Условие
Написать уравнение плоскости, проходящей через прямую пересечения двух плоскостей: 2x-y+3z-5=0 и x+2y-z+2=0 параллельно вектору a(2; -1; -2)
Решение
vector=(2;-1;3)
vector=(1;2;-1)
vecto=vector×vector=-5vector+5vector+5vector
vector — один из направляющих векторов прямой
Найдем точку, принадлежащую двум плоскостям.
Принимаем z=0
Тогда будем иметь систему уравнений
<2x-y-5=0
<x+2y+2=0
Умножаем первое уравнение на 2 и складываем со второым
Складываем
5х=8
х=1,6
y=-1,8
Точка А(1,6; -1,8; 0) принадлежит данным плоскостям, значит принадлежит их линии пересечения.
Пусть М(х;у;z) — произвольная точка искомой плоскости.
Тогда три вектора
vector=(x-1,6;y+1,8;z)>; vector=(-5;5;5) и vector=(2;-1; -2) — [b]компланарны[/b]
Определитель третьего порядка, составленный из координат этих векторов равен 0
О т в е т.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Линия пересечения плоскостей онлайн
С помощю этого онлайн калькулятора можно найти линию пересечения плоскостей. Дается подробное решение с пояснениями. Для нахождения уравнения линии пересечения плоскостей введите коэффициенты в уравнения плоскостей и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать
Линия пересечения плоскостей − теория, примеры и решения
Две плоскости в пространстве могут быть параллельными, могут совпадать или пересекаться. В данной статье мы определим взаимное расположение двух плоскостей, и если эти плоскости пересекаются, выведем уравнение линии пересечения плоскостей.
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы плоскости α1 и α2:
α1: A1x+B1y+C1z+D1=0, | (1) |
α2: A2x+B2y+C2z+D2=0, | (2) |
Найдем уравнение линии пересеченя плоскостей α1 и α2. Для этого рассмотрим следующие случаи:
Умножив уравнение (2) на λ, получим:
α2: A1x+B1y+C1z+λD2=0, | (3) |
Если векторы n1 и n2 не коллинеарны, то решим систему линейных уравнений (1) и (2). Для этого переведем свободные члены на правую сторону уравнений и составим соответствующее матричное уравнение:
(4) |
Как решить уравнение (4) посмотрите на странице Метод Гаусса онлайн или Метод Жоржана-Гаусса онлайн.
Так как в системе линейных уравнений (4) векторы n1=<A1, B1, C1> и n2=<A2, B2, C2> не коллинеарны, то решение этой системы линейных уравнений имеет следующий вид:
, | (5) |
Равенство (5) можно записать в следующем виде:
. | (6) |
Мы получили параметрическое уравнение прямой, которое является линией пересечения плоскостей α1 и α2. Полученное уравнение прямой можно записать в каноническом виде:
. |
Пример 1. Найти линию пересечения плоскостей α1 и α2:
α1: x+2y+z+54=0. | (7) |
α2: 2x+9y−5z+32=0. | (8) |
Поскольку направляющие векторы n1 и n2 неколлинеарны, то плолскости α1 и α2 пересекаются.
Для нахождения линии пересечения влоскостей α1 и α2 нужно решить систему линейных уравнений (7) и (8). Для этого составим матричное уравнение этой системы:
. | (9) |
Решим систему линейных уравнений (9) отностительно x, y, z. Для решения системы, построим расширенную матрицу:
. | (10) |
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строку 2 со строкой 1, умноженной на −2:
. |
Второй этап. Обратный ход Гаусса.
Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на −2/5:
. |
Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):
. |
. | (11) |
где t− произвольное действительное число.
Запишем (11) в следующем виде:
. | (12) |
Получили уравнение линии пересечения плоскостей α1 и α2 в параметрическом виде. Запишем ее в каноническом виде.
(13) |
Из равентсв выше получим каноническое уравнение прямой:
Ответ. Уравнение линии пересечения плоскостей α1 и α2имеет вид:
Пример 2. Найти линию пересечения плоскостей α1 и α2:
(14) |
(15) |
Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/2), то плоскости α1 и α2 параллельны или совпадают.
При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/2:
(16) |
Так как нормальные векторы уравнений (14) и (16) совпадают, а свободные члены разные, то плоскости α1 и α2 не совпадают. Следовательно они параллельны, т.е. не пересекаются.
Пример 3. Найти линию пересечения плоскостей α1 и α2:
(17) |
(18) |
Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/3), то плоскости α1 и α2 параллельны или совпадают.
При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/3:
(19) |
Так как нормальные векторы уравнений (17) и (19) совпадают, и свободные члены равны, то плоскости α1 и α2 совпадают.
Видео:Найти уравнение плоскости проходящей через прямую и перпендикулярно плоскостиСкачать
Составить уравнение плоскости проходящей через прямую пересечения плоскостей 2x y 3z 5
1.Пример последовательности, у которой счётное множество предельных точек. Обосновать пример.
2.Составить уравнение прямой,образованной пересечением плоскости 3x-y-7z+9=0 с плоскотью,проходящей через ось Ox и точку E(3;2;-5).
3.Осевым сечением конусы является прямоугольный треугольник с катетом 32 см. Найдите объем конуса.
📽️ Видео
4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать
1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать
Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать
Написать канонические и параметрические уравнения прямой в пространствеСкачать
17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположеныСкачать
23. Точка пересечения прямой и плоскости / Проекция точки на плоскость / Проекция точки на прямуюСкачать
2. Уравнение плоскости примеры решения задач #1Скачать
Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).Скачать
Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать
Найти точку пересечения прямой и плоскостиСкачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать
12. Уравнения прямой в пространстве Решение задачСкачать
5. Нормальное уравнение плоскости выводСкачать
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Уравнение плоскости через 2 точки параллельно прямойСкачать