Структура решения системы линейных алгебраических уравнений

Содержание
  1. Решение систем линейных алгебраических уравнений, методы решения, примеры.
  2. Определения, понятия, обозначения.
  3. Решение элементарных систем линейных алгебраических уравнений.
  4. Решение систем линейных уравнений методом Крамера.
  5. Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
  6. Решение систем линейных уравнений методом Гаусса.
  7. Решение систем линейных алгебраических уравнений общего вида.
  8. Теорема Кронекера – Капелли.
  9. Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.
  10. Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.
  11. Решение систем уравнений, сводящихся к СЛАУ.
  12. Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами
  13. Методы решения систем линейных алгебраических уравнений (СЛАУ)
  14. Метод Крамера
  15. Матричный способ решения СЛАУ
  16. Метод Гаусса
  17. Ранг матрицы. Теорема Кронекера-Капелли
  18. Следствия из теоремы Кронекера — Капелли
  19. Структура общего решения системы уравнений
  20. Свойства решений однородной системы уравнений
  21. Алгоритм решения однородной системы уравнений
  22. Структура общего решения неоднородной системы уравнений
  23. Свойства решений неоднородной системы уравнений
  24. Алгоритм решения неоднородной системы уравнений
  25. 💡 Видео

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Решение систем линейных алгебраических уравнений, методы решения, примеры.

Решение систем линейных алгебраических уравнений (СЛАУ), несомненно, является важнейшей темой курса линейной алгебры. Огромное количество задач из всех разделов математики сводится к решению систем линейных уравнений. Этими факторами объясняется причина создания данной статьи. Материал статьи подобран и структурирован так, что с его помощью Вы сможете

  • подобрать оптимальный метод решения Вашей системы линейных алгебраических уравнений,
  • изучить теорию выбранного метода,
  • решить Вашу систему линейных уравнений, рассмотрев подробно разобранные решения характерных примеров и задач.

Краткое описание материала статьи.

Сначала дадим все необходимые определения, понятия и введем обозначения.

Далее рассмотрим методы решения систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных переменных и которые имеют единственное решение. Во-первых, остановимся на методе Крамера, во-вторых, покажем матричный метод решения таких систем уравнений, в-третьих, разберем метод Гаусса (метод последовательного исключения неизвестных переменных). Для закрепления теории обязательно решим несколько СЛАУ различными способами.

После этого перейдем к решению систем линейных алгебраических уравнений общего вида, в которых число уравнений не совпадает с числом неизвестных переменных или основная матрица системы является вырожденной. Сформулируем теорему Кронекера — Капелли, которая позволяет установить совместность СЛАУ. Разберем решение систем (в случае их совместности) с помощью понятия базисного минора матрицы. Также рассмотрим метод Гаусса и подробно опишем решения примеров.

Обязательно остановимся на структуре общего решения однородных и неоднородных систем линейных алгебраических уравнений. Дадим понятие фундаментальной системы решений и покажем, как записывается общее решение СЛАУ с помощью векторов фундаментальной системы решений. Для лучшего понимания разберем несколько примеров.

В заключении рассмотрим системы уравнений, сводящиеся к линейным, а также различные задачи, при решении которых возникают СЛАУ.

Навигация по странице.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Определения, понятия, обозначения.

Будем рассматривать системы из p линейных алгебраических уравнений с n неизвестными переменными ( p может быть равно n ) вида
Структура решения системы линейных алгебраических уравнений

Структура решения системы линейных алгебраических уравнений— неизвестные переменные, Структура решения системы линейных алгебраических уравнений— коэффициенты (некоторые действительные или комплексные числа), Структура решения системы линейных алгебраических уравнений— свободные члены (также действительные или комплексные числа).

Такую форму записи СЛАУ называют координатной.

В матричной форме записи эта система уравнений имеет вид Структура решения системы линейных алгебраических уравнений,
где Структура решения системы линейных алгебраических уравнений— основная матрица системы, Структура решения системы линейных алгебраических уравнений— матрица-столбец неизвестных переменных, Структура решения системы линейных алгебраических уравнений— матрица-столбец свободных членов.

Если к матрице А добавить в качестве (n+1)-ого столбца матрицу-столбец свободных членов, то получим так называемую расширенную матрицу системы линейных уравнений. Обычно расширенную матрицу обозначают буквой Т , а столбец свободных членов отделяют вертикальной линией от остальных столбцов, то есть,
Структура решения системы линейных алгебраических уравнений

Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных Структура решения системы линейных алгебраических уравнений, обращающий все уравнения системы в тождества. Матричное уравнение Структура решения системы линейных алгебраических уравненийпри данных значениях неизвестных переменных также обращается в тождество Структура решения системы линейных алгебраических уравнений.

Если система уравнений имеет хотя бы одно решение, то она называется совместной.

Если система уравнений решений не имеет, то она называется несовместной.

Если СЛАУ имеет единственное решение, то ее называют определенной; если решений больше одного, то – неопределенной.

Если свободные члены всех уравнений системы равны нулю Структура решения системы линейных алгебраических уравнений, то система называется однородной, в противном случае – неоднородной.

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Решение элементарных систем линейных алгебраических уравнений.

Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю, то такие СЛАУ будем называть элементарными. Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю.

Такие СЛАУ мы начинали изучать в средней школе. При их решении мы брали какое-нибудь одно уравнение, выражали одну неизвестную переменную через другие и подставляли ее в оставшиеся уравнения, следом брали следующее уравнение, выражали следующую неизвестную переменную и подставляли в другие уравнения и так далее. Или пользовались методом сложения, то есть, складывали два или более уравнений, чтобы исключить некоторые неизвестные переменные. Не будем подробно останавливаться на этих методах, так как они по сути являются модификациями метода Гаусса.

Основными методами решения элементарных систем линейных уравнений являются метод Крамера, матричный метод и метод Гаусса. Разберем их.

Решение систем линейных уравнений методом Крамера.

Пусть нам требуется решить систему линейных алгебраических уравнений
Структура решения системы линейных алгебраических уравнений
в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля, то есть, Структура решения системы линейных алгебраических уравнений.

Пусть Структура решения системы линейных алгебраических уравнений— определитель основной матрицы системы, а Структура решения системы линейных алгебраических уравнений— определители матриц, которые получаются из А заменой 1-ого, 2-ого, …, n-ого столбца соответственно на столбец свободных членов:
Структура решения системы линейных алгебраических уравнений

При таких обозначениях неизвестные переменные вычисляются по формулам метода Крамера как Структура решения системы линейных алгебраических уравнений. Так находится решение системы линейных алгебраических уравнений методом Крамера.

Решите систему линейных уравнений методом Крамера Структура решения системы линейных алгебраических уравнений.

Основная матрица системы имеет вид Структура решения системы линейных алгебраических уравнений. Вычислим ее определитель (при необходимости смотрите статью определитель матрицы: определение, методы вычисления, примеры, решения):
Структура решения системы линейных алгебраических уравнений

Так как определитель основной матрицы системы отличен от нуля, то система имеет единственное решение, которое может быть найдено методом Крамера.

Составим и вычислим необходимые определители Структура решения системы линейных алгебраических уравнений(определитель Структура решения системы линейных алгебраических уравненийполучаем, заменив в матрице А первый столбец на столбец свободных членов Структура решения системы линейных алгебраических уравнений, определитель Структура решения системы линейных алгебраических уравнений— заменив второй столбец на столбец свободных членов, Структура решения системы линейных алгебраических уравнений— заменив третий столбец матрицы А на столбец свободных членов):
Структура решения системы линейных алгебраических уравнений

Находим неизвестные переменные по формулам Структура решения системы линейных алгебраических уравнений:
Структура решения системы линейных алгебраических уравнений

Основным недостатком метода Крамера (если это можно назвать недостатком) является трудоемкость вычисления определителей, когда число уравнений системы больше трех.

Для более детальной информации смотрите раздел метод Крамера: вывод формул, примеры, решения.

Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).

Пусть система линейных алгебраических уравнений задана в матричной форме Структура решения системы линейных алгебраических уравнений, где матрица A имеет размерность n на n и ее определитель отличен от нуля.

Так как Структура решения системы линейных алгебраических уравнений, то матрица А – обратима, то есть, существует обратная матрица Структура решения системы линейных алгебраических уравнений. Если умножить обе части равенства Структура решения системы линейных алгебраических уравненийна Структура решения системы линейных алгебраических уравненийслева, то получим формулу для нахождения матрицы-столбца неизвестных переменных Структура решения системы линейных алгебраических уравнений. Так мы получили решение системы линейных алгебраических уравнений матричным методом.

Решите систему линейных уравнений Структура решения системы линейных алгебраических уравненийматричным методом.

Перепишем систему уравнений в матричной форме:
Структура решения системы линейных алгебраических уравнений

Так как
Структура решения системы линейных алгебраических уравнений
то СЛАУ можно решать матричным методом. С помощью обратной матрицы решение этой системы может быть найдено как Структура решения системы линейных алгебраических уравнений.

Построим обратную матрицу Структура решения системы линейных алгебраических уравненийс помощью матрицы из алгебраических дополнений элементов матрицы А (при необходимости смотрите статью методы нахождения обратной матрицы):
Структура решения системы линейных алгебраических уравнений

Осталось вычислить Структура решения системы линейных алгебраических уравнений— матрицу неизвестных переменных, умножив обратную матрицу Структура решения системы линейных алгебраических уравненийна матрицу-столбец свободных членов Структура решения системы линейных алгебраических уравнений(при необходимости смотрите статью операции над матрицами):
Структура решения системы линейных алгебраических уравнений

Структура решения системы линейных алгебраических уравненийили в другой записи x1 = 4, x2 = 0, x3 = -1 .

Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего.

Более подробное описание теории и дополнительные примеры смотрите в статье матричный метод решения систем линейных уравнений.

Решение систем линейных уравнений методом Гаусса.

Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными Структура решения системы линейных алгебраических уравнений
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x1 из всех уравнений системы, начиная со второго, далее исключается x2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная xn . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса. После завершения прямого хода метода Гаусса из последнего уравнения находится xn , с помощью этого значения из предпоследнего уравнения вычисляется xn-1 , и так далее, из первого уравнения находится x1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса.

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что Структура решения системы линейных алгебраических уравнений, так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на Структура решения системы линейных алгебраических уравнений, к третьему уравнению прибавим первое, умноженное на Структура решения системы линейных алгебраических уравнений, и так далее, к n-ому уравнению прибавим первое, умноженное на Структура решения системы линейных алгебраических уравнений. Система уравнений после таких преобразований примет вид
Структура решения системы линейных алгебраических уравнений
где Структура решения системы линейных алгебраических уравнений, а Структура решения системы линейных алгебраических уравнений.

К такому же результату мы бы пришли, если бы выразили x1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке
Структура решения системы линейных алгебраических уравнений

Будем считать, что Структура решения системы линейных алгебраических уравнений(в противном случае мы переставим местами вторую строку с k-ой , где Структура решения системы линейных алгебраических уравнений). Приступаем к исключению неизвестной переменной x2 из всех уравнений, начиная с третьего.

Для этого к третьему уравнению системы прибавим второе, умноженное на Структура решения системы линейных алгебраических уравнений, к четвертому уравнению прибавим второе, умноженное на Структура решения системы линейных алгебраических уравнений, и так далее, к n-ому уравнению прибавим второе, умноженное на Структура решения системы линейных алгебраических уравнений. Система уравнений после таких преобразований примет вид
Структура решения системы линейных алгебраических уравнений
где Структура решения системы линейных алгебраических уравнений, а Структура решения системы линейных алгебраических уравнений. Таким образом, переменная x2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x3 , при этом действуем аналогично с отмеченной на рисунке частью системы
Структура решения системы линейных алгебраических уравнений

Так продолжаем прямой ход метода Гаусса пока система не примет вид
Структура решения системы линейных алгебраических уравнений

С этого момента начинаем обратный ход метода Гаусса: вычисляем xn из последнего уравнения как Структура решения системы линейных алгебраических уравнений, с помощью полученного значения xn находим xn-1 из предпоследнего уравнения, и так далее, находим x1 из первого уравнения.

Решите систему линейных уравнений Структура решения системы линейных алгебраических уравненийметодом Гаусса.

Исключим неизвестную переменную x1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные на Структура решения системы линейных алгебраических уравненийи на Структура решения системы линейных алгебраических уравненийсоответственно:
Структура решения системы линейных алгебраических уравнений

Теперь из третьего уравнения исключим x2 , прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на Структура решения системы линейных алгебраических уравнений:
Структура решения системы линейных алгебраических уравнений

На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

Из последнего уравнения полученной системы уравнений находим x3 :
Структура решения системы линейных алгебраических уравнений

Из второго уравнения получаем Структура решения системы линейных алгебраических уравнений.

Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса Структура решения системы линейных алгебраических уравнений.

Более детальную информацию и дополнительные примеры смотрите в разделе решение элементарных систем линейных алгебраических уравнений методом Гаусса.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Решение систем линейных алгебраических уравнений общего вида.

В общем случае число уравнений системы p не совпадает с числом неизвестных переменных n :
Структура решения системы линейных алгебраических уравнений

Такие СЛАУ могут не иметь решений, иметь единственное решение или иметь бесконечно много решений. Это утверждение относится также к системам уравнений, основная матрица которых квадратная и вырожденная.

Далее нам потребуется понятие минора матрицы и ранга матрицы, которые даны в статье ранг матрицы: определение, методы нахождения, примеры, решения.

Теорема Кронекера – Капелли.

Прежде чем находить решение системы линейных уравнений необходимо установить ее совместность. Ответ на вопрос когда СЛАУ совместна, а когда несовместна, дает теорема Кронекера – Капелли:
для того, чтобы система из p уравнений с n неизвестными ( p может быть равно n ) была совместна необходимо и достаточно, чтобы ранг основной матрицы системы был равен рангу расширенной матрицы, то есть, Rank(A)=Rank(T) .

Рассмотрим на примере применение теоремы Кронекера – Капелли для определения совместности системы линейных уравнений.

Выясните, имеет ли система линейных уравнений Структура решения системы линейных алгебраических уравненийрешения.

Найдем ранг основной матрицы системы Структура решения системы линейных алгебраических уравнений. Воспользуемся методом окаймляющих миноров. Минор второго порядка Структура решения системы линейных алгебраических уравненийотличен от нуля. Переберем окаймляющие его миноры третьего порядка:
Структура решения системы линейных алгебраических уравнений

Так как все окаймляющие миноры третьего порядка равны нулю, то ранг основной матрицы равен двум.

В свою очередь ранг расширенной матрицы Структура решения системы линейных алгебраических уравненийравен трем, так как минор третьего порядка
Структура решения системы линейных алгебраических уравнений
отличен от нуля.

Таким образом, , следовательно, по теореме Кронекера – Капелли можно сделать вывод, что исходная система линейных уравнений несовместна.

система решений не имеет.

Итак, мы научились устанавливать несовместность системы с помощью теоремы Кронекера – Капелли.

А как же находить решение СЛАУ, если установлена ее совместность?

Для этого нам потребуется понятие базисного минора матрицы и теорема о ранге матрицы.

Минор наивысшего порядка матрицы А , отличный от нуля, называется базисным.

Из определения базисного минора следует, что его порядок равен рангу матрицы. Для ненулевой матрицы А базисных миноров может быть несколько, один базисный минор есть всегда.

Для примера рассмотрим матрицу Структура решения системы линейных алгебраических уравнений.

Все миноры третьего порядка этой матрицы равны нулю, так как элементы третьей строки этой матрицы представляют собой сумму соответствующих элементов первой и второй строк.

Базисными являются следующие миноры второго порядка, так как они отличны от нуля
Структура решения системы линейных алгебраических уравнений

Миноры Структура решения системы линейных алгебраических уравненийбазисными не являются, так как равны нулю.

Теорема о ранге матрицы.

Если ранг матрицы порядка p на n равен r , то все элементы строк (и столбцов) матрицы, не образующие выбранный базисный минор, линейно выражаются через соответствующие элементы строк (и столбцов), образующих базисный минор.

Что нам дает теорема о ранге матрицы?

Если по теореме Кронекера – Капелли мы установили совместность системы, то выбираем любой базисный минор основной матрицы системы (его порядок равен r ), и исключаем из системы все уравнения, которые не образуют выбранный базисный минор. Полученная таким образом СЛАУ будет эквивалентна исходной, так как отброшенные уравнения все равно излишни (они согласно теореме о ранге матрицы являются линейной комбинацией оставшихся уравнений).

В итоге, после отбрасывания излишних уравнений системы, возможны два случая.

Если число уравнений r в полученной системе будет равно числу неизвестных переменных, то она будет определенной и единственное решение можно будет найти методом Крамера, матричным методом или методом Гаусса.

Решите систему линейных алгебраических уравнений Структура решения системы линейных алгебраических уравнений.

Ранг основной матрицы системы Структура решения системы линейных алгебраических уравненийравен двум, так как минор второго порядка Структура решения системы линейных алгебраических уравненийотличен от нуля. Ранг расширенной матрицы Структура решения системы линейных алгебраических уравненийтакже равен двум, так как единственный минор третьего порядка равен нулю
Структура решения системы линейных алгебраических уравнений
а рассмотренный выше минор второго порядка отличен от нуля. На основании теоремы Кронекера – Капелли можно утверждать совместность исходной системы линейных уравнений, так как Rank(A)=Rank(T)=2 .

В качестве базисного минора возьмем Структура решения системы линейных алгебраических уравнений. Его образуют коэффициенты первого и второго уравнений:
Структура решения системы линейных алгебраических уравнений

Третье уравнение системы не участвует в образовании базисного минора, поэтому исключим его из системы на основании теоремы о ранге матрицы:
Структура решения системы линейных алгебраических уравнений

Так мы получили элементарную систему линейных алгебраических уравнений. Решим ее методом Крамера:
Структура решения системы линейных алгебраических уравнений

Если число уравнений r в полученной СЛАУ меньше числа неизвестных переменных n , то в левых частях уравнений оставляем слагаемые, образующие базисный минор, остальные слагаемые переносим в правые части уравнений системы с противоположным знаком.

Неизвестные переменные (их r штук), оставшиеся в левых частях уравнений, называются основными.

Неизвестные переменные (их штук), которые оказались в правых частях, называются свободными.

Теперь считаем, что свободные неизвестные переменные могут принимать произвольные значения, при этом r основных неизвестных переменных будут выражаться через свободные неизвестные переменные единственным образом. Их выражение можно найти решая полученную СЛАУ методом Крамера, матричным методом или методом Гаусса.

Разберем на примере.

Решите систему линейных алгебраических уравнений Структура решения системы линейных алгебраических уравнений.

Найдем ранг основной матрицы системы Структура решения системы линейных алгебраических уравненийметодом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем . Начнем поиск ненулевого минора второго порядка, окаймляющего данный минор:
Структура решения системы линейных алгебраических уравнений

Так мы нашли ненулевой минор второго порядка. Начнем поиск ненулевого окаймляющего минора третьего порядка:
Структура решения системы линейных алгебраических уравнений

Таким образом, ранг основной матрицы равен трем. Ранг расширенной матрицы также равен трем, то есть, система совместна.

Найденный ненулевой минор третьего порядка возьмем в качестве базисного.

Для наглядности покажем элементы, образующие базисный минор:
Структура решения системы линейных алгебраических уравнений

Оставляем в левой части уравнений системы слагаемые, участвующие в базисном миноре, остальные переносим с противоположными знаками в правые части:
Структура решения системы линейных алгебраических уравнений

Придадим свободным неизвестным переменным x2 и x5 произвольные значения, то есть, примем Структура решения системы линейных алгебраических уравнений, где Структура решения системы линейных алгебраических уравнений— произвольные числа. При этом СЛАУ примет вид
Структура решения системы линейных алгебраических уравнений

Полученную элементарную систему линейных алгебраических уравнений решим методом Крамера:
Структура решения системы линейных алгебраических уравнений

Следовательно, Структура решения системы линейных алгебраических уравнений.

В ответе не забываем указать свободные неизвестные переменные.

Структура решения системы линейных алгебраических уравнений, где Структура решения системы линейных алгебраических уравнений— произвольные числа.

Чтобы решить систему линейных алгебраических уравнений общего вида, сначала выясняем ее совместность, используя теорему Кронекера – Капелли. Если ранг основной матрицы не равен рангу расширенной матрицы, то делаем вывод о несовместности системы.

Если ранг основной матрицы равен рангу расширенной матрицы, то выбираем базисный минор и отбрасываем уравнения системы, которые не участвуют в образовании выбранного базисного минора.

Если порядок базисного минора равен числу неизвестных переменных, то СЛАУ имеет единственное решение, которое находим любым известным нам методом.

Если порядок базисного минора меньше числа неизвестных переменных, то в левой части уравнений системы оставляем слагаемые с основными неизвестными переменными, остальные слагаемые переносим в правые части и придаем свободным неизвестным переменным произвольные значения. Из полученной системы линейных уравнений находим основные неизвестные переменные методом Крамера, матричным методом или методом Гаусса.

Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.

Методом Гаусса можно решать системы линейных алгебраических уравнений любого вида без предварительного их исследования на совместность. Процесс последовательного исключения неизвестных переменных позволяет сделать вывод как о совместности, так и о несовместности СЛАУ, а в случае существования решения дает возможность отыскать его.

С точки зрения вычислительной работы метод Гаусса является предпочтительным.

Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.

В этом разделе речь пойдет о совместных однородных и неоднородных системах линейных алгебраических уравнений, имеющих бесконечное множество решений.

Разберемся сначала с однородными системами.

Фундаментальной системой решений однородной системы из p линейных алгебраических уравнений с n неизвестными переменными называют совокупность линейно независимых решений этой системы, где r – порядок базисного минора основной матрицы системы.

Если обозначить линейно независимые решения однородной СЛАУ как ( – это матрицы столбцы размерности n на 1 ), то общее решение этой однородной системы Структура решения системы линейных алгебраических уравненийпредставляется в виде линейной комбинации векторов фундаментальной системы решений с произвольными постоянными коэффициентами , то есть, Структура решения системы линейных алгебраических уравнений.

Что обозначает термин общее решение однородной системы линейных алгебраических уравнений (орослау)?

Смысл прост: формула Структура решения системы линейных алгебраических уравненийзадает все возможные решения исходной СЛАУ, другими словами, взяв любой набор значений произвольных постоянных , по формуле Структура решения системы линейных алгебраических уравнениймы получим одно из решений исходной однородной СЛАУ.

Таким образом, если мы найдем фундаментальную систему решений, то мы сможем задать все решения этой однородной СЛАУ как Структура решения системы линейных алгебраических уравнений.

Покажем процесс построения фундаментальной системы решений однородной СЛАУ.

Выбираем базисный минор исходной системы линейных уравнений, исключаем все остальные уравнения из системы и переносим в правые части уравнений системы с противоположными знаками все слагаемые, содержащие свободные неизвестные переменные. Придадим свободным неизвестным переменным значения 1,0,0,…,0 и вычислим основные неизвестные, решив полученную элементарную систему линейных уравнений любым способом, например, методом Крамера. Так будет получено X (1) — первое решение фундаментальной системы. Если придать свободным неизвестным значения 0,1,0,0,…,0 и вычислить при этом основные неизвестные, то получим X (2) . И так далее. Если свободным неизвестным переменным придадим значения 0,0,…,0,1 и вычислим основные неизвестные, то получим X (n-r) . Так будет построена фундаментальная система решений однородной СЛАУ и может быть записано ее общее решение в виде Структура решения системы линейных алгебраических уравнений.

Для неоднородных систем линейных алгебраических уравнений общее решение представляется в виде Структура решения системы линейных алгебраических уравнений, где Структура решения системы линейных алгебраических уравнений— общее решение соответствующей однородной системы, а Структура решения системы линейных алгебраических уравнений— частное решение исходной неоднородной СЛАУ, которое мы получаем, придав свободным неизвестным значения 0,0,…,0 и вычислив значения основных неизвестных.

Разберем на примерах.

Найдите фундаментальную систему решений и общее решение однородной системы линейных алгебраических уравнений Структура решения системы линейных алгебраических уравнений.

Ранг основной матрицы однородных систем линейных уравнений всегда равен рангу расширенной матрицы. Найдем ранг основной матрицы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем элемент основной матрицы системы. Найдем окаймляющий ненулевой минор второго порядка:
Структура решения системы линейных алгебраических уравнений

Минор второго порядка, отличный от нуля, найден. Переберем окаймляющие его миноры третьего порядка в поисках ненулевого:
Структура решения системы линейных алгебраических уравнений

Все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг основной и расширенной матрицы равен двум. Базисным минором возьмем Структура решения системы линейных алгебраических уравнений. Отметим для наглядности элементы системы, которые его образуют:
Структура решения системы линейных алгебраических уравнений

Третье уравнение исходной СЛАУ не участвует в образовании базисного минора, поэтому, может быть исключено:
Структура решения системы линейных алгебраических уравнений

Оставляем в правых частях уравнений слагаемые, содержащие основные неизвестные, а в правые части переносим слагаемые со свободными неизвестными:
Структура решения системы линейных алгебраических уравнений

Построим фундаментальную систему решений исходной однородной системы линейных уравнений. Фундаментальная система решений данной СЛАУ состоит из двух решений, так как исходная СЛАУ содержит четыре неизвестных переменных, а порядок ее базисного минора равен двум. Для нахождения X (1) придадим свободным неизвестным переменным значения , тогда основные неизвестные найдем из системы уравнений
Структура решения системы линейных алгебраических уравнений.

Решим ее методом Крамера:
Структура решения системы линейных алгебраических уравнений

Таким образом, Структура решения системы линейных алгебраических уравнений.

Теперь построим X (2) . Для этого придадим свободным неизвестным переменным значения , тогда основные неизвестные найдем из системы линейных уравнений
Структура решения системы линейных алгебраических уравнений.

Опять воспользуемся методом Крамера:
Структура решения системы линейных алгебраических уравнений

Получаем Структура решения системы линейных алгебраических уравнений.

Так мы получили два вектора фундаментальной системы решений Структура решения системы линейных алгебраических уравненийи Структура решения системы линейных алгебраических уравнений, теперь мы можем записать общее решение однородной системы линейных алгебраических уравнений:
Структура решения системы линейных алгебраических уравнений, где C1 и C2 – произвольные числа.

Найдите общее решение неоднородной системы линейных алгебраических уравнений Структура решения системы линейных алгебраических уравнений.

Общее решение этой системы уравнений будем искать в виде Структура решения системы линейных алгебраических уравнений.

Исходной неоднородной СЛАУ соответствует однородная система
Структура решения системы линейных алгебраических уравнений
общее решение которой мы нашли в предыдущем примере
Структура решения системы линейных алгебраических уравнений.

Следовательно, нам осталось найти частное решение неоднородной системы линейных алгебраических уравнений Структура решения системы линейных алгебраических уравнений.

Ранг основной матрицы системы равен двум, ранг расширенной матрицы системы также равен двум, так как все миноры третьего порядка, окаймляющие минор Структура решения системы линейных алгебраических уравнений, равны нулю. Также примем минор Структура решения системы линейных алгебраических уравненийв качестве базисного, исключим третье уравнение из системы и перенесем слагаемые со свободными неизвестными в правые части уравнений системы:
Структура решения системы линейных алгебраических уравнений

Для нахождения Структура решения системы линейных алгебраических уравненийпридадим свободным неизвестным переменным значения , тогда система уравнений примет вид Структура решения системы линейных алгебраических уравнений, откуда методом Крамера найдем основные неизвестные переменные:
Структура решения системы линейных алгебраических уравнений

Имеем Структура решения системы линейных алгебраических уравнений, следовательно,
Структура решения системы линейных алгебраических уравнений
где C1 и C2 – произвольные числа.

Следует заметить, что решения неопределенной однородной системы линейных алгебраических уравнений порождают линейное пространство размерности , базисом которого является фундаментальная система решений.

Видео:Видеоурок "Однородные системы линейных уравнений"Скачать

Видеоурок "Однородные системы линейных уравнений"

Решение систем уравнений, сводящихся к СЛАУ.

Некоторые системы уравнений с помощью замены переменных можно свести к линейным. Рассмотрим несколько примеров.

Видео:Лекция 13. Исследование систем линейных уравнений. Теорема Кронекера — Капелли.Скачать

Лекция 13. Исследование систем линейных уравнений. Теорема Кронекера — Капелли.

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Содержание:

Видео:Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать

Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМ

Методы решения систем линейных алгебраических уравнений (СЛАУ)

Метод Крамера

Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение Структура решения системы линейных алгебраических уравнений

Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы Структура решения системы линейных алгебраических уравнений

Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на Структура решения системы линейных алгебраических уравненийдля этого умножим все элементы первого столбца на эту неизвестную: Структура решения системы линейных алгебраических уравнений

Второй столбец умножим на Структура решения системы линейных алгебраических уравненийтретий столбец — на Структура решения системы линейных алгебраических уравнений-ый столбец — на Структура решения системы линейных алгебраических уравненийи все эти произведения прибавим к первому столбцу, при этом произведение Структура решения системы линейных алгебраических уравненийне изменится:

Структура решения системы линейных алгебраических уравнений

Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е. Структура решения системы линейных алгебраических уравнений

Определение: Определитель Структура решения системы линейных алгебраических уравненийназывается первым вспомогательным определителем СЛАУ.

Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ: Структура решения системы линейных алгебраических уравнений

31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.

Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Структура решения системы линейных алгебраических уравненийПроанализируем полученные формулы:

  • если главный определитель системы отличен от нуля (Структура решения системы линейных алгебраических уравнений), то система имеет единственное решение;
  • если главный определитель системы равен нулю (Структура решения системы линейных алгебраических уравнений), а хотя бы один из вспомогательных определителей отличен от нуля ( Структура решения системы линейных алгебраических уравненийили Структура решения системы линейных алгебраических уравнений, или, . или Структура решения системы линейных алгебраических уравнений), то система не имеет решений (деление на нуль запрещено);
  • если все определители системы равны нулю (Структура решения системы линейных алгебраических уравнений), то система имеет бесчисленное множество решений.

Пример:

Решить СЛАУ методом Крамера Структура решения системы линейных алгебраических уравнений

Решение:

Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом

Структура решения системы линейных алгебраических уравнений

Найдем главный определитель СЛАУ (раскрываем по первой строке) Структура решения системы линейных алгебраических уравнений

Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя Структура решения системы линейных алгебраических уравнений

Воспользуемся формулами Крамера

Структура решения системы линейных алгебраических уравнений

Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.

Выполним проверку Структура решения системы линейных алгебраических уравненийОтсюда видно, что СЛАУ решена верно.

Матричный способ решения СЛАУ

Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных Структура решения системы линейных алгебраических уравненийматpицы-столбцы неизвестных Структура решения системы линейных алгебраических уравненийи свободных коэффициентов Структура решения системы линейных алгебраических уравнений

Тогда СЛАУ можно записать в матричном виде Структура решения системы линейных алгебраических уравненийМатричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу Структура решения системы линейных алгебраических уравненийк матрице А, получим Структура решения системы линейных алгебраических уравненийв силу того, что произведение Структура решения системы линейных алгебраических уравненийнайдем Структура решения системы линейных алгебраических уравненийТаким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу Структура решения системы линейных алгебраических уравнений после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.

Пример:

Решить СЛАУ матричным способом Структура решения системы линейных алгебраических уравнений

Решение:

Введем в рассмотрение следующие матрицы Структура решения системы линейных алгебраических уравнений

Найдем матрицу Структура решения системы линейных алгебраических уравнений(см. Лекцию № 2): найдем детерминант матрицы А.

Пример:

Структура решения системы линейных алгебраических уравнений

Решение:

Найдем алгебраические дополнения всех элементов Структура решения системы линейных алгебраических уравнений Структура решения системы линейных алгебраических уравненийЗапишем обратную матрицу Структура решения системы линейных алгебраических уравнений(в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:Структура решения системы линейных алгебраических уравнений

Отсюда находим, что х = 1; y = l; z = l.

Метод Гаусса

Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид: Структура решения системы линейных алгебраических уравнений

Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.

Обменяем в расширенной матрице первую и вторую строки местами, получим Структура решения системы линейных алгебраических уравненийПриведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Структура решения системы линейных алгебраических уравненийРазделим все элементы второй строки на (-5), получим эквивалентную матрицу Структура решения системы линейных алгебраических уравнений

Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Структура решения системы линейных алгебраических уравненийРазделим все элементы третьей строки на (-3), получим Структура решения системы линейных алгебраических уравненийТаким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй — при неизвестной у, третий — при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):

Структура решения системы линейных алгебраических уравнений

Из первого уравнения находим, что х = 1.

Вывод: Из вышеизложенного материала следует, что вне зависимости от

способа решения СЛАУ всегда должен получаться один и тот же ответ.

Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.

Ранг матрицы. Теорема Кронекера-Капелли

Определение: Рангом матрицы Структура решения системы линейных алгебраических уравненийназывается наивысший порядок отличного от нуля минора этой матрицы.

Если Структура решения системы линейных алгебраических уравненийто среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.

При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.

Пример:

Найти ранг матрицы Структура решения системы линейных алгебраических уравнений

Решение:

Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, Структура решения системы линейных алгебраических уравненийсреди миноров третьего порядка также есть миноры, которые не равны нулю, например, Структура решения системы линейных алгебраических уравненийОчевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство Структура решения системы линейных алгебраических уравненийдля определителей). Следовательно, ранг матрицы А равен 3.

Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.

Видео:ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

Следствия из теоремы Кронекера — Капелли

Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).

Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).

В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Структура общего решения системы уравнений

Однородная система линейных уравнений

всегда совместна, так как имеет тривиальное решение . Если ранг матрицы системы равен количеству неизвестных , то тривиальное решение единственное. Предположим, что . Тогда однородная система имеет бесконечно много решений. Заметим, что расширенная матрица однородной системы при элементарных преобразованиях строк приводится к упрощенному виду , т.е. . Поэтому из (5.11) получаем общее решение однородной системы уравнений :

Получим другую форму записи решений однородной системы, которая раскрывает структуру множества решений. Для этого подчеркнем следующие свойства.

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Свойства решений однородной системы уравнений

1. Если столбцы — решения однородной системы уравнений, то любая их линейная комбинация также является решением однородной системы.

В самом деле, из равенств следует, что

т.е. линейная комбинация решений является решением однородной системы.

2. Если ранг матрицы однородной системы равен , то система имеет линейно независимых решений.

Действительно, по формулам (5.13) общего решения однородной системы найдем частных решений , придавая свободным переменным следующие стандартные наборы значений (всякий раз полагая, что одна из свободных переменных равна единице, а остальные — равны нулю):

которые линейно независимы. В самом деле, если из этих столбцов составить матрицу, то последние ее строк образуют единичную матрицу. Следовательно, минор, расположенный в последних строках не равен нулю (он равен единице), т.е. является базисным. Поэтому ранг матрицы будет равен . Значит, все столбцы этой матрицы линейно независимы (см. теорему 3.4).

Любая совокупность линейно независимых решений однородной системы называется фундаментальной системой (совокупностью) решений .

Заметим, что фундаментальная система решений определяется неоднозначно. Однородная система может иметь разные фундаментальные системы решений, состоящие из одного и того же количества линейно независимых решений.

Теорема 5.3 об общем решении однородной системы. Если — фундаментальная система решений однородной системы уравнений (5.4), то столбец

при любых значениях произвольных постоянных также является решением системы (5.4), и, наоборот, для каждого решения х этой системы найдутся такие значения произвольных постоянных , при которых это решение удовлетворяет равенству (5.14).

Прямое утверждение теоремы следует из свойства 1 решений однородной системы. Докажем обратное утверждение о том, что любое решение можно представить в виде (5.14). Для этого составим матрицу , приписав к столбцам фундаментальной системы решений столбец

Найдем ранг этой матрицы. Так как первые столбцов линейно независимы, то . Так как каждый из столбцов матрицы является решением системы , то по первой формуле из (5.13) получаем

Следовательно, первая строка матрицы является линейной комбинацией последних строк этой матрицы.

По второй формуле из (5.13) получим, что вторая строка матрицы является линейной комбинацией последних строк этой матрицы, и т.д. По r-й формуле из (5.13) получим, что r-я строка матрицы является линейной комбинацией последних строк этой матрицы. Значит, первые строк матрицы можно вычеркнуть и при этом ранг матрицы не изменится. Следовательно, , так как после вычеркивания в матрице будет всего строк. Таким образом, . Значит, есть базисный минор матрицы , который расположен в первых ее столбцах, а столбец не входит в этот базисный минор. Тогда по теореме о базисном миноре найдутся такие числа , что

Итак, обратное утверждение доказано.

Видео:Решение систем линейных алгебраических уравнений методом Крамера.Скачать

Решение систем линейных алгебраических уравнений  методом Крамера.

Алгоритм решения однородной системы уравнений

1-5. Выполнить первые 5 пунктов алгоритма Гаусса. При этом не требуется выяснять совместность системы, так как любая однородная система имеет решение (пункт 3 метода Гаусса следует пропустить). Получить формулы (5.11) общего решения, которые для однородной системы будут иметь вид (5.13).

Если ранг матрицы системы равен числу неизвестных , то система имеет единственное тривиальное решение и процесс решения заканчивается.

Если ранг матрицы системы меньше числа неизвестных , то система имеет бесконечно много решений. Структуру множества решений находим в следующих пунктах алгоритма.

6. Найти фундаментальную систему решений однородной системы. Для этого подставить в (5.13) последовательно стандартных наборов значений свободных переменных, в которых все свободные переменные равны нулю, кроме одной, равной единице (см. свойство 2 решений однородной системы).

7. Записать общее решение однородной системы по формуле (5.14).

1. В пункте 6 алгоритма вместо стандартного набора значений свободных переменных можно использовать и другие наборы значений, лишь бы они обеспечивали линейную независимость получаемых частных решений однородной системы.

2. Матрица столбцы которой образуют фундаментальную систему решений однородной системы, называется фундаментальной. Используя фундаментальную матрицу, общее решение (5.14) однородной системы можно записать в виде

3. Если базисный минор матрицы расположен в левом верхнем углу (в первых строках и первых столбцах), то упрощенный вид расширенной матрицы (5.9) однородной системы можно представить в виде блочной матрицы

Тогда блочная матрица размеров является фундаментальной. В этом можно убедиться, используя стандартные наборы значений свободных переменных. Применение блочных матриц может служить вторым способом нахождения фундаментальной системы решений.

Пример 5.4. Найти фундаментальную систему решений и общее решение однородной системы

Решение. 1. Составляем расширенную матрицу системы

2-4. Используя элементарные преобразования над строками матрицы , приводим ее к ступенчатому, а затем и к упрощенному виду (см. решение примера 5.3):

Пункт 3 метода Гаусса пропускаем.

5. Переменные — базисные, а — свободные. Записываем формулу (5.13) общего решения однородной системы

6. Находим фундаментальную систему решений. Так как и , надо подобрать линейно независимых решения. Подставляем в систему стандартные наборы значений свободных переменных:

В результате получили фундаментальную систему решений

7. Записываем общее решение однородной системы по формуле (5.14):

Заметим, что фундаментальную систему решений можно получить, взяв иные наборы значений свободных переменных. Например, и . Тогда получим другую фундаментальную систему решений

Несмотря на различия, обе формулы задают одно и то же множество решений.

Видео:Теорема о структуре общего решения однородной системы линейных уравненийСкачать

Теорема о структуре общего решения однородной системы линейных уравнений

Структура общего решения неоднородной системы уравнений

Ранее была выведена формула (5.11) общего решения системы линейных уравнений. Получим другую форму записи, отражающую структуру множества решений.

Рассмотрим неоднородную систему и соответствующую ей однородную систему . Между решениями этих систем имеются связи, выражающиеся следующими свойствами.

Видео:Фундаментальная система решений системы линейных уравнений ФСР СЛАУСкачать

Фундаментальная система решений системы линейных уравнений ФСР СЛАУ

Свойства решений неоднородной системы уравнений

1. Разность двух решений и неоднородной системы есть решение однородной системы.

Действительно, из равенств и следует, что .

2. Пусть — решение неоднородной системы. Тогда любое решение неоднородной системы можно представить в виде

В самом деле, для любого решения неоднородной системы разность по свойству 1 является решением однородной системы, т.е. — решение однородной системы.

Теорема 5.4 о структуре общего решения неоднородной системы.

Пусть — решение неоднородной системы, а — фундаментальная система решений соответствующей однородной системы уравнений. Тогда столбец

при любых значениях [i]произвольных постоянных является решением неоднородной системы, и, наоборот, для каждого решения этой системы найдутся такие значения произвольных постоянных , при которых это решение удовлетворяет равенству (5.15).[/i]

Говорят, что общее решение неоднородной системы есть сумма частного решения неоднородной системы и общего решения соответствующей однородной системы.

Доказательство теоремы вытекает из свойств 1, 2 и теоремы 5.3.

Видео:Теорема Кронекера-КапеллиСкачать

Теорема Кронекера-Капелли

Алгоритм решения неоднородной системы уравнений

1-5. Выполнить первые 5 пунктов метода Гаусса решения системы уравнений и получить формулу общего решения неоднородной системы вида (5.11).

6. Найти частное решение неоднородной системы, положив в (5.11) все свободные переменные равными нулю.

7. Записав формулы (5.13) общего решения соответствующей однородной системы, составить фундаментальную систему ее решений. Для этого подставить в (5.13) последовательно стандартных наборов значений свободных переменных, в которых все переменные равны нулю, за исключением одной, равной единице.

8. Записать общее решение неоднородной системы по формуле (5.15).

1. Используя фундаментальную матрицу однородной системы , решение неоднородной системы можно представить в виде

2. Если базисный минор матрицы расположен в левом верхнем углу (в первых строках и первых столбцах), то упрощенный вид расширенной матрицы (5.9) неоднородной системы можно представить в виде блочной матрицы

Тогда блочная матрица оказывается фундаментальной (см. п.3 замечаний 5.3), а столбец является частным решением неоднородной системы (в этом можно убедиться, подставляя в (5.11) нулевой набор свободных переменных). Используя блочные матрицы, общее решение (5 15) неоднородной системы можно представить в виде

где — столбец произвольных постоянных. Полученную формулу можно считать вторым способом решения неоднородной системы.

Пример 5.5. Найти структуру (5.15) общего решения неоднородной системы

Решение. 1-5. Первые 5 пунктов метода Гаусса выполнены при решении примера 5.3, где получены формулы общего решения неоднородной системы:

Переменные — базисные, а — свободные.

6. Полагая , получаем частное решение неоднородной системы .

7. Находим фундаментальную систему решений однородной системы (см. пример 5.4):

8. Записываем по формуле (5.15) общее решение неоднородной системы

Искомая структура множества решений найдена.

Получим формулу общего решения вторым способом , используя п.2 замечаний 5.4. При решении примера 5.3 расширенная матрица системы была приведена к упрощенному виду. Разбиваем ее на блоки:

Записываем частное решение неоднородной системы

и составляем фундаментальную матрицу:

По формуле (5.16) получаем общее решение неоднородной системы, которое преобразуем к виду (5.15):

💡 Видео

Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений

Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Системы линейных уравнений: Теорема Кронекера-КапеллиСкачать

Системы линейных уравнений: Теорема Кронекера-Капелли

ФСР системы линейных уравнений. Алгоритм ГауссаСкачать

ФСР системы линейных уравнений. Алгоритм Гаусса

Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy
Поделиться или сохранить к себе: