Составить уравнения сторон треугольника зная вершину высоту и медиану

Уравнения сторон треугольника

Как составить уравнение сторон треугольника по координатам его вершин?

Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.

Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)

Составить уравнения сторон треугольника.

1) Составим уравнение прямой AB, проходящей через 2 точки A и B.

Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:

Составить уравнения сторон треугольника зная вершину высоту и медиану

Таким образом, уравнение стороны AB

Составить уравнения сторон треугольника зная вершину высоту и медиану

2) Прямая BC проходит через точки B(7;-4) и C(3;7):

Составить уравнения сторон треугольника зная вершину высоту и медиану

Отсюда уравнение стороны BC —

Составить уравнения сторон треугольника зная вершину высоту и медиану

3) Прямая AC проходит через точки A(-5;1) и C(3;7):

Видео:Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Задача 41259 Найти уравнение сторон треугольника.

Условие

Составить уравнения сторон треугольника зная вершину высоту и медиану

Найти уравнение сторон треугольника, если известны одна из вершин В(-2;-4) и уравнение медианы 2х-5у+8=0 и высоты х+2у-14=0 проведеденных из этой вершины

Все решения

Составить уравнения сторон треугольника зная вершину высоту и медиану

Найдем координаты точки пересечения медианы и высоты:
<2x-5y+8=0
<x+2y-14=0

Назовем ее точка К

Скорее всего дана точка В и два уравнения медианы и высоты,
проведенных из других вершин треугольника

Составим уравнение прямой ВК, как прямой проходящей через две точки:

х+2=y+4
[b]x-y-2=0 [/b]- уравнение ВК

высота x+2y-14=0 и ВК не перпендикулярны,так как произведение угловых коэффициентов взаимно перпендикулярных прямых должно быть равно (-1).

Значит высота перпендикулярна стороне ВМ.

Координату точки М требуется найти

Уравнение стороны ВМ, как прямой, перпендикулярной x+2y-14=0
и проходящей через точку В легко написать.

Произведение угловых коэффициентов взаимно перпендикулярных прямых равно (-1)
Значит, угловой коэффициент стороны ВМ
k_(BM)=2

Общий вид такой прямой
y=2x+b

Так как ВМ проходит через точку В, подставим ее координаты в уравнение
y=2x+b
и найдем b

уравнение BM: [b]y=2x[/b]

Найдем координаты точки пересечения ВМ и медианы.
Решаем систему уравнений:
<2х–5у+8=0
<y=2x

Пусть это точка Р(1;2)

Уравнение КМ, как уравнение прямой проходящей через две точки:
[m]frac<x-x_><x_-x_>=frac<y-y_><y_-y_>[/m]

[b]2х+у-8=0[/b] — уравнение МК

О т в е т. x-y-2=0; y=2x; 2х+у-8=0
Составить уравнения сторон треугольника зная вершину высоту и медиану Составить уравнения сторон треугольника зная вершину высоту и медиану

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Примеры решений по аналитической геометрии на плоскости

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Решения задач о треугольнике онлайн

Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.

Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.

Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.

Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.

Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.

Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.

Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, — 4)$, $В(3, 0)$ и $С(0, 6)$.

Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.

🔥 Видео

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?

найти уравнение высоты треугольникаСкачать

найти уравнение высоты треугольника

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение

Уравнение прямой и треугольник. Задача про высотуСкачать

Уравнение прямой и треугольник. Задача про высоту

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)

Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать

Как найти длину биссектрисы, медианы и высоты?  | Ботай со мной #031 | Борис Трушин

Длина медианы треугольникаСкачать

Длина медианы треугольника

Как находить медианы и высоты треугольника || ЕГЭ-2022 || ОГЭ - 2022Скачать

Как находить медианы и высоты треугольника || ЕГЭ-2022 || ОГЭ - 2022

Как найти медиану, зная стороны треугольника? Удвоение медианы.Скачать

Как найти медиану, зная стороны треугольника? Удвоение медианы.

Аналитическая геометрия на плоскости. Решение задачСкачать

Аналитическая геометрия на плоскости. Решение задач

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Построение медианы в треугольникеСкачать

Построение медианы в треугольнике
Поделиться или сохранить к себе: