Видео:Решение системы уравнений методом ГауссаСкачать
Определение системы линейных алгебраических уравнений. Решение системы. Классификация систем.
Под системой линейных алгебраических уравнений (СЛАУ) подразумевают систему
содержащую $m$ уравнений и $n$ неизвестных ($x_1,x_2,ldots,x_n$). Прилагательное «линейных» означает, что все неизвестные (их еще называют переменными) входят только в первой степени.
Параметры $a_$ ($i=overline$, $j=overline$) называют коэффициентами, а $b_i$ ($i=overline$) – свободными членами СЛАУ. Иногда, чтобы подчеркнуть количество уравнений и неизвестных, говорят так «$mtimes n$ система линейных уравнений», – тем самым указывая, что СЛАУ содержит $m$ уравнений и $n$ неизвестных.
Если все свободные члены $b_i=0$ ($i=overline$), то СЛАУ называют однородной. Если среди свободных членов есть хотя бы один, отличный от нуля, СЛАУ называют неоднородной.
Решением СЛАУ (1) называют всякую упорядоченную совокупность чисел ($alpha_1, alpha_2,ldots,alpha_n$), если элементы этой совокупности, подставленные в заданном порядке вместо неизвестных $x_1,x_2,ldots,x_n$, обращают каждое уравнение СЛАУ в тождество.
Любая однородная СЛАУ имеет хотя бы одно решение: нулевое (в иной терминологии – тривиальное), т.е. $x_1=x_2=ldots=x_n=0$.
Если СЛАУ (1) имеет хотя бы одно решение, ее называют совместной, если же решений нет – несовместной. Если совместная СЛАУ имеет ровно одно решение, её именуют определённой, если бесконечное множество решений – неопределённой.
Имеем систему линейных алгебраических уравнений, содержащую $3$ уравнения и $5$ неизвестных: $x_1$, $x_2$, $x_3$, $x_4$, $x_5$. Можно, сказать, что задана система $3times 5$ линейных уравнений.
Коэффициентами системы (2) есть числа, стоящие перед неизвестными. Например, в первом уравнении эти числа таковы: 3, -4, 1, 7, -1. Свободные члены системы представлены числами 11, -65, 0. Так как среди свободных членов есть хотя бы один, не равный нулю, то СЛАУ (2) является неоднородной.
Упорядоченная совокупность $(4;-11;5;-7;1)$ является решением данной СЛАУ. В этом несложно убедиться, если подставить $x_1=4$, $x_2=-11$, $x_3=5$, $x_4=-7$, $x_5=1$ в уравнения заданной системы:
Естественно, возникает вопрос том, является ли проверенное решение единственным. Вопрос о количестве решений СЛАУ будет затронут в соответствующей теме.
Система (3) является СЛАУ, содержащей $5$ уравнений и $3$ неизвестных: $x_1$, $x_2$, $x_3$. Так как все свободные члены данной системы равны нулю, то СЛАУ (3) является однородной. Несложно проверить, что совокупность $(0;0;0)$ является решением данной СЛАУ. Подставляя $x_1=0$, $x_2=0$, $x_3=0$, например, в первое уравнение системы (3), получим верное равенство:
$$4x_1+2x_2-x_3=4cdot 0+2cdot 0-0=0.$$
Подстановка в иные уравнения делается аналогично.
Видео:ОГЭ ЛЫСЕНКО 2024 ЗАДАНИЕ 9 НАЙДИТЕ СВОБОДНЫЙ ЧЛЕН qСкачать
Матричная форма записи систем линейных алгебраических уравнений.
С каждой СЛАУ можно связать несколько матриц; более того – саму СЛАУ можно записать в виде матричного уравнения. Для СЛАУ (1) рассмотрим такие матрицы:
Матрица $A$ называется матрицей системы. Элементы данной матрицы представляют собой коэффициенты заданной СЛАУ.
Матрица-столбец $B$ называется матрицей свободных членов, а матрица-столбец $X$ – матрицей неизвестных.
Используя введённые выше обозначения, СЛАУ (1) можно записать в форме матричного уравнения: $Acdot X=B$.
Матрицы, связанные с системой, можно записать различными способами: всё зависит от порядка следования переменных и уравнений рассматриваемой СЛАУ. Но в любом случае порядок следования неизвестных в каждом уравнении заданной СЛАУ должен быть одинаков (см. пример №4).
Записать СЛАУ $ left < begin& 2x_1+3x_2-5x_3+x_4=-5;\ & 4x_1-x_3=0;\ & 14x_2+8x_3+x_4=-11. end right. $ в матричной форме и указать расширенную матрицу системы.
Имеем четыре неизвестных, которые в каждом уравнении следуют в таком порядке: $x_1$, $x_2$, $x_3$, $x_4$. Матрица неизвестных будет такой: $left( begin x_1 \ x_2 \ x_3 \ x_4 end right)$.
Свободные члены данной системы выражены числами -5, 0, -11, посему матрица свободных членов имеет вид: $B=left( begin -5 \ 0 \ -11 end right)$.
Перейдем к составлению матрицы системы. В первую строку данной матрицы будут занесены коэффициенты первого уравнения: 2, 3, -5, 1.
Во вторую строку запишем коэффициенты второго уравнения: 4, 0, -1, 0. При этом следует учесть, что коэффициенты системы при переменных $x_2$ и $x_4$ во втором уравнении равны нулю (ибо эти переменные во втором уравнении отсутствуют).
В третью строку матрицы системы запишем коэффициенты третьего уравнения: 0, 14, 8, 1. Учитываем при этом равенство нулю коэффициента при переменной $x_1$ (эта переменная отсутствует в третьем уравнении). Матрица системы будет иметь вид:
$$ A=left( begin 2 & 3 & -5 & 1\ 4 & 0 & -1 & 0 \ 0 & 14 & 8 & 1 end right) $$
Чтобы была нагляднее взаимосвязь между матрицей системы и самой системой, я запишу рядом заданную СЛАУ и ее матрицу системы:
В матричной форме заданная СЛАУ будет иметь вид $Acdot X=B$. В развернутой записи:
$$ left( begin 2 & 3 & -5 & 1\ 4 & 0 & -1 & 0 \ 0 & 14 & 8 & 1 end right) cdot left( begin x_1 \ x_2 \ x_3 \ x_4 end right) = left( begin -5 \ 0 \ -11 end right) $$
Запишем расширенную матрицу системы. Для этого к матрице системы $ A=left( begin 2 & 3 & -5 & 1\ 4 & 0 & -1 & 0 \ 0 & 14 & 8 & 1 end right) $ допишем столбец свободных членов (т.е. -5, 0, -11). Получим: $widetilde=left( begin 2 & 3 & -5 & 1 & -5 \ 4 & 0 & -1 & 0 & 0\ 0 & 14 & 8 & 1 & -11 end right) $.
Записать СЛАУ $ left <begin& 3y+4a=17;\ & 2a+4y+7c=10;\ & 8c+5y-9a=25; \ & 5a-c=-4. endright.$ в матричной форме и указать расширенную матрицу системы.
Как видите, порядок следования неизвестных в уравнениях данной СЛАУ различен. Например, во втором уравнении порядок таков: $a$, $y$, $c$, однако в третьем уравнении: $c$, $y$, $a$. Перед тем, как записывать СЛАУ в матричной форме, порядок следования переменных во всех уравнениях нужно сделать одинаковым.
Упорядочить переменные в уравнениях заданной СЛАУ можно разными способами (количество способов расставить три переменные составит $3!=6$). Я разберу два способа упорядочивания неизвестных.
Введём такой порядок: $c$, $y$, $a$. Перепишем систему, расставляя неизвестные в необходимом порядке: $left <begin& 3y+4a=17;\ & 7c+4y+2a=10;\ & 8c+5y-9a=25; \ & -c+5a=-4. endright.$
Матрица системы имеет вид: $ A=left( begin 0 & 3 & 4 \ 7 & 4 & 2\ 8 & 5 & -9 \ -1 & 0 & 5 end right) $. Матрица свободных членов: $B=left( begin 17 \ 10 \ 25 \ -4 end right)$. При записи матрицы неизвестных помним о порядке следования неизвестных: $X=left( begin c \ y \ a end right)$. Итак, матричная форма записи заданной СЛАУ такова: $Acdot X=B$. В развёрнутом виде:
$$ left( begin 0 & 3 & 4 \ 7 & 4 & 2\ 8 & 5 & -9 \ -1 & 0 & 5 end right) cdot left( begin c \ y \ a end right) = left( begin 17 \ 10 \ 25 \ -4 end right) $$
Расширенная матрица системы такова: $left( begin 0 & 3 & 4 & 17 \ 7 & 4 & 2 & 10\ 8 & 5 & -9 & 25 \ -1 & 0 & 5 & -4 end right) $.
Введём такой порядок: $a$, $c$, $y$. Перепишем систему, расставляя неизвестные в необходимом порядке: $left < begin& 4a+3y=17;\ & 2a+7c+4y=10;\ & -9a+8c+5y=25; \ & 5a-c=-4. endright.$
Матрица системы имеет вид: $ A=left( begin 4 & 0 & 3 \ 2 & 7 & 4\ -9 & 8 & 5 \ 5 & -1 & 0 end right)$. Матрица свободных членов: $B=left( begin 17 \ 10 \ 25 \ -4 end right)$. При записи матрицы неизвестных помним о порядке следования неизвестных: $X=left( begin a \ c \ y end right)$. Итак, матричная форма записи заданной СЛАУ такова: $Acdot X=B$. В развёрнутом виде:
$$ left( begin 4 & 0 & 3 \ 2 & 7 & 4\ -9 & 8 & 5 \ 5 & -1 & 0 end right) cdot left( begin a \ c \ y end right) = left( begin 17 \ 10 \ 25 \ -4 end right) $$
Расширенная матрица системы такова: $left( begin 4 & 0 & 3 & 17 \ 2 & 7 & 4 & 10\ -9 & 8 & 5 & 25 \ 5 & -1 & 0 & -4 end right) $.
Как видите, изменение порядка следования неизвестных равносильно перестановке столбцов матрицы системы. Но каким бы этот порядок расположения неизвестных ни был, он должен совпадать во всех уравнениях заданной СЛАУ.
Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
Видео:определение коэффициентов и свободных членов канонических уравнений. Решение канонического уравненияСкачать
Свободный член в системе уравнения
Свободный член уравнения -240,113 [c.330]
По уравнению (8.6) обычно на практике вычисляется свободный член уравнения регрессии а. Параметр Ь вычисляется по преобразованной формуле, которую можно вывести, решая систему нормальных уравнений относительно Ь [c.239]
Свободный член уравнения регрессии вычислим по формуле (8.6) [c.245]
Отрицательная величина свободного члена уравнения означает, что область существования признака у не включает нулевого значения признака j и близких значений. Можно рассчитать минимально возможную величину фактора х, при которой обеспечивается наименьшее значение признака у (разумеется, положительное). [c.245]
Это означает, что в среднем с увеличением возраста женихов на 1 год возраст их невест возрастал на 0,83 года. Свободный член уравнения согласно (8.6) [c.258]
Решая эту систему, получаем значения коэффициентов условно-чистой регрессии bf. Свободный член уравнения вычисляется по формуле [c.269]
Для увязки этих частных индексов следует ввести корректирующий индекс, отражающий изменение свободного члена уравнения регрессии v по М [c.419]
Рассмотренный пример показывает, что подобный анализ основан на определенной условности. Так, оценку влияния изменения коэффициента регрессии мы проводим при базисном значении свободного члена уравнения, тогда как параметры уравнения регрессии связаны друг с другом. Все они получаются в результате решения одной и той же системы уравнений. То же можно сказать в отношении раздельной оценки изменения значения фактора и силы [c.419]
Чтобы обеспечить это равенство, нужно принять какое-то правило индексации. Например, в соответствии с уже высказанным положением сначала индексируются все х/ При постоянных (базисных) значениях коэффициентов регрессии и свободного члена, затем индексируются коэффициенты регрессии при постоянных (отчетных) средних значениях Зс , затем индексируется свободный член уравнения регрессии при постоянных (отчетных) значениях как д ., так и bj. [c.423]
Коэффициент переменной может использоваться в уравнении регрессии, если вычисленная для него величина (1 — Р-значение) близка к 1. Параметр Выпуск продукции и Y-пересечение (свободный член уравнения регрессии) не являются значимыми. Поэтому модельное уравнение регрессии [c.471]
Рассматриваемые выше регрессионные модели (5.2) и (5.3) отражали влияние качественного признака (фиктивных переменных) только на значения переменной Y, т. е. на свободный член уравнения регрессии. В более сложных моделях может быть отражена также зависимость фиктивных переменных на сами параметры при переменных регрессионной модели. Например, при наличии в модели объясняющих переменных — количественной Х и фиктивных Z , Z 2, Zi, Z>2, из которых Z , Z 2 влияют только на значение коэффициента при Х, a Z2i, Z- — только на величину свободного члена уравнения, такая регрессионная модель примет вид [c.118]
Модели типа (5.4) используются, например, при исследовании зависимости объема потребления Y некоторого продукта от дохода потребителя X, когда одни качественные признаки (например, фактор сезонности) влияют лишь на количество потребляемого продукта (свободный член уравнения регрессии), а другие (например, уровень доходности домашнего хозяйства) — на параметр Pi при X, интерпретируемый как склонность к потреблению . [c.119]
В матрице-столбце X единица означает фиктивную переменную, умножаемую на свободные члены уравнений системы. [c.226]
Динамика доли накопления (в %) за эти годы, естественно, получится из приведенных выше уравнений потребления с заменой знаков коэффициентов при переменной на противоположный, а свободный член нового уравнения будет равен дополнению до 100 свободного членя уравнения доли потребления. Однако коэффициент вариации доли накопления, естественно, будет значительно больше, так как при той же сигме средняя доля накопления за весь период будет меньше примерно в 3 раза. [c.146]
Значение свободного члена уравнения регрессии в натуральном масштабе находим из уравнения [c.181]
Свободный член уравнения равен отрезку, отсекаемому нормативной линией на оси ординат (в нашем примере — 0,13). [c.211]
Для лиц мужского пола, когда i = 1 и z2 — 0, объединенное уравнение регрессии составит у = а, + b х, а для лиц женского пола, когда г, = 0 и z% = 1, у — вг + «х- Иными словами, различия в потреблении для лиц мужского и женского пола вызваны различиями свободных членов уравнения регрессии ах а2. Параметр b является общим для всей совокупности лиц, как для мужчин, так и для женщин. [c.142]
А — свободный член уравнения [c.192]
Эту же систему можно записать, включив в нее свободный член уравнения, т. е. перейти от переменных в виде отклонений от среднего уровня к исходным переменным у их. [c.198]
Свободные члены уравнений определим по формулам [c.198]
Таким образом, фиктивные переменные позволяют дифференцировать величину свободного члена уравнения регрессии для каждого квартала. Она составит [c.253]
Свободный член уравнения а0= — 3,085 экономически не интерпретируется, он определяет положение начальной точки линии регрессии в системе координат. [c.41]
Свободные члены уравнения 174 Свободный ресурс 317 Свободный товар 317 Сводный материально-финансовый [c.487]
Свободный член уравнения, построенного на главных компонентах, характеризует среднее значение прибыли в анализируемой совокупности. В силу этого решение уравнения регрессии, построенного на главных компонентах, позволяет определить величину прибыли только за счет выделения главных компонент. Наличие в уравнении значения прибыли дает возможность проводить сравнительный анализ работы предприятия за несколько лет, установить динамику его рентабельности. [c.152]
Так как вариация зависимой переменной превосходит вариацию независимой переменной (vv, > VM), свободный член уравнения регрессии в обоих периодах — отрицательная величина (а 0.2, на последующих отрезках — еще больше. В точке А2 норма трансформации перескакивает через значение 0.2, так что точка А2 с координатами х = 36, у = 63 (это объемы производства продуктов Робинзоном) лежит на бюджетной линии. Отсюда определяется свободный член уравнения бюджетной линии 63 = а — 36/5, откуда а = 70.2, и бюджетная линия описывается уравнением у = 70.2 — 0.2 . Решая это уравнение совместно с уравнением у = х/3 (см. решение задачи 1), находим объемы потребления х = 131.625, у — 43.875. [c.706]
Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Свободный член в системе уравнения
Системой m линейных уравнений с n неизвестными называется система вида
где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.
Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.
Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.
Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.
Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:
- Система может иметь единственное решение.
- Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
- И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.
Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.
Рассмотрим способы нахождения решений системы.
МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ
Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:
Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов
т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде
или короче A∙X=B.
Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.
Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A: . Поскольку A -1 A = E и E∙X = X, то получаем решение матричного уравнения в виде X = A -1 B.
Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B.
Примеры. Решить системы уравнений.
Найдем матрицу обратную матрице A.
,
Таким образом, x = 3, y = – 1.
Решите матричное уравнение: XA+B=C, где
Выразим искомую матрицу X из заданного уравнения.
Найдем матрицу А -1 .
Решите матричное уравнение AX+B=C, где
Из уравнения получаем .
Следовательно,
Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:
Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,
называется определителем системы.
Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов
Тогда можно доказать следующий результат.
Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём
Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:
Сложим эти уравнения:
Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца
.
Далее рассмотрим коэффициенты при x2:
Аналогично можно показать, что и .
Наконец несложно заметить, что
Таким образом, получаем равенство: .
Следовательно, .
Аналогично выводятся равенства и , откуда и следует утверждение теоремы.
Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.
Примеры. Решить систему уравнений
Решите систему уравнений при различных значениях параметра p:
Система имеет единственное решение, если Δ ≠ 0.
. Поэтому .
- При
- При p = 30 получаем систему уравнений которая не имеет решений.
- При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y,y Î R.
Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.
Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:
.
Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:
Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:
Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.
При использовании метода Гаусса уравнения при необходимости можно менять местами.
Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:
и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.
К элементарным преобразованиям матрицы относятся следующие преобразования:
- перестановка строк или столбцов;
- умножение строки на число, отличное от нуля;
- прибавление к одной строке другие строки.
Примеры: Решить системы уравнений методом Гаусса.
Вернувшись к системе уравнений, будем иметь
Выпишем расширенную матрицу системы и сведем ее к треугольному виду.
Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.
Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.
Вернемся к системе уравнений.
Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.
Таким образом, система имеет бесконечное множество решений.
🎦 Видео
Решение систем уравнений. Методом подстановки. Выразить YСкачать
Система уравнений Два способа решенияСкачать
Система уравнений. Метод алгебраического сложенияСкачать
Решение системы уравнений методом Гаусса 4x4Скачать
найти корень по теореме Виета и свободный член уравненияСкачать
Решение системы линейных уравнений методом ГауссаСкачать
Решение систем уравнений методом подстановкиСкачать
9 класс. Алгебра. Системы уравненийСкачать
Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать
Задание №20. Экзамен ОГЭ. Система уравнений #shortsСкачать
Схема Горнера. 10 класс.Скачать
МКШ-2М. Решение систем уравненийСкачать
Решение системы уравнений. 9клСкачать
Решение системы двух нелинейных уравненийСкачать
ОГЭ ЗАДАНИЕ 9 НАЙДИТЕ СВОБОДНЫЙ ЧЛЕН #математика #math #2023 #mathematics #огэСкачать
Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать