Дифференциальное уравнение теплопроводности позволяет определить температуру в зависимости от времени и координат в любой точке поля.
Для любого конкретного случая к нему надо присоединить необходимые краевые условия.
Рассмотрим наиболее распространенный случай — теплопроводность через однослойную плоскую стенку, длина и ширина которой бесконечно велики по сравнению с толщиной б (рис. 23-1). Стенка имеет во всех своих частях одинаковую толщину, причем температуры поверхностей t’cr и tcr поддерживаются постоянными, т. е. являются изотермическими поверхностями. Температура меняется только в направлении, перпендикулярном к плоскости стенки, которое принимаем за ось х. Коэффициент теплопроводности К постоянен для всей стенки. При стационарном тепловом режиме температура в любой точке тела неизменна и не зависит от времени, т. е. Тогда дифференциальное уравнение теплопроводности после сокращения коэффициента температуропроводности принимает вид
Но при принятых условиях первые и вторые производные от ( по y иz также равны нулю:
поэтому уравнение теплопроводности можно написать в следующем виде:
(23-1)
Интегрируя уравнение (23-1), находим
После вторичного интегрирования получаем
При постоянном коэффициенте теплопроводности это уравнение прямой линии. Следовательно, закон изменения температуры при прохождении теплоты через плоскую стенку будет линейным.
Найдем постоянные интегрирования А и В.
При х = 0 температура t = t’cr — B; при х = δ температура t = t»cr — Аδ +tст, откуда
Плотность теплового потока найдем из уравнения Фурье (22-7)
(23-2)
Зная удельный тепловой поток, можно вычислить общее количество теплоты, которое передается через поверхность стенки F за время τ:
(23-3)
Количество теплоты, которое передается теплопроводностью через плоскую стенку, прямо пропорционально коэффициенту теплопроводности стенки К, ее площади F, промежутку времени т, разности температур на наружных поверхностях стенки (t’ст — t»ст) и обратно пропорционально толщине стенки δ. Тепловой поток зависит не от абсолютного значения температур, а от их разности
t’ст — t»ст = Δt наtзываемой температурным напором.
Полученное уравнение (23-2) является справедливым для случая, когда коэффициент теплопроводности является постоянной величиной. В действительности коэффициент теплопроводности реальных тел зависит от температуры и закон изменения температур будет выражаться кривой линией. Если коэффициент теплопроводности зависит от температуры в незначительной степени, то на практике закон изменения температур считают линейным.
Уравнение (23-2) можно получить непосредственно из закона Фурье (22-6), считая, что температура изменяется только в направлении оси х:
Разделив переменные, получаем
Интегрируя последнее уравнение при условии Q = const, находим
Постоянную интегрирования С найдем из граничных условий:
при х = 0 температура
при х = δ температура откуда
Введем в уравнение (23-2) поправки па зависимость λ от t, считая эту зависимость линейной:
(а)
В этом случае, подставив в уравнение Фурье вместо К его значение из формулы (а), получаем
(б)
Разделив переменные и интегрируя в пределах от х = 0 до x = δ и в интервале температур от t’ст до t»ст, получаем
(23-4)
Полученное уравнение (23-4) позволяет определить плотность теплового потока при переменном коэффициенте теплопроводности. В этом уравнении множитель
является среднеинтегралыюй величиной коэффициента теплопроводности.
В уравнении (23-2) было принято λ,=const и равным среднему значению λср. Поэтому, сравнивая уравнения (23-2) и (23-4), получаем
(23-5)
Следовательно, если λср определяется при среднеинтегральной температуре то формулы (23-2) и (23-4) равнозначны.
При этом плотность теплового потока может определяться из уравнения
(23-6)
Интегрируя уравнение (б) в пределах от х — О до любой текущей координаты х и в интервале температур от t’ст ДО tx, получим уравнение температурного поля
(23-7)
Из этого уравнения следует, что температура внутри стенки изменяется по кривой. Если коэффициент b отрицателен, то кривая будет направлена выпуклостью вниз; если b положителен, то выпуклостью вверх.
- Теплопроводность через стенку
- Теплопередача через плоскую стенку (граничные условия первого рода)
- Распределение температуры в плоской стенке
- Теплопроводность через многослойную стенку
- Теплопередача через плоскую стенку в граничащую среду (граничные условия третьего рода)
- Теплопроводность через цилиндрическую стенку (граничные условия первого рода)
- Теплопроводность плоской однослойной стенки
- Теплопроводность плоской однослойной стенки
- 🔥 Видео
Видео:Интуитивное понимание формулы теплопроводности (часть 11) | Термодинамика | ФизикаСкачать
Теплопроводность через стенку
Под теплопередачей через стенку понимают процесс передачи теплоты между двумя средами через непроницаемую стенку любой геометрической формы в стационарном и нестационарном режимах теплообмена. Стенка может быть многослойной.
Рассмотрим стационарный режим теплопередачи через плоскую, цилиндрическую и сферическую стенки при котором теплопередача — величина постоянная и температурное поле не изменяется во времени и зависит только от координаты. В этом случае при условии постоянства теплофизических свойств тела температура в плоской стенке изменяется линейно, а в цилиндрической — по логарифмическому закону, т.е.
Q = const и T = f(x) — линейная (при плоской стенке) или логарифмическая функция (при круглой стенке).
Согласно второму закону термодинамики процесс теплопередачи идет от среды с большей температурой к среде с меньшей температурой.
Теплопередача через непроницаемую стенку включает в себя следующие процессы:
- теплоотдачу от горячей среды к стенке;
- теплопроводность внутри стенки;
- теплоотдачу от стенки к холодной среде.
Видео:Теплопроводность плоской стенкиСкачать
Теплопередача через плоскую стенку (граничные условия первого рода)
Теплопроводность — первое элементарное тепловое явление переноса теплоты посредством теплового движения микрочастиц в сплошной среде, обусловленное неоднородным распределением температуры.
Совокупность значений температуры для всех точек пространства в данный момент времени называется температурным полем.
Если температурное поле не изменяется во времени, то мы имеем дело со стационарным тепловым режимом.
Тепловой поток Q [Вт] — это количество теплоты, передаваемой в единицу времени (1 Дж/с=1 Вт).
Поверхностная плотность теплового потока рассчитывается по формуле:
где Q — тепловой поток [Вт]; F — площадь стенки [м 2 ].
На основании закона Фурье q=-λdT/dx, значение плотности теплового потока для однослойной стенки будет определяться по формуле:
где δ = dx — толщина стенки, λ
λ/δ; [Вт/м 2 *К] — коэфициент тепловой проводности стенки.
а обратная величина —
R = δ/λ; [м 2. К/Вт] — термическое сопротивление стенки.
Для теплового потока формулу так же можно представить в виде:
Общее количество теплоты проходящее через площадь стены S за время t можно представить как:
Видео:Метод Фурье для неоднородного уравнения теплопроводностиСкачать
Распределение температуры в плоской стенке
Рассмотрим изменение температуры в нашей стене. Так как у нас тепловой поток постоянный, то dT/dx = const=C1; T=C1х+С2 (1). Определим С1 и С2 через граничные условия.
При х=0 T=T1, подставим в уравнение (1) и получим T1=С2.
При х=δ T=T2, подставим в уравнение (1) и получим T2=С1*δ+С2, T2=С1*δ+T1, получим: С1=(Т2-T1)/δ. Теперь подставим в уравнение (1) найденные С1 и С2, получим следующее распределение температуры в нашей стене:
Если нам нужно узнать на какой глубине стены Т=То, то формула преобразуется в следующий вид:
Видео:Передача тепла теплопроводностьюСкачать
Теплопроводность через многослойную стенку
Если у нас есть стенка из нескольких (n) слоев с разными коэффициентами теплопроводности λi и разной толщиной δi.
Термическое сопротивление стенки считается так:
Для теплового потока формула будет иметь вид:
Температура на границе слоя вычисляется по следующей формуле:
Например, если нужно вычислить температуру между 3-м и 4-м слоем, формула будет такая:
Эквивалентная теплопроводность многослойной стенки:
Видео:УМФ. Метод Фурье для параболического уравненияСкачать
Теплопередача через плоскую стенку в граничащую среду (граничные условия третьего рода)
Теплопередача — это более сложный процесс теплообмена между жидкими и газообразными средами, разделенными твердой стенкой. Теплопередача включает в себя и процесс теплопроводности, и процесс теплоотдачи.
Коэффициент теплоотдачи α, Вт/(м 2 ·К) — это количество теплоты, отдаваемое в единицу времени единицей поверхности при разности температур между поверхностью и окружающей средой, равной одному градусу.
Коэффициент теплопередачи k, Вт/(м 2 ·К), характеризует тепловой поток, проходящий через единицу площади поверхности стенки при разности температуры сред, равной одному градусу:
q = k * (Tвозд.внутри — Tвозд.снаружи); Вт/м 2
Коэффициент теплопередачи для n слойной стенки:
Термические сопротивления теплоотдаче на внешних поверхностях стенки будут равны:
Тогда общее термическое сопротивление теплопередаче будет равно:
Температуры на поверхности стенки можно определить по формулам:
Видео:Теплопроводность цилиндрической стенкиСкачать
Теплопроводность через цилиндрическую стенку (граничные условия первого рода)
Теплообменные аппараты в большинстве случаев имеют не плоские, а цилиндрические поверхности, например рекуператоры типа «труба в трубе», кожухотрубные водонагреватели и т.д. Поэтому возникает необходимость рассмотрения основных принципов расчета цилиндрических поверхностей.
Согласно закону Фурье, количество теплоты, проходящее в единицу времени через этот слой, равно:
Подставим значения граничные значение и вспомним, что разность логарифмов равна логарифму отношению аргументов, получим:
Распределение температур внутри однородной цилиндрической стенки подчиняется логарифмическому закону, и уравнение температурной кривой имеет вид:
Количество теплоты, проходящее через стенку трубы, может быть отнесено либо к единице длины трубы L, либо к единице внутренней F1 или внешней F2 поверхности трубы. При этом расчетные формулы принимают следующий вид:
Все материалы, представленные на сайте, носят исключительно справочный и ознакомительный характер и не могут считаться прямой инструкцией к применению. Каждая ситуация является индивидуальной и требует своих расчетов, после которых нужно выбирать нужные технологии.
Не принимайте необдуманных решений. Имейте ввиду, что то что сработало у других, в ваших условиях может не сработать.
Администрация сайта и авторы статей не несут ответственности за любые убытки и последствия, которые могут возникнуть при использовании материалов сайта.
Сайт может содержать контент, запрещенный для просмотра лицам до 18 лет.
Видео:Теплопередача через плоскую стенкуСкачать
Теплопроводность плоской однослойной стенки
Видео:Уравнение колебаний струны. Метод разделения переменных. Метод ФурьеСкачать
Теплопроводность плоской однослойной стенки
- Рис. 11. 3. Плоские стены. Рассмотрим однородную стенку толщиной b, выполненную из материала, теплопроводность которого l не зависит от температуры. Поверхность левой стороны стены поддерживается при постоянной постоянной температуре l, по высоте стены, а правой-низкой, но при постоянной температуре 1 г.
Давление р определяется отношением суммы нормальных к поверхности составляющих сил образующихся вследствие ударов о стенку хаотически движущихся микрочастиц рабочего тела, к площади поверхности А. Людмила Фирмаль
Температура стены изменяется только по ее толщине, направлению оси x рис. 11. 3. То есть температурное поле является 1-мерным, а температурный градиент равен d1 dx. Найти плотность теплового потока через заданную стенку и установить характер изменения температуры вдоль толщины стенки.
- Уравнение Фурье одномерного температурного поля. Чтобы интегрировать это уравнение, разделите переменные 11 — х- После интеграции 11. 2 Чтобы найти интегральную постоянную, используйте известные температуры x-0, −6 и x-1 2. Таким образом, c f таким образом, уравнение k. 2 будет иметь следующий формат АГ.
Термодинамической системой называется совокупность макроскопических тел, которые могут взаимодействовать между собой и с другими телами, составляющими внешнюю среду, в виде обмена энергией или веществом. Людмила Фирмаль
Когда вы решаете уравнение Хорошо О Плотность теплового потока плоской стенки прямо пропорциональна теплопроводности, перепаду температур и обратно пропорциональна толщине стенки. Изменение температуры по отношению к толщине стенки выражается формулой 11. 2.
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
🔥 Видео
Уравнение в частных производных Уравнение теплопроводностиСкачать
Решение первой краевой задачи для неоднородного уравнения теплопроводности.Скачать
8.1 Решение уравнения теплопроводности на отрезкеСкачать
Л1 - Теплопроводность. Закон Фурье.Скачать
Уравнения математической физики. Решение гиперболического уравнения методом Фурье.Скачать
5. Решение волнового уравнения на отрезке методом ФурьеСкачать
Теплотехнический расчет стеныСкачать
Метод Фурье для уравнения теплопроводности (диффузии)Скачать
6.1 Смешанные краевые задачи для уравнений гиперболического и параболического типов. Метод Фурье.Скачать
Лекция №1.1 Явная и неявная схемы для уравнения теплопроводностиСкачать
Закон и уравнение теплопроводностиСкачать
Уравнение теплопроводности. Постановка краевых задач. Метод Фурье для однородного уравнения.Скачать