Точка с запятой в системе уравнений

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Точка с запятой в системе уравнений

15.1. Расположение формул

15.1.1. Формулы, выключенные отдельными строками

Наиболее важные формулы, а также длинные и громоздкие формулы, содержащие крупнокегельные знаки суммирования, произведения, дифференцирования, интегрирования и т.п., выключают в отдельные строки. Таким же образом располагают и все нумерованные формулы. При этом возможна выключка как на середину, так и в левый (иногда в правый) край строки или с небольшой втяжкой.

15.1.2. Формулы, помещенные в подбор одна к другой

Для экономии места несколько коротких однотипных формул, выделенных из текста, можно помещать в одной строке, а не одну под другой (см. 15.8.5).

15.1.3. Формулы, помещенные внутри строк текста

Внутри строк текста размещают прежде всего небольшие и несложные формулы, не имеющие самостоятельного значения. Но и во многих других случаях расположение формул отдельными строками не вызывается необходимостью, и при размещении их в подбор с текстом можно добиться значительной экономии бумаги и сократить

* Математические обозначения, применяемые в формулах, стандартизованы СЭВ (PC 2625—70 “Основные математические обозначения” — см. 16)

объем ручной доработки набранного на машине текста или объем монтажа при фотонаборе (см. 15.8.4).

15.2. Нумерация формул

15.2.1. Использование нумерации

Нумеровать следует наиболее важные формулы, на которые имеются ссылки в последующем тексте. Не рекомендуется, как правило, нумеровать формулы, на которые нет ссылок в тексте.

15.2.2. Форма номера

Порядковые номера формул обозначают арабскими цифрами в круглых скобках у правого края полосы без отточия от формулы к ее номеру. Применяются арабские цифры со строчными буквами (см. 15.2.10) и буквы или звездочки (см. 15.2.11).

15.2.3. Место номера, не умещающегося в строке формулы

Его располагают в следующей строке ниже формулы.

15.2.4. Место номера при переносе формулы

На уровне последней строки. Например:

Точка с запятой в системе уравнений

15.2.5. Место номера формулы в рамке

Вне рамки в правый край против основной строки формулы.

15.2.6. Место номера формулы-дроби

Номер выключают по середине основной горизонтальной черты формулы.

15.2.7. Нумерация небольших формул, помещенных в одной строке

Несколько небольших формул, составляющих единую группу, помещают в одну строку и объединяют одним номером.

15.2.8. Нумерация группы формул, расположенных отдельными строками

Ставят справа от этой группы фигурные скобки, охватывающие по высоте все формулы, — парантез. Острие парантеза находится в середине группы формул по высоте и обращено в сторону номера, помещаемого в скобке против острия в правом крае полосы. Например:

Точка с запятой в системе уравнений

15.2.9. Нумерация группы формул — системы уравнений

В мат. литературе парантез допускается ставить слева от группы формул — системы уравнений, а номер помещать против середины группы формул. Например:

Точка с запятой в системе уравнений

При отсутствии парантеза номер также помещают против середины группы формул

15.2.10. Нумерация формул — разновидностей основной формулы

Формулы — разновидности приведенной ранее основной формулы допускается нумеровать арабской цифрой и прямой строчной буквой русского алфавита, набираемой слитно с цифрой. Например: (14а), (146).

15.2.11. Нумерация промежуточных формул, не имеющих самостоятельного значения

Такие формулы, приводимые для вывода осн. формул, нумеруют иногда либо строчными буквами русского алфавита, набираемыми прямым шрифтом в круглых скобках, либо звездочками в круглых скобках Например: (а), (б), (в), (*), (**), (***). .

15.2.12. Сквозная нумерация формул

Применяется в небольших работах, где нумеруется ограниченное число наиболее важных формул. Такую же нумерацию можно использовать и в более объемных работах, если пронумерованных формул не слишком много и в одних главах содержится мало ссылок на формулы из других глав.

15.2.13. Двойная индексационная нумерация формул

Применяется, как правило, при делении текста на главы и параграфы, когда такая нумерация используется и для других рядов: рубрик, иллюстраций, таблиц. Сначала указывают номер главы (или параграфа), затем ставят точку и приводят номер формулы в данной главе (параграфе). Например: (3.7) — 7-я формула в гл. III; (9.5) — 5-я формула в § 9. Римские цифры для нумерации формул обычно не применяют (хотя в книге номер главы может быть обозначен римскими цифрами).

15.2.14. Тройная индексационная нумерация формул

Применяется при сложной рубрикации, большом числе формул и множестве перекрестных ссылок на формулы из других глав. Например; (7.9. 6) — 6-я формула в § 9 гл. VII.

15.3. Ссылки на номера формул в тексте

15.3.1. Основная форма ссылки

1. При ссылках на какую-либо формулу ее номер ставят точно в той же графической форме, что и после формулы, т.е. арабскими цифрами в круглых скобках. Например: в формуле (3.7); из уравнения (5.1) вытекает и т.п.

15.3.2. Вариант ссылки без определяющего слова перед номером

Употреблять номера без определяющих слов в тексте изданий для массового читателя, учебных изданий для средних учебных заведений не рекомендуется. Например:

Рекомендуется:

Не рекомендуется:

Из формулы (2 1) следует.

Из (2.1) следует.

Однако в изданиях для хорошо подготовленного читателя (научные работники, студенты вузов, специалисты с высшим образованием) с целью экономии бумаги можно опускать определяющее слово перед номером, т.е. применять вариант, который не рекомендуется для массовых изданий (см. пример выше в правой колонке).

15.3.3. Ссылка на формулу в тексте, заключенном в скобки

Если ссылка на номер формулы находится внутри выражения, заключенного в круглые скобки, то их рекомендуется заменять квадратными скобками. Например. Используя выражение для дивергенции [см. формулу (14.3)], получаем.

15.4. Пунктуация в тексте с формулами

15.4.1. Общее правило

Формула включается в предложение как его равноправный элемент. Поэтому в конце формул и в тексте перед ними знаки препинания ставят в соответствии с правилами пунктуации.

15.4.2. Двоеточие перед формулой

Ставят лишь в тех случаях, когда оно необходимо по правилам пунктуации: а) в тексте перед формулой содержится обобщающее слово; б) этого требует построение текста, предшествующего формуле. Например:

а) В результате получаемТочка с запятой в системе уравненийследующее соотношение:

б) Таким образом, производную “-го порядка можно выразить через Производные первого, второго, . (/* — 1)-го порядков: Точка с запятой в системе уравнений

15.4.3. Знаки препинания между формулами

Формулы, следующие одна за другой и не разделенные текстом, отделяют запятой или точкой с запятой. Указанные знаки препинания помещают непосредственно за формулами до их номера.

15.4.4. Знаки препинания между формулами при парантезе

Знаки препинания ставят внутри парантеза.

15.4.5. Знаки препинания после определителей и матриц

После таких громоздких математических выражений, как определители и матрицы, допускается знаки препинания не ставить.

15.5. Экспликация к формуле

15.5.1. Применение и состав экспликации

Экспликацию (расшифровку приведенных в левой и правой частях формулы буквенных обозначений величин) принято помещать после всех формул.

В экспликациях может быть опущена расшифровка общепринятых обозначений.

Повторяющиеся обозначения могут не расшифровываться, если формулы расположены близко друг к другу.

При большом числе формул с повторяющимися обозначениями целесообразно поместить в начале или в конце издания список обозначений с их расшифровкой и в экспликации повторяющиеся обозначения не включать.

15.5.2. Последовательность составных элементов

Последовательность расшифровки буквенных обозначений должна соответствовать последовательности расположения этих обозначений в формуле. Если правая часть формулы является дробью, то сначала поясняют обозначения величин, помещенных в числителе, в том же порядке, что и в формуле, а затем — в знаменателе.

15.5.3. Пунктуационное оформление текста с формулой и экспликацией

После формулы перед экспликацией ставят запятую, затем с новой строки от левого края — слово где (без двоеточия после него), за ним — обозначение первой величины и после тире его расшифровку и далее — каждое следующее обозначение и его расшифровку. В конце каждой расшифровки ставят точку с запятой, а в конце последней — точку. Обозначения физ. величин в каждой расшифровке отделяют запятой от текста расшифровки. Например;

Итак, получаем соотношение/

где Q — аккумулирующаяТочка с запятой в системе уравненийспособность нагревательного устройства, ГДж; W — количество воды в прямом подающем трубопроводе, т; с в и с м — удельные теплоемкости воды и металла, кДж/(кг • К); G M — масса металла отопительных систем и трубопровода прямой сетевой воды, т; Л/—изменение температуры сетевой воды на выходе из ТЭЦ, °С.

15.5.4. Графическое оформление экспликации

С целью экономии бумаги элементы экспликации рекомендуется располагать, как правило, в подбор. Начинать каждую расшифровку в экспликации с новой строки не рекомендуется, т.к. это ведет к снижению емкости печатного листа. Такой способ оформления экспликации допустим в изданиях с очень небольшим числом формул, когда он практически не ведет к потере бумаги.

15.6. Оформление записи формулы

В формулах следует в первую очередь использовать круглые скобки ( ), во вторую — квадратные [ ], в третью — фигурные . Например; Точка с запятой в системе уравнений

Если же круглых, квадратных и фигурных скобок недостаточно, то применяют круглые, прямые и фигурные скобки повышенного кегля. Например:

Точка с запятой в системе уравнений

Иногда в одной и той же формуле многократно используют только круглые скобки. Например:

Точка с запятой в системе уравнений

Коэффициенты в формулах следует ставить впереди буквенных обозначений слитно с ними. Например:

Точка с запятой в системе уравнений

15.6.3. Употребление точки на средней линии как знака умножения

Этот знак служит основным знаком умножения.

1. Точку как знак умножения ставят:

а) перед числовым сомножителем: 35 -0,18-5,2; а- 5;

б) для выделения какого-либо множителя; Точка с запятой в системе уравнений

в) для записи скалярного произведения векторов: а∙b

г) между аргументом тригонометрической функции и буквенным обозначением: a sin x • Ь cos у;

д) между знаком радикала (интеграла, логарифма) и сомножителем: Точка с запятой в системе уравнений

2. Точку как знак умножения не ставят;

а) перед буквенными символами: Точка с запятой в системе уравнений

б) перед скобками и после них: Точка с запятой в системе уравнений

в) перед дробными выражениями и после них:

Точка с запятой в системе уравнений

г) перед знаком радикала (интеграла, логарифма):

Точка с запятой в системе уравнений

д) перед аргументом тригонометрической функции: oq tg wf.

Если вслед за тригонометрической функцией, радикалом, логарифмом и т.п. стоит множитель, представляющий собой буквенное выражение, то следует поменять местами сомножители и тем самым освободитьсяТочка с запятой в системе уравненийот знака умножения. Например , рекомендуется писать не

15.6.4. Употребление косого креста как знака умножения

а) при указании размеров: площадь комнаты 4,5 X 3 м;

б) для записи векторного произведения векторов; а Х b;

в) при переносе формулы с одной строки на другую на знаке умножения.

15.6.5. Многоточие в ряду перечисляемых, складываемых, приравниваемых символов

Применяется в виде трех точек на нижней линии строки. Запятые, знаки сложения, вычитания и равенства ставят перед отточием: и после него. Например:

Точка с запятой в системе уравнений

15.6.6. Многоточие между перемножаемыми символами

В этом случае многоточие не отделяют запятыми и набирают на среднюю линию. Например: Точка с запятой в системе уравнений

15.6.7. Многоточие и отточие в системах уравнений, матрицах, определителях

Символы, расположенные в виде столбцов, выключают по знаку многоточия. Перед последней строкой ставят отточие на полную строку. Например:

Точка с запятой в системе уравнений

15.7. Переносы в формулах

15.7.1. Место переноса

1. Если формула при наборе не умещается в одной строке, то ее частично переносят на другую строку. В первую очередь перенос следует производить на знаках отношения между левой и правой частями формулы (“=, ”, , > и т.д.), во вторую — на отточии (. ), знаках сложения и вычитания (-<-, —, ±) и в третью — на знаке умножения в виде косого креста (X). На знаке деления перенос делать не рекомендуется.

При переносе формул нельзя отделять индексы и показатели степени от символов, к которым они относятся. Нельзя также отделять выражения, содержащиеся под знаком интеграла, логарифма, суммы ( £, S), произведения ( П ), от самих знаков.

15.7.2. Обозначение переноса

Знак, на котором производится перенос, оставляют в конце строки и повторяют в начале той строки, на которую перенесена часть формулы. В том случае, когда формула прерывается на отточии, его также повторяют на следующей строке.

15.7.3. Перенос дроби с длинным числителем и коротким знаменателем

Для удобства переноса рекомендуется преобразовать дробь: числитель записать в виде многочлена в скобках, а величину, обратную знаменателю, вынести за скобки. Например, дробь

Точка с запятой в системе уравнений

можно привести к виду

Точка с запятой в системе уравнений

или, если использовать косую черту, к виду

Точка с запятой в системе уравнений

В обоих случаях формулу разбивают переносом на знаке плюс многочлена.

15.7.4. Перенос дроби с коротким числителем и длинным знаменателем

Для удобства переноса рекомендуется записать дробь, используя косую черту в качестве знака деления, как отношение числителя и знаменателя в виде многочленов, взятых в скобки. Можно также заменить отдельные сложные элементы знаменателя условными обозначениями, расшифрованными вслед за формулой. Например, дробь

Точка с запятой в системе уравнений

можно привести к виду Выражение

Точка с запятой в системе уравнений

Точка с запятой в системе уравнений

можно записать так:

Точка с запятой в системе уравнений

15.7.5. Перенос формулы с длинным подкоренным выражением, не умещающимся в формат набора

Такое выражение можно преобразовать, возведя в соответствующую степень подкоренное выражение. Например, формулу

Точка с запятой в системе уравнений

можно записать в виде

Точка с запятой в системе уравнений

Здесь перенос также производят на знаке плюс многочлена.

15.8. Приемы обработки формул и текста с ними, позволяющие экономить площадь бумаги

15.8.1. Перевод выражений с горизонтальной дробной чертой в однострочные

Дробные выражения можно упростить частичной или полной заменой дробной черты на косую, а также введением десятичных дробей и отрицательных степеней. Например, формулы

Точка с запятой в системе уравнений

можно преобразовать и записать соответственно так:

Точка с запятой в системе уравнений

Указанные способы рекомендуется применять и при обозначении степеней, пределов интегрирования, подстрочных и надстрочных индексов. Например, выражения

Точка с запятой в системе уравнений

Точка с запятой в системе уравнений

следует преобразовать так:

15.8.2. Запись с помощью обозначения ехр

Если показательная функция содержит длинный или громоздкий показатель, то такую функцию рекомендуется записать с помощью обозначения ехр и расположения ее показателя на строке с введением скобок. Например, выражения

Точка с запятой в системе уравнений

следует преобразовать так:

Точка с запятой в системе уравнений

15.8.3. Свернутые формы записи математических выражений

1. Свернутые формы записи обозначений. Например, сумму а 4- ач 4-. + а п можно записать в виде Sa,; произведение ап2 а п

в виде Пя ; ; последовательность а, ai, . а щ . —в виде ™ =1 .

2. Сокращенные формы записи матриц, определителей и систем линейных уравнений. Например, вместо матрицы

Точка с запятой в системе уравнений

можно употребить краткую запись A=*[a kl ], К £ п, 1 п. Используя такую запись, систему уравнений

Точка с запятой в системе уравнений

можно записать кратко в виде АХ=*В, где А =[%], К *: X2, . Хп # = (&1, Ь2, . Ьп).

3. Замена однотипных формул, в которых величины изменяются по одному и тому же правилу, одним выражением.

Для этого используют индексацию так, как это принято в математике. Например, текст

Формулы для первых четырех моментов имеют вид

Точка с запятой в системе уравнений

можно более компактно записать так:

Формулы для первых четырех моментов имеют вид

Точка с запятой в системе уравнений

15.8.4. Расположение формул в подбор с текстом

Ряд несложных и непронумерованных формул размещают в подбор с текстом. Например, текст:

Согласно условию, имеем

Точка с запятой в системе уравнений

Точка с запятой в системе уравнений

рекомендуется расположить в подбор:

15.8.5. Расположение формул в подбор одна к другой

Часто возникает такое положение, когда формулу необходимо выключить в отдельную строку, но в результате мат. действий из этой формулы получается другая, представляющая собой некоторый итог рассуждений. В подобных случаях, если позволяет формат набора, обе формулы можно поставить рядом в строке, соединив их либо союзом или, либо мат. знаками (“равносильно”), => (“следует”). Например, текст

Решая полученную систему, имеем

Точка с запятой в системе уравнений

Точка с запятой в системе уравнений

Запись формул, входящих в систему уравнений, в виде столбца не является строго обязательной, если эти формулы умещаются в одну строку. При расположении в одну строку в предшествующем тексте следует указать, что приведенные ниже уравнения образуют систему.

Иногда некоторую совокупность уравнений ошибочно считают системой уравнений и записывают формулы в столбец, объединяя их парантезом. В подобных случаях уравнения этой совокупности следует записать в строку (без парантеза). Например, в тексте

Точка с запятой в системе уравнений

правильнее записать все формулы в строку.

Прямоугольные и сферические координаты точки связаны соотношениями

Точка с запятой в системе уравнений

Аналогичное положение возникает и в том случае, когда неоправданно помещают одну под другой несколько однотипных пронумерованных формул. В таком случае все формулы следует поместить в одной строке и дать под одним номером Напр., текст

Координаты центра тяжести дуги находят по формулам

Точка с запятой в системе уравнений

необходимо расположить следующим образом:

Координаты центра тяжести дуги находят по формулам

Точка с запятой в системе уравнений

Изменить ссылки на первоначальные номера формул легко. Например, если нужно сослаться на формулу для выражения координаты /, следует написать: по второй из формул (1).

15.8.6. Отказ от элементарных числовых выкладок

Точка с запятой в системе уравнений

Точка с запятой в системе уравнений

В научно-технической литературе не следует приводить все промежуточные преобразования в формулах, в особенности элементарные по характеру. Следует давать наиболее важные и характерные из таких преобразований. Например, вместо такого ряда формул:

15.8.7. Замена громоздких выражений символами

Точка с запятой в системе уравнений

Точка с запятой в системе уравнений

Часто над одним и тем же громоздким выражением производятся различные преобразования. Такое выражение следует заменить каким-нибудь символом и использовать это обозначение в последующих преобразованиях. Например, текст

15.8.8. Преобразование текста с целью компактного размещения формул

Нередко обязывается полезным такое изменение структуры текста, при котором ряд однотипных формул помещается в одной строке. Этот прием особенно эффективен, если приходится иметь дело с системами уравнений, матрицами и определителями, которые занимают большую площадь. Например, текст

Точка с запятой в системе уравнений

на 3 и вычитая ее из 2-й строки, получаем

Точка с запятой в системе уравнений

Переставив теперь 2-й и 3-й столбцы, имеем

Точка с запятой в системе уравнений

Умножив 1-ю строку матрицы

можно более компактно записать так:

Выполним над матрицей следующие преобразования:

Точка с запятой в системе уравнений

Мы умножили 1-ю строку на 3 и вычли ее из 2-й, а затем переставили 2-й и 3-й столбцы.

15.8.9. Перевод текста с формулами в таблицу

В тех случаях, когда мат. текст носит вспомогательный, справочный характер (например, теоретический материал в задачнике), нередко оказывается полезным перевести группу формул в таблицу, более наглядную и компактную по структуре. Например, текст

1. Если С ==■ 0, то уравнение принимает вид Л х +■ Ву = 0. Это —уравнение прямой, проходящей через начало координат.

Если /4=0, то уравнение имеет вид у = —С/В или у=- b и выражает уравнение прямой, параллельной оси Ох.

2. Если В = 0, то уравнение имеет вид к = -С/А или х=* а и выражает уравнение прямой, параллельной оси Оу.

4. Если А = С = 0, то уравнение примет вид у = 0. Это — уравнение оси Ох.

5. Если В = С = 0, то уравнение примет вид х = 0. Это — уравнениеоси Оу

можно перевести в следующую таблицу:

Значения коэффициентов

Уравнение прямой

Положение прямой

С-0 А =0 5 = 0 А -=С=0 В = С=0

Ал + By = 0 y = -C/B

b .v- -С /А — а у-0 =0

Проходит через начало координат Параллельна оси Ох ”………….”…… Оу Совпадает с осью Ох ”…….”……”…… Оу

15.8.10. Перенос ссылок на формулы из текста в формулы

Иногда ссылки на формулы можно расположить над соответствующими знаками равенств в произведенной цепочке преобразований. Например;

Точка с запятой в системе уравнений

15.8.11. Использование современной символики

Большие возможности для компактной записи текста и формул дает современная мат. символика. Наиболее употребительны следующие мат. символы; =*•, •**” — знаки следования и равносильности; с, се — знаки принадлежности; U, П — знаки объединения и пересечения множеств; V-знак квантора общности (означает “для любого х”); 3 — знак квантора существования (означает “существует такое х”). Например, текст

Если р принадлежит а, то а и р параллельны. Пусть р не принадлежит а. Проведем плоскость р, которая содержит линию пересечения прямых о и q. Так как q принадлежит а (по условию) и q принадлежит р (по построению), то q есть прямая пересечения плоскостей аи р. Допустим, что теорема неверна, т.е. р не параллельна а. Тогда существует точка С пересечения прямой р с плоскостью а с помощью использования математической символики примет такой вид:

Точка с запятой в системе уравнений

15.9. Разметка формул

15.9.1. Общие правила

Чтобы гарантировать правильный набор формул, их следует тщательно разметить:

1) обозначить черточками под и над буквами прописные и строчные буквы, не различающиеся по начертанию;

2) обозначить под символами, индексами и мат. обозначениями, шрифтом какого начертания они должны быть набраны (прямой, курсив, полужирный);

3) обвести красным карандашом буквы греческого алфавита, синим — готического;

4) во всех сомнительных случаях пояснить на поле, какую букву или знак следует набрать (в т.ч. спец. мат. знаки);

5) пояснить или прорисовать все смешиваемые при наборе знаки, цифры, буквы; например: О ( ноль) и О (буква), X (знак умножения) и х (икс), единица арабская и римская, штрих ‘ и показатель степени, равный единице 1

6) разметить корректурными знаками положение верхних и нижних, одинарных и двойных индексов.

15.9.2. Указания о переносах и отбивках

Целесообразно при разметке;

1. Указать место вероятного переноса в длинных формулах, чтобы избежать правки в наборе.

2. Обозначить в необходимых случаях отбивки (места отбивки указаны двойной чертой). Например: а) между символическим обозначением функции и аргументом: sin II х; In й х;

б) между подынтегральной функцией и дифференциалом:

Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Как решать систему уравнений

Точка с запятой в системе уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Видео:Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Видео:После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать

После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных Уравнений

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

Видео:Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать

Как решать систему уравнений графическим методом? | Математика | TutorOnline

Система уравнений

Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

Пример системы уравнений

Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

Существует два метода решений систем линейных уравнений:

  1. Метод подстановки.
  2. Метод сложения.

Алгоритм решения системы уравнений методом подстановки:

  1. Выразить из любого уравнения одну переменную через другую.
  2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  3. Решить уравнение с одной неизвестной.
  4. Найти оставшуюся неизвестную.

Решить систему уравнений методом подстановки

Решение:

  1. Выразить из любого уравнения одну переменную через другую.
  1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  1. Решить уравнение с одной неизвестной.

3 ( 8 − 2 y ) − y = − 4

y = − 28 − 7 = 28 7 = 4

  1. Найти оставшуюся неизвестную.

x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

Ответ можно записать одним из трех способов:

Решение системы уравнений методом сложения.

Метод сложения основывается на следующем свойстве:

Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

Решить систему уравнений методом сложения

Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

− 3 x − 6 y + 3 x − y = − 24 − 4

y = − 28 − 7 = 28 7 = 4

Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

Ответ можно записать одним из трех способов:

Видео:Алгебра 9 класс. Графическое решение систем уравненийСкачать

Алгебра 9 класс. Графическое решение систем уравнений

Задания для самостоятельного решения

№1. Решите систему уравнений < 4 x + y = 10 x + 3 y = − 3

В ответе запишите сумму решений.

Решение:

1 способ: (метод подстановки)

x + 3 ( 10 − 4 x ) = − 3

x + 30 − 12 x = − 3

Теперь осталось найти переменную y .

y = 10 − 4 x = 10 − 4 ⋅ 3 = − 2

В ответе надо указать сумму решений:

x + y = 3 + ( − 2 ) = 1

2 способ: (метод сложения)

( − 12 x − 3 y + ( x + 3 y ) = ( − 30 ) + ( − 3 )

− 12 x − 3 y + x + 3 y = − 30 − 3

Теперь осталось найти переменную y .

В ответе надо указать сумму решений:

x + y = 3 + ( − 2 ) = 1

№2. Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C .

Точка с запятой в системе уравнений

Решение:

Абсцисса – x , ордината – y . Если две прямые пересекаются, то для нахождения точки их пересечения надо составить систему уравнений. Будем решать эту систему методом подстановки.

− 5 y = − 8 − 12 = − 20

y = − 20 − 5 = 20 5 = 4

x = 6 − 2 y = 6 − 2 ⋅ 4 = 6 − 8 = − 2

№3. На рисунке изображены графики функций y = 3 − x 2 и y = − 2 x . Вычислите координаты точки B .

Точка с запятой в системе уравнений

Запишите координаты в ответе через точку с запятой.

Решение:

Для того, чтобы найти точки пересечения графиков, необходимо составить систему уравнений. Будем решать эту систему методом подстановки:

a = 1, b = − 2, c = − 3

D = b 2 − 4 a c = ( − 2 ) 2 − 4 ⋅ 1 ⋅ ( − 3 ) = 4 + 12 = 16

x 1,2 = − b ± D 2 a = − ( − 2 ) ± 16 2 ⋅ 1 = [ 2 + 4 2 = 6 2 = 3 2 − 4 2 = − 2 2 = − 1

Поскольку нас интересует точка B , которая лежит правее точки A , выбираем x = 3 .

Ищем координату y (ординату), соответствующую координате x = 3 (абсциссе).

💥 Видео

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Задание №20. Экзамен ОГЭ. Система уравнений #shortsСкачать

Задание №20. Экзамен ОГЭ. Система уравнений #shorts

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Удалили с экзамена ОГЭ Устное Собеседование shorts #shortsСкачать

Удалили с экзамена ОГЭ Устное Собеседование shorts #shorts
Поделиться или сохранить к себе: