Фотонная теория света. Масса, энергия и импульс фотона |
В современной трактовке гипотеза квантов утверждает, что энергия E колебаний атома или молекулы может быть равна hν, 2hν, 3hν и т.д., но не существует колебаний с энергией в промежутке между двумя последовательными целыми, кратными . Это означает, что энергия не непрерывна, как полагали на протяжении столетий, а квантуется, т.е. существует лишь в строго определенных дискретных порциях. Наименьшая порция называется квантом энергии. Гипотезу квантов можно сформулировать и как утверждение о том, что на атомно-молекулярном уровне колебания происходят не с любыми амплитудами. Допустимые значения амплитуды связаны с частотой колебания ν. В 1905 г. Эйнштейн выдвинул смелую идею, обобщавшую гипотезу квантов, и положил ее в основу новой теории света (квантовой теории фотоэффекта). Согласно теории Эйнштейна, свет с частотой νне только испускается, как это предполагал Планк, но и распространяется и поглощается веществом отдельными порциями (квантами), энергия которых . Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью распространения света в вакууме (с). Квант электромагнитного излучения получил название фотон. Как мы уже говорили, испускание электронов с поверхности металла под действием падающего на него излучения соответствует представлению о свете как об электромагнитной волне, т.к. электрическое поле электромагнитной волны воздействует на электроны в металле и вырывает некоторые из них. Но Эйнштейн обратил внимание на то, что предсказываемые волновой теорией и фотонной (квантовой корпускулярной) теорией света детали фотоэффекта существенно расходятся. Итак, мы можем измерить энергию вылетевшего электрона, исходя из волновой и фотонной теории. Чтобы ответить на вопрос, какая теория предпочтительней, рассмотрим некоторые детали фотоэффекта. Начнем с волновой теории, и предположим, что пластина освещается монохроматическим светом. Световая волна характеризуется параметрами: интенсивностью и частотой (или длиной волны). Волновая теория предсказывает, что при изменении этих характеристик происходят следующие явления: · при увеличении интенсивности света число выбитых электронов и их максимальная энергия должны возрастать, т.к. более высокая интенсивность света означает большую амплитуду электрического поля, а более сильное электрическое поле вырывает электроны с большей энергией; выбитых электронов; кинетическая энергия зависит только от интенсивности падающего света. Совершенно иное предсказывает фотонная (корпускулярная) теория. Прежде всего, заметим, что в монохроматическом пучке все фотоны имеют одинаковую энергию (равную hν). Увеличение интенсивности светового пучка означает увеличение числа фотонов в пучке, но не сказывается на их энергии, если частота остается неизменной. Согласно теории Эйнштейна, электрон выбивается с поверхности металла при соударении с ним отдельного фотона. При этом вся энергия фотона передается электрону, а фотон перестает существовать. Т.к. электроны удерживаются в металле силами притяжения, для выбивания электрона с поверхности металла требуется минимальная энергия A (которая называется работой выхода и составляет, для большинства металлов, величину порядка нескольких электронвольт). Если частота ν падающего света мала, то энергии и энергии фотона недостаточно для того, чтобы выбить электрон с поверхности металла. Если же , то электроны вылетают с поверхности металла, причем энергия в таком процессе сохраняется, т.е. энергия фотона (hν) равна кинетической энергии вылетевшего электрона плюс работе по выбиванию электрона из металла:
Уравнение (2.3.1) называется уравнением Эйнштейна для внешнего фотоэффекта. На основе этих соображений, фотонная (корпускулярная) теория света предсказывает следующее. 1. Увеличение интенсивности света означает увеличение числа налетающих фотонов, которые выбивают с поверхности металла больше электронов. Но так как энергия фотонов одна и та же, максимальная кинетическая энергия электрона не изменится (подтверждается I закон фотоэффекта). 2. При увеличении частоты падающего света максимальная кинетическая энергия электронов линейно возрастает в соответствии с формулой Эйнштейна (2.3.1). (Подтверждение II закона фотоэффекта). График этой зависимости представлен на рис. 2.3.
3. Если частота ν меньше критической частоты , то выбивание электронов с поверхности не происходит (III закон). Итак, мы видим, что предсказания корпускулярной (фотонной) теории сильно отличаются от предсказаний волновой теории, но очень хорошо совпадают с тремя экспериментально установленными законами фотоэффекта. Уравнение Эйнштейна было подтверждено опытами Милликена, выполненными в 1913–1914 гг. Основное отличие от опыта Столетова в том, что поверхность металла подвергалась очистке в вакууме. Исследовалась зависимость максимальной кинетической энергии от частоты и определялась постоянная Планка h. В 1926 г. российские физики П.И. Лукирский и С.С. Прилежаев для исследования фотоэффекта применили метод вакуумного сферического конденсатора. Анодом служили посеребренные стенки стеклянного сферического баллона, а катодом – шарик (R ≈ 1,5 см) из исследуемого металла, помещенного в центр сферы. Такая форма электродов позволяла увеличить наклон ВАХ и тем самым более точно определить задерживающее напряжение (а следовательно, и h). Значение постоянной Планка h, полученное из этих опытов, согласуется со значениями, найденными другими методами (по излучению черного тела и по коротковолновой границе сплошного рентгеновского спектра). Все это является доказательством правильности уравнения Эйнштейна, а вместе с тем и его квантовой теории фотоэффекта. Для объяснения теплового излучения Планк предположил, что свет испускается квантами. Эйнштейн при объяснении фотоэффекта предположил, что свет поглощается квантами. Также Эйнштейн предположил, что свет и распространяется квантами, т.е. порциями. Квант световой энергии получил название фотон. Т.е. опять пришли к понятию корпускула (частица). Наиболее непосредственное подтверждение гипотезы Эйнштейна дал опыт Боте, в котором использовался метод совпадения (рис. 2.4). Тонкая металлическая фольга Ф помещалась между двумя газоразрядными счетчиками Сч. Фольга освещалась слабым пучком рентгеновских лучей, под действием которых она сама становилась источником рентгеновских лучей (это явление называется рентгеновской флуоресценцией). Вследствие малой интенсивности первичного пучка, количество квантов, испускаемых фольгой, было невелико. При попадании квантов на счетчик механизм срабатывал и на движущейся бумажной ленте делалась отметка. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, оба счетчика должны были срабатывать одновременно и отметки на ленте приходились бы одна против другой. В действительности же наблюдалось совершенно беспорядочное расположение отметок. Это можно объяснить лишь тем, что в отдельных актах испускания возникают световые частицы, летящие то в одном, то в другом направлении. Так было экспериментально доказано существование особых световых частиц – фотонов. Фотон обладает энергией . Для видимого света длина волны λ = 0,5 мкм и энергия Е = 2,2 эВ, для рентгеновских лучей λ = мкм и Е = 0,5 эВ. Фотон обладает инертной массой, которую можно найти из соотношения :
Фотон движется со скоростью света c = 3·10 8 м/с. Подставим это значение скорости в выражение для релятивистской массы:
Фотон – частица, не обладающая массой покоя. Она может существовать, только двигаясь со скоростью света c. Найдем связь энергии с импульсом фотона. Мы знаем релятивистское выражение для импульса:
Из (2.3.3) найдем :
Подставив выражение (2.3.5) в выражение для энергии (2.3.4), получим связь между энергией и импульсом:
Но т. к. для покоящегося фотона , . Окончательно получим:
Т.к. , то можно записать:
Обозначим где k – волновое число. Теперь выразим импульс через волновой вектор : Содержание Видео:Выполнялка 55.Энергия и импульс фотонаСкачать ФотонО чем эта статья: 11 класс, ЕГЭ/ОГЭ Видео:Откуда у фотона импульс?Скачать Корпускулярно-волновой дуализмВопрос, на который вам однозначно не ответит никто: «Свет — это частица или волна?». Это очень сложный вопрос, на который ученые давно пытаются ответить. В XVII веке Исаак Ньютон предложил модель, в которой свет — поток мельчайших корпускул (частиц). Это позволяло просто объяснить многие характерные свойства света. Например, прямолинейность световых лучей и закон отражения, согласно которому угол отражения света равен углу падения. Это соотносится с законом сохранения импульса, которому подчиняются частицы. Но есть такие явления, как интерференция и дифракция. Они совсем не вписываются в корпускулярную теорию. Осторожно: дальше много сложных терминов! Но на элективном курсе по физике за 10 класс можно разобраться даже в сложном материале вместе с опытным преподавателем. Интерференция и дифракцияИнтерференция — это явление, при котором происходит наложение двух волн и образуются так называемые «максимумы» и «минимумы» — самые светлые и самые темные участки. Выглядит это так:
В жизни вы это встречали, например, если видели разлитый бензин или пускали мыльные пузыри. Это все следствие интерференции света. Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн. Дифракция — это явление огибания препятствий, которые возникают перед волной. Благодаря дифракции свет может огибать препятствие и попадать туда, где с точки зрения геометрии должна быть тень. В XIX веке появилась волновая теория света, которая объясняла дифракцию и интерференцию. Согласно этой теории, свет — частный случай электромагнитных волн, то есть процесса распространения электромагнитного поля в пространстве. Волновая оптика вообще казалась в то время каким-то чудом, потому что она объясняла не только те явления, которые не объясняла корпускулярная теория, но и вообще все известные на то время световые эффекты. Даже законы геометрической оптики можно было доказать через волновую оптику. Казалось бы, ну все тогда — у света волновая природа, никаких тебе частиц, расходимся. Но не тут-то было! Уже в начале XX века корпускулярная теория света снова набрала актуальность, так как ученые обнаружили явления, которые с помощью волновой теории объяснить не удавалось. Например, давление света и фотоэффект, о которых мы еще поговорим. В рамках корпускулярной теории эти явления прекрасно объяснялись, и корпускулы (частицы) света даже получили название — фотоны. Сложилась интересная ситуация — параллельно существовали две серьезные научные теории, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории идеально дополняют друг друга. Так мы подошли к понятию корпускулярно-волновой природы света. Корпускулярно-волновой дуализм — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна. Видео:Энергия фотона (видео 1) | Квантовая физика | ФизикаСкачать Энергия и импульс фотонаКаждый фотон переносит некоторое количество энергии. Именно это количество называется энергией фотона. Энергия фотона (соотношение Планка-Эйнштейна) — энергия фотона [Дж] = 6,6 · 10 −34 Дж · c — частота фотона [Гц] Импульс фотона связан с энергией следующим соотношением: Соотношение импульса и энергии фотона — импульс фотона [(кг · м)/с] — энергия фотона [Дж] — скорость света [м/с] Подставляем вместо формулу энергии фотона: А вместо частоты формулу : Сокращаем скорость света и получаем формулу импульса. Импульс фотона — импульс фотона [(кг · м)/с] = 6,6 · 10 −34 Дж · c Видео:Урок 434. Фотоэффект. Законы фотоэффектаСкачать Давление светаСила Лоренца — это сила, действующая на частицу, движущуюся в магнитном поле. Если рассматривать свет как совокупность фотонов, то можно предположить, что свет может оказывать давление. Именно такое предположение сделал Джеймс Максвелл в 1873 году и не прогадал. Пусть на поверхность абсолютно черного тела площадью перпендикулярно к ней ежесекундно падает фотонов. Каждый фотон обладает импульсом . Полный импульс, получаемый поверхностью тела, равен . Из механики известно, что давление — это отношение силы к площади, на которую эта сила воздействует: . Не перепутайте: импульс и давление обозначаются одинаковой буквой, но величины разные! Второй закон Ньютона в импульсной форме имеет вид , где — это импульс, а — промежуток времени, за которое импульс меняется на значение p. Тогда световое давление определяется так: . При падении света на зеркальную поверхность удар фотона считают абсолютно упругим, поэтому изменение импульса и давление в 2 раза больше, чем при падении на черную поверхность (в этом случае удар неупругий, так как черный цвет поглощает фотон). Предсказанное Максвеллом существование светового давления было экспериментально подтверждено физиком П. Н. Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Теория и эксперимент совпали. Значение давления света составило ≈ 4.10 -6 Па. Опыты Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом. Видео:Урок 439. Давление света. Масса и импульс фотонаСкачать ФотоэффектЕще одно важное явление, подтверждающее корпускулярную природу света, — это фотоэффект. Пока разберем только принцип этого явления, а сложную математику оставим на другой раз. 😉 На рисунке представлена экспериментальная установка для исследования фотоэффекта.
Установка представляет собой стеклянный вакуумный баллон с двумя металлическими электродами, к которым прикладывается напряжение. Один из электродов через кварцевое окошко освещается монохроматическим светом (монохроматический свет — это свет, длина волны которого неизменна). Под действием фотонов из отрицательно заряженного электрода выбиваются так называемые фотоэлектроны. Они притягиваются к положительному электроду и образуется фототок. Многочисленные экспериментаторы установили основные закономерности фотоэффекта: Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света и не зависит от его интенсивности. Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота , при которой еще возможен внешний фотоэффект. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света nu_»> . Эйнштейн исследовал фотоэффект и пришел к выводу, что свет имеет прерывистую структуру, то есть состоит из фотонов. Фотоэффект используется, например, в датчиках света. Уличные фонари, оборудованные датчиками света, включаются автоматически при определенном уровне естественного освещения. Видео:Импульс фотона (видео 2) | Квантовая физика | ФизикаСкачать Техническое применение фотоновВажное техническое устройство, использующее фотоны — лазер. Лазеры применяют во многих областях технологии: с их помощью режут, варят и плавят металлы, получают сверхчистые металлы. На лазерах основаны многие точные физические приборы — например, сейсмографы. Ну а с лазерными принтерами и указками вы наверняка знакомы. На определении местоположения фотонов основаны многие генераторы случайных чисел. Чтобы сгенерировать один бит случайной последовательности, фотон направляется на лучеделитель — штуку, которая разделяет свет на два потока. Для любого фотона существует лишь две возможности, причем с одинаковой вероятностью: пройти лучеделитель или отразиться от его грани. В зависимости от того, прошел фотон через лучеделитель или нет, следующим битом в последовательность записывается 0 или 1. Видео:ЕГЭ физика. Энергия, импульс фотонаСкачать Фотоэффект. ФотоныВ 1887 году Г. Герцем был открыт фотоэлектрический эффект, а продолжить его исследования довелось А.Г. Столетову. Ф. Леонард в 1900 году серьезно занялся данным проектом. К тому времени был открыт электрон. Это говорило о том, что фотоэффект состоял в вырывании электронов из вещества под действием падающего на него света. Данное исследование законов Столетова изображено на рисунке 5 . 2 . 1 . Рисунок 5 . 2 . 1 . Схема экспериментальной установки для изучения фотоэффекта. В лабораторных условиях применили стеклянный вакуумный баллон с двумя металлическими электродами с очищенной поверхностью. К ним прикладывали напряжение U с возможностью изменения полярности с помощью ключа. Катод освещали монохроматическим светом с длиной волны λ через кварцевое окошко. Так как световой поток оставался неизменным, то зависимость силы тока I от напряжения ослабевала. Рисунок 5 . 2 . 2 . наглядно демонстрирует кривые зависимости при интенсивном свете, попадающем на катод. Рисунок 5 . 2 . 2 . Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. I н 1 и I н 2 – токи насыщения, U з – запирающий потенциал. По графику видно, что при подаче большого напряжения фототок анода А достигает насыщения, потому как при вырывании светом из катода они в состоянии достичь его. Видео:ФОТОЭФФЕКТ И УРАВНЕНИЕ ЭЙНШТЕЙНА НА ПРИМЕРЕ ТЮРЬМЫСкачать Ток насыщения. Закономерности фотоэффектаТок насыщения I н прямо пропорционален интенсивности падающего света. При наличии отрицательного напряжения на аноде, электрическое поле, находящееся между катодом и анодом, тормозится электронами. К аноду могут добраться электроны, у которых кинетическая энергия превышает значение | e U | . При наличии напряжения меньше, чем – U з , происходит прекращение фототока. После измерения – U з определяется максимальная кинетическая энергия фотоэлектронов: m υ 2 2 m a x = e U 3 . Из формулы видно, что оно не зависит от интенсивности падающего света. После глубоких исследований стало ясно, что при возрастании запирающего потенциала происходит линейное увеличение частоты света ν . Рисунок 5 . 2 . 3 . Зависимость запирающего потенциала U з от частоты ν падающего света. После многочисленных экспериментов были установлены закономерности формул фотоэффекта:
Данные закономерности не соответствовали представлениям классической физики о взаимодействии света с веществом. Исходя из волновых представлений, взаимодействие световой волны с электроном должно действовать по принципу постепенного накапливания энергии. Чтобы он смог вылететь из катода, необходимо иметь достаточное количество энергии, накапливаемой за определенный промежуток времени, не зависящий от интенсивности света. Появление фотоэлектронов происходит сразу после освещения катода. Данная модель не давала четкого представления нахождения красной границы фотоэффекта. Волновая теория света не могла дать объяснение независимости энергии фотоэлектронов от интенсивности светового потока и пропорциональности максимальной кинетической энергии частоты света. Поэтому электромагнитная теория была не способна объяснить эти изменения. В 1905 году А. Эйнштейн дает теоретическое объяснение наблюдаемых закономерностей фотоэффекта, основываясь на гипотезе М. Планка. Видео:Относительность 19 - Уравнение ЭйнштейнаСкачать Постоянная Планка. Уравнение ЭйнштейнаИзлучение и поглощение света происходит определенными порциями, где она определяется формулой E = h ν , h принято называть постоянной Планка. Основной шаг в развитии квантовых представлений относится к Эйнштейну: Свет обладает прерывистой структурой. Электромагнитная волна состоит из порций, называемых, кварками, спустя время которые зафиксировали как фотоны. После взаимодействия с веществом фотон передает свою энергию h ν одному электрону, одна часть которой рассеивается при столкновениях с атомами, а другая затрачивается на преодоление потенциального барьера на границе металл-вакуум. Для этого ему необходимо совершить работу выхода А , зависящую от свойств материала катода. Наибольшую кинетическую энергию, вылетевшую из катода фотоэлектроном, определяют законом сохранения энергии: m ν 2 2 m a x = e U e = h ν — A . Формула получила название уравнения Эйнштейна для фотоэффекта. Благодаря ему, закономерности внешнего явления фотоэффекта могут быть объяснены. Линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта следуют из данного выражения. Общее количество фотоэлектронов, которые покидают поверхность катода в течение 1 с , пропорционально числу фотонов, падающих на поверхность. Можно сделать вывод, что ток насыщения должен быть прямо пропорционален интенсивности светового потока. По уравнению фотоэффекта Эйнштейна тангенс угла наклона прямой, выражающий зависимость запирающего потенциала U з от частоты ν , равняется отношению постоянной Планка h к заряду электрона e : Формула позволяет вычислить значение постоянной Планка. Р. Милликенн проводил измерения в 1914 году, после чего смог определить работу выхода А : A = h ν m i n = h c λ к р , где c – скорость света, λ к р – длина волны, которая соответствует красной границе фотоэффекта. Большинство металлов имеет работу выхода А и составляет несколько электрон-вольт ( 1 э В = 1 , 602 · 10 – 19 Д ж ) . Квантовая физика использует электрон-вольт как энергетическую единицу измерения. Тогда значение постоянной Планка равняется h = 4 , 136 · 10 — 15 э В · с . Наименьшая работа выхода наблюдается у щелочных элементов. Натрий при A = 1 , 9 э В соответствует красной границе фотоэффекта λ к р ≈ 680 н м . Такие соединения применяют для создания катодов в фотоэлементах, используемых для регистрации видимого света. Законы фотоэффекта говорят о том, что при пропускании и поглощении свет ведет себя подобно потоку частиц, называемых фотонами или световыми квантами. Энергия фотонов записывается в виде формулы E = h ν . При движении в вакууме фотон обладает скоростью с , а его масса m = 0 . Общее соотношение теории относительности, связывающее энергию, импульс и массу любой частицы, записывается как E 2 = m 2 c 4 + p 2 c 2 . Отсюда следует, что фотон обладает импульсом, значит: Можно сделать вывод, что учение о свете вернулось к представлениям о световых частицах – корпускулах. Но это не расценивается как возврат к корпускулярной теории Ньютона. В XX было известно о двойственной природе света. Когда он распространялся, то проявлялись его волновые свойства (интерференция, дифракция, поляризация), при его взаимодействии с веществом – корпускулярные, то есть явление фотоэффекта. Это и получило название корпускулярно-волнового дуализма. Спустя время, данная теория была подтверждена у других элементарных частиц. Классическая физика не дает наглядную модель сочетаний волновых и корпускулярных свойств микрообъектов. Их движениями управляют законы квантовой механики. В основе этой науки лежит теория абсолютно черного тела, доказанная М. Планком, и квантовая, предложенная Эйнштейном. Рисунок 5 . 2 . 4 . Модель фотоэффекта 🎥 Видеозаконы Столетова Уравнение Эйнштейна для внешнего фотоэффектаСкачать ФОТОН фотоэффект ЕГЭ по физике ЭНЕРГИЯ ФОТОНАСкачать Физика - Внешний фотоэлектрический эффект. уравнение Эйнштейна для фотоэффектаСкачать Задание 20 ЕГЭ по физике. Длина волны, энергия и импульс фотонаСкачать Тема 23. Фотон. Уравнение Эйнштейна для фотоэффекта. Давление света. Корпускулярно-волновой дуализмСкачать Энергия и импульс фотона | Физика ЕГЭ | КРУЖОКСкачать Есть ли масса у фотона?Скачать Задача: УРАВНЕНИЕ ЭЙНШТЕЙНА ДЛЯ ФОТОЭФФЕКТА.Скачать Опыты Столетова. Законы фотоэффекта. Уравнение ЭйнштейнаСкачать Импульс фотона. Давление света. | Физика ЕНТ 2022 | УмскулСкачать Чему равен импульс фотона: Московкина 71.4. Физики шутятСкачать |