконечно малое количество dni молей i-го компонента; это вызовет бесконечно малое изменение термодинамического потенциала системы. Отношение бесконечно малого изменения величины свободной энергии системы к бесконечно малому количеству компонента, внесенному в систему, есть химический потенциал μi данного компонента в системе:

Уравнение изотермы и его анализ(I.85)

Уравнение изотермы и его анализ(I.86)

Химический потенциал компонента связан с его парциальным давлением или концентрацией следующими соотношениями:

Уравнение изотермы и его анализ(I.87)

Уравнение изотермы и его анализ(I.88)

Здесь μ°i – стандартный химический потенциал компонента (Pi = 1 атм., Сi = 1 моль/л.). Очевидно, что изменение свободной энергии системы можно связать с изменением состава системы следующим образом:

Уравнение изотермы и его анализ(I.89)

Уравнение изотермы и его анализ(I.90)

Поскольку условием равновесия является минимум свободной энергии системы (dG = 0, dF = 0), можно записать:

Уравнение изотермы и его анализ(I.91)

В закрытой системе изменение числа молей одного компонента сопровождается эквивалентным изменением числа молей остальных компонентов; т.е., для приведенной выше химической реакции имеет место соотношение:

Уравнение изотермы и его анализ(I.92)

Отсюда можно получить следующее условие химического равновесия в закрытой системе:

Уравнение изотермы и его анализ(I.93)

В общем виде условие химического равновесия можно записать следующим образом:

Уравнение изотермы и его анализ(I.94)

Выражение (I.94) носит название уравнения Гиббса – Дюгема. Подставив в него зависимость химического потенциала от концентрации, получаем:

Уравнение изотермы и его анализ(I.95)

Уравнение изотермы и его анализ(I.96)

Для изобарно-изотермического процесса аналогичным образом можно получить:

Уравнение изотермы и его анализ(I.97)

Полученные нами выражения I.96 – I.97 есть изотерма химической реакции. Если система находится в состоянии химического равновесия, то изменение термодинамического потенциала равно нулю; получаем:

Уравнение изотермы и его анализ(I.98)

Уравнение изотермы и его анализ(I.99)

Здесь сi и рi – равновесные концентрации и парциальные давления исходных веществ и продуктов реакции (в отличие от неравновесных Сi и Рi в уравнениях I.96 – I.97).

Поскольку для каждой химической реакции стандартное изменение термодинамического потенциала ΔF° и ΔG° есть строго определенная величина, то произведение равновесных парциальных давлений (концентраций), возведенных в степень, равную стехиометрическому коэффициенту при данном веществе в уравнении химической реакции (стехиометрические коэффициенты при исходных веществах принято считать отрицательными) есть некоторая константа, называемая константой равновесия. Уравнения (I.98, I.99) показывают связь константы равновесия со стандартным изменением свободной энергии в ходе реакции. Уравнение изотермы химической реакции связывает величины реальных концентраций (давлений) реагентов в системе, стандартного изменения термодинамического потенциала в ходе реакции и изменения термодинамического потенциала при переходе из данного состояния системы в равновесное. Знак ΔG (ΔF) определяет возможность самопроизвольного протекания процесса в системе. При этом ΔG° (ΔF°) равно изменению свободной энергии системы при переходе из стандартного состояния (Pi = 1 атм., Сi = 1 моль/л) в равновесное. Уравнение изотермы химической реакции позволяет рассчитать величину ΔG (ΔF) при переходе из любого состояния системы в равновесное, т.е. ответить на вопрос, будет ли химическая реакция протекать самопроизвольно при данных концентрациях Сi (давлениях Рi) реагентов:

Уравнение изотермы и его анализ(I.100)

Уравнение изотермы и его анализ(I.101)

Если изменение термодинамического потенциала меньше нуля, процесс в данных условиях будет протекать самопроизвольно.

9. Изобара реакции, ее анализ.

Химическая термодинамика позволяет определить константу равновесия при одной температуре, если она известна при другой. (Константа равновесия позволяет нам оценить оптимальные значения концентраций реагентов, условия реакции). Если реакция протекает в газовой среде, то это становится возможным благодаря уравнению изобары, если в жидком растворе уравнению изохоры.

Выведем уравнение изобары. Возьмем производную уравнения изотермы по температуре при постоянном давлении.

С другой стороны:

Если ∆H больше нуля, то температурный коэффициент (δlnKf/δT)P тоже больше нуля, реакция эндотермическая и при подъеме температуры реакция смещается в сторону продуктов. Если тепловой эффект ∆H меньше нуля, то температурный коэффициент тоже меньше нуля и экзотермическая реакция при подъеме Т смещается в сторону исходных веществ.

При постоянном объеме, используя ∆A = ∆U + T (δ∆A/δT)V , (6.5), можно получить уравнение изохоры:

10. Понятия и определения, относящиеся к фазовым равновесиям.

Система, состоящая из одной фазы, называется гомогенной, из двух и более гетерогенной.

Фаза – совокупность гомогенных частей системы, одинаковых по составу и другим термодинамическим свойствам, ограниченная от других частей поверхностью раздела.

Компонент – вещество, которое может быть выделено из системы, и существовать, не зависимо от нее.

Число независимых компонентов – наименьшее число компонентов, через концентрации которых можно охарактеризовать состав всей системы в целом.

Понятно, что число независимых компонентов зависит от того, что мы знаем о системе, чем больше наших знаний, тем меньше компонентов.

В этой системе один независимый компонент, во первых исходные вещества и продукты связаны константой равновесия, во вторых количество водорода по реакции равно количеству йода, поэтому задавая только количество йодоводорода мы автоматически задаем количества и концентрации водорода и йода. Если бы вещества были в разы фазах, то число независимых компонентов было бы больше.
Вещество при изменении давления и температуры может переходить из одного агрегатного состояния в другое. Эти переходы, совершающиеся при постоянной температуре, называют фазовыми переходами первого рода. Количество теплоты, которое вещество получает из окружающей среды либо отдает окружающей среде при фазовом переходе, есть скрытая теплота фазового перехода λфп. Если рассматривается гетерогенная система, в которой нет химических взаимодействий, а возможны лишь фазовые переходы, то при постоянстве температуры и давления в системе существует т.н. фазовое равновесие. Фазовое равновесие характеризуется некоторым числом фаз, компонентов и числом степеней термодинамической свободы системы.

Компонент – химически однородная составная часть системы, которая может быть выделена из системы и существовать вне её. Число независимых компонентов системы равно числу компонентов минус число возможных химических реакций между ними.

Число степеней свободы – число параметров состояния системы, которые могут быть одновременно произвольно изменены в некоторых пределах без изменения числа и природы фаз в системе.

Число степеней свободы гетерогенной термодинамической системы, находящейся в состоянии фазового равновесия, определяется правилом фаз, сформулированным Дж. Гиббсом:

Число степеней свободы равновесной термодинамической системы С равно числу независимых компонентов системы К минус число фаз Ф плюс число внешних факторов, влияющих на равновесие.

Для системы, на которую из внешних факторов влияют только температура и давление, можно записать:

С = К – Ф + 2 (I.108)

Системы принято классифицировать по числу компонентов (одно-, двухкомпонентные и т.д.), по числу фаз (одно-, двухфазные и т.д.) и числу степеней свободы (инвариантные, моно-, дивариантные и т.д.). Для систем с фазовыми переходами обычно рассматривают графическую зависимость состояния системы от внешних условий – т.н. диаграммы состояния.

Анализ диаграмм состояния позволяет определить число фаз в системе, границы их существования, характер взаимодействия компонентов. В основе анализа диаграмм состояния лежат два принципа: принцип непрерывности и принцип соответствия. Согласно принципу непрерывности, при непрерывном изменении параметров состояния все свойства отдельных фаз изменяются также непрерывно; свойства системы в целом изменяются непрерывно до тех пор, пока не изменится число или природа фаз в системе, что приводит к скачкообразному изменению свойств системы. Согласно принципу соответствия, на диаграмме состояния системы каждой фазе соответствует часть плоскости – поле фазы. Линии пересечения плоскостей отвечают равновесию между двумя фазами. Всякая точка на диаграмме состояния (т. н. фигуративная точка) отвечает некоторому состоянию системы с определенными значениями параметров состояния.

11 . Уравнения Клаузиуса-Клапейрона и его анализ.

Видео:Химическое равновесие. Закон действующих масс.Скачать

Химическое равновесие. Закон действующих масс.

Уравнение изотермы и его анализ

ЛЕКЦИЯ № 5. Химическое равновесие

1. Понятие химического равновесия. Закон действующих масс

При протекании химической реакции через некоторое время устанавливается химическое равновесие. Существует два признака химического равновесия: кинетический, термодинамический. В кинетическом – ?пр = ?обр, в термодинамическом – характеризует химическую реакцию при условиях P, t – const (?G = 0); при условиях V, Т – const (?F = 0).

Химический потенциал – функция, которая характеризует состояние i-го компонента при определенных внешних условиях.

Уравнение изотермы и его анализ

где n1 число молей i-го компонента.

Если к бесконечно большому количеству раствора прибавить определенное количество какого-нибудь компонента, то химический потенциал системы определяется изменением изобарного потенциала при изобарных условиях или изменением изохорного потенциала при изохорных условиях.

Химический потенциал зависит от концентрации данного компонента

где Рi– парциальное давление – вклад каждого компонента в общее давление или давление, которое компонент имел бы, если бы находился в смеси.

Парциальное давление – элементарная функция (можно складывать). Пример (O2, N2, H2) – их общее давление

Уравнение изотермы и его анализ

?0 значение химического потенциала при стандартных условиях.

Химический потенциал характеризует способность данного компонента выходить из данной фазы путем испарения, растворения, кристаллизации и т. д. Переход этот происходит произвольно.

Уравнение изотермы и его анализ

В результате химического равновесия скорость прямой реакции уменьшается, а скорость обратной реакции увеличивается.

Концентрации, которые соответствуют химическому равновесию, называются равновесными концентрациями. Связь между равновесными концентрациями устанавливается законом действующих масс (ЗДМ). Этот закон в 1867 г. вывели К. М. Гульберг и П. Вааге.

Кинетический вывод ЗДМ

Уравнение изотермы и его анализ
Уравнение изотермы и его анализ
Уравнение изотермы и его анализ

f – фугитивность – парциальное давление для реальных газов. Возникает вопрос, будут ли равняться Кpи Кс.

Кpи Кc отличаются на RT ?vi в сумме стехиометрических коэффициентов.

Уравнение изотермы и его анализ

если ?vi = 0, то Kp = Kc. ?vi = 1 + 1 – 1 – 1 =0 – когда стехиометрический коэффициент = 1.

2. Уравнение изотермы химической реакции

Если реакция протекает обратимо, то ?G= 0.

Если реакция протекает необратимо, то ?G? 0 и можно рассчитать изменение ?G.

Уравнение изотермы и его анализ

где ? – пробег реакции – величина, которая показывает, сколько молей изменилось в ходе реакции. I сп – характеризует равновесное и неравновесное состояние реакции, II сп – характеризует только неравновесные состояния.

Уравнение изотермы и его анализ

это уравнение изотермы химической реакции.

Уравнение изотермы и его анализ

С помощью уравнения изотермы химической реакции можно судить о направлении протекания реакции.

3. Уравнения изохоры, изобары химической реакции

Зависимость К от температуры

Уравнение изотермы и его анализ
Уравнение изотермы и его анализ

Уравнение изотермы и его анализ

Уравнение изотермы и его анализ

По ним судят о направлении протекания реакции:

Уравнение изотермы и его анализ

4. Расчет KP (метод Темкина-Шварцмана)

Уравнение изотермы и его анализ
Уравнение изотермы и его анализ

термодинамический метод расчета Kp.

Уравнение изотермы и его анализ
Уравнение изотермы и его анализ

Пример. Расчет Kp для реакции PbS04 распадается на РbО и S03.

Уравнение изотермы и его анализ

Результаты вычислений занесены в таблицу 2.

Уравнение изотермы и его анализ
Уравнение изотермы и его анализ

5. Расчет равновесного состава химического равновесия

Равновесный состав можно рассчитать только для газовой системы

Уравнение изотермы и его анализ

Исходная концентрация всех компонентов

Уравнение изотермы и его анализ

Изменение каждого компонента по числу молей (или стехиометрическому коэффициенту):

Уравнение изотермы и его анализ

??– (пробег реакции) – химическая переменная.

Она показывает изменение количества вещества по числу молей. Если реакция не началась, то ?? = 0. Если количество исходных веществ превратилось в такое же количество продуктов реакции, то ?? = 1.

Рассчитать равновесный состав по третьему компоненту при условии, что А = а моль/л; В = в моль/л.

Уравнение изотермы и его анализ

Рассчитываем по 4 компоненту:

Уравнение изотермы и его анализ

Газообразные вещества реагируют по уравнению:

Уравнение изотермы и его анализ

Найти парциальное давление каждого компонента.

Вещества А и В превращаются в С в количестве Х. Исходные вещества А= 2 моль, В= 1 моль.

Для того, чтобы найти парциальное давление, мы должны Роб умножить на мольную долю. Мольная доля определяется отношением числа молей каждого компонента, отнесенного к общему числу молей всех компонентов.

Уравнение изотермы и его анализ

где En – общее число молей, участвующих в этой газовой смеси.

Уравнение изотермы и его анализ

Уравнение изотермы и его анализ

где РА парциальное давление.

📸 Видео

Урок 157. Изопроцессы и их графики. Частные газовые законыСкачать

Урок 157. Изопроцессы и их графики. Частные газовые законы

мкт ИЗОТЕРМИЧЕСКИЙ процесс ИЗОХОРНЫЙ процесс ИЗОБАРНЫЙ процессСкачать

мкт ИЗОТЕРМИЧЕСКИЙ процесс ИЗОХОРНЫЙ процесс ИЗОБАРНЫЙ процесс

Урок 194. Уравнение Ван-дер-ВаальсаСкачать

Урок 194. Уравнение Ван-дер-Ваальса

Урок 195. Изотермы реального газаСкачать

Урок 195. Изотермы реального газа

Решение графических задач на тему Газовые законыСкачать

Решение графических задач на тему Газовые законы

Влияние температуры на скорость химических реакций. 10 класс.Скачать

Влияние температуры на скорость химических реакций. 10 класс.

Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)Скачать

Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Как выучить Химию с нуля за 10 минут? Принцип Ле-ШательеСкачать

Как выучить Химию с нуля за 10 минут? Принцип Ле-Шателье

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Решение задач на термохимические уравнения. 8 класс.Скачать

Решение задач на термохимические уравнения. 8 класс.

Обратимость и необратимость химических реакций. Химическое равновесие. 1 часть. 9 класс.Скачать

Обратимость и необратимость химических реакций. Химическое равновесие.  1 часть. 9 класс.

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Реальные газы. Изотермы Эндрюса и Ван-Дер-Ваальса. Метастабильные состоянияСкачать

Реальные газы. Изотермы Эндрюса и Ван-Дер-Ваальса. Метастабильные состояния

Изопроцессы. Графики изопроцессов. Закон Дальтона. 1 часть. 10 класс.Скачать

Изопроцессы. Графики изопроцессов. Закон Дальтона. 1 часть. 10 класс.
Поделиться или сохранить к себе: