Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Найти уравнение плоскости, параллельной оси Oz и проходящей через точки A(2, 3, -1) и B(-1, 2, 4).

Уравнение плоскости, параллельной оси Oz, имеет вид

(так как плоскость по условию задачи параллельна оси Oz, то в ее уравнении отсутствует координата z).

Если плоскость проходит через точку, то координаты этой точки удовлетворяют уравнению плоскости. Подставляя координаты точек A и B в уравнении (1), получим два уравнения:

Составить уравнение плоскости проходящей через две точки параллельно оси oxСоставить уравнение плоскости проходящей через две точки параллельно оси oxСоставить уравнение плоскости проходящей через две точки параллельно оси ox

Для определения коэффициентов A, B и D имеем систему двух однородных линейных уравнений с тремя неизвестными. Составляем матрицу коэффициентов этих уравнений

Составить уравнение плоскости проходящей через две точки параллельно оси oxСоставить уравнение плоскости проходящей через две точки параллельно оси ox

Тогда по формулам (25) получаем

Составить уравнение плоскости проходящей через две точки параллельно оси oxСоставить уравнение плоскости проходящей через две точки параллельно оси oxСоставить уравнение плоскости проходящей через две точки параллельно оси oxСоставить уравнение плоскости проходящей через две точки параллельно оси ox

Подставляя найденные значения A, B и C в (1), получим

После сокращения на t уравнение искомой плоскости приобретает вид

Проверьте правильность решения подстановкой в полученное уравнение сначала координат точки A, а потом координат точки B. Каждый раз в левой части должен получиться ноль.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

1.3.2. Аналитическая геометрия в пространстве

1. Всякая плоскость в координатном пространстве OXYZ имеет векторное уравнение следующего вида: r ¦ п = p. Здесь

r = xi + yj + zk — радиус-вектор текущей точки плоскости

M(x, у, z); п = i cosa + j cos b + k cosg — единичный вектор, имеющий направление перпендикуляра, опущенного на плоскость из начала координат, a, b, g — углы, образованные этим перпендикуляром с осями координат OX, OY, OZ, и р — длина этого перпендикуляра.

При переходе к координатам это уравнение принимает вид xcos a + ycos b + zcos g — p = 0 (нормальное уравнение плоскости).

2. Уравнение всякой плоскости может быть записано также в виде Ах + Ву +Cz + D = 0 (общее уравнение). Здесь А, B, C можно рассматривать как координаты некоторого вектора

N = Ai + Bj + Ck, перпендикулярного к плоскости. Для приведения общего уравнения плоскости к нормальному виду все члены уравнения надо умножить на нормирующий множитель

Составить уравнение плоскости проходящей через две точки параллельно оси ox

где знак перед радикалом противоположен знаку свободного члена D в общем уравнении плоскости.

3. Частные случаи расположения плоскости, определяемой уравнением Ах + Ву +Cz + D = 0:

А = 0; плоскость параллельна оси ОХ;

В = 0; плоскость параллельна оси О^

C = 0; плоскость параллельна оси ОZ;

D = 0; плоскость проходит через начало координат;

А = В = 0; плоскость перпендикулярна оси ОZ (параллельна плоскости ХОY);

А = C = 0; плоскость перпендикулярна оси ОY (параллельна плоскости ХОZ);

В = C = 0; плоскость перпендикулярна оси ОХ (параллельна плоскости YОZ);

А = D = 0; плоскость проходит через ось ОХ;

В = D = 0; плоскость проходит через ось OY;

C = D = 0; плоскость проходит через ось OZ;

А = В = D = 0; плоскость совпадает с плоскостью XOY (z = 0);

А = C = D = 0; плоскость совпадает с плоскостью XOZ (у = 0);

B = C = D = 0; плоскость совпадает с плоскостью YOZ (х = 0).

Если в общем уравнении Ах + By +Cz + D = 0 коэффициент D ф 0, то, разделив все члены уравнения на — D, можно уравнение

плоскости привести к видуСоставить уравнение плоскости проходящей через две точки параллельно оси ox^ здесьСоставить уравнение плоскости проходящей через две точки параллельно оси ox

. Это уравнение плоскости называется уравнением в отрезках: в нем а — абсцисса точки пересечения плоскости с осью OX, b и с — соответственно ордината и аппликата точек пересечения плоскости с осями OY и OZ.

4. Угол j между плоскостями А1х + В1У + Qz + D1 = 0 и А2х + В2У +C2z + D2 = 0 определяется по формуле

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Условие параллельности плоскостей:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Условие перпендикулярности плоскостей:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

5. Расстояние от точки М0(х0; у0; z0) до плоскости, определяемой уравнениемСоставить уравнение плоскости проходящей через две точки параллельно оси oxНаходится по формуле

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Оно равно взятому по абсолютной величине результату подстановки координат точки в нормальное уравнение плоскости; знак результата этой подстановки характеризует взаимное расположение точки M0 и начала координат относительно данной плоскости: этот знак положителен, если точка M0 и начало координат расположены по разные стороны от плоскости, и отрицателен, если они расположены по одну сторону от плоскости.

6. Уравнение плоскости, проходящей через точку М0(х0; у0; z0)

и перпендикулярной к вектору N = Ai + Bj + Ck, имеет вид А(х — х0) + B(y — у0) + C(z — z0) = 0. При произвольных А, В и C последнее уравнение определяет некоторую плоскость, принадлежащую к связке плоскостей, проходящих через точку М0. Его часто поэтому называют уравнением связки плоскостей.

7. Уравнение А1х + B1y +C1z + D1 + А(А2х + B^y +C2z + D2) = 0 при произвольном I определяет некоторую плоскость, проходящую через прямую, по которой пересекаются плоскости, определяемые уравнениями

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

некоторую плоскость, принадлежащую пучку плоскостей, проходящих через эту прямую (в силу чего такое уравнение часто называют уравнением пучка плоскостей). Если плоскости, определяемые уравнениями I и II, параллельны, то пучок плоскостей превращается в совокупность плоскостей, параллельных этим плоскостям.

8. Уравнение плоскости, проходящей через три заданные точки M1(r 1Х M1(Jj), M3(r 3) (Л = x1i + yd + z1k; r2 = x2i + У2 j + z2k; r3 = x3i + y3 j + z3 к), проще всего найти из условия компланарности векторов r — T1, r2 — rl, r3 — rl, где r = xi + yj+zk — радиус-вектор текущей точки искомой плоскости M:

или в координатной форме:

Составить уравнение плоскости проходящей через две точки параллельно оси oxСоставить уравнение плоскости проходящей через две точки параллельно оси ox

Пример 1.21. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + у + 5z — 1 = 0, 2x + 3у — z + 2 = 0 и через точку М(3, 2, 1).

Решение. Воспользуемся уравнением пучка плоскостей

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Значение I определяем из условия, что координаты точки М должны удовлетворять этому уравнению:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Получаем искомое уравнение в виде:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

или, умножая на 13 и приводя подобные члены, в виде:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Пример 1.22. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + 3у + 5z — 4 = 0 и X — у — 2z + 7 = 0 и параллельной оси оу.

Решение. Воспользуемся уравнением пучка x + 3у + 5z — 4 + + l(x — у — 2z + 7) = 0, преобразуем уравнение к виду (1 + Х)х + (3 -1)у + (5 — 2l)z + (71 — 4) = 0.

Так как искомая плоскость параллельна оси ординат, то коэффициент при у должен равняться нулю, т. е. 3 — l = 0, I = 3. Подставив значение I в уравнение пучка, получаем

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Пример 1.23. Найти уравнение плоскости, проходящей через точки М (2; -1; 4) и N(3; 2; -1) перпендикулярно к плоскости X + у + z — 3 = 0.

Решение. Воспользуемся уравнением плоскости, проходящей через первую из данных точек:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Условие прохождения этой плоскости через вторую точку и условие перпендикулярности определяются равенствами:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Исключая коэффициенты А, В и C из системы уравнений

Составить уравнение плоскости проходящей через две точки параллельно оси ox

получаем искомое уравнение в виде:

Составить уравнение плоскости проходящей через две точки параллельно оси oxСоставить уравнение плоскости проходящей через две точки параллельно оси ox

Пример 1.24. Из точки P(2; 3; -5) на координатные плоскости опущены перпендикуляры. Найти уравнение плоскости, проходящей через их основания.

Решение. Основаниями перпендикуляров, опущенных на координатные плоскости, будут следующие точки М1(2; 3; 0), М2(2; 0; -5), М3(0; 3; -5). Напишем уравнение плоскости, проходящей через точки М1, М2, М3, для чего воспользуемся уравнением

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Пример 1.25. Составить уравнение плоскости, проходящей через точку M (2; 3; 5) и перпендикулярной к вектору

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Решение. Достаточно воспользоваться уравнением плоскости, проходящей через данную точку и перпендикулярной к данному вектору:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

1. Прямая может быть задана уравнениями 2-х плоскостей

Составить уравнение плоскости проходящей через две точки параллельно оси ox

пересекающихся по этой прямой.

2. Исключив поочередно х и у из предыдущих уравнений, получим уравнения х = аz + с, у = bz + d. Здесь прямая определена двумя плоскостями, проектирующими ее на плоскости хoz и yoz.

3. Если даны две точки M(x1, у1, z1) и N(x2, у2, z2), то уравнения прямой, проходящей через них, будут иметь вид:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

4. Так называемые канонические уравненияСоставить уравнение плоскости проходящей через две точки параллельно оси ox

определяют прямую, проходящую через точку M(x1, у1, z1)

и параллельную вектору S = li + mj + nk. В частности, эти уравнения могут быть записаны в виде:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

где a, b и g — углы, образованные прямой с осями координат.

Составить уравнение плоскости проходящей через две точки параллельно оси ox

5. От канонических уравнений прямой, вводя параметр t, нетрудно перейти к параметрическим уравнениям прямой:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

6. Угол между двумя прямыми, заданными их каноническими

Составить уравнение плоскости проходящей через две точки параллельно оси ox
Составить уравнение плоскости проходящей через две точки параллельно оси ox

деляется по формуле

перпендикулярности двух прямых:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

условие параллельности двух прямых:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

7. Необходимое и достаточное условие расположения двух прямых, заданных их каноническими уравнениями, в одной плоскости (условие компланарности двух прямых):

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Если величины /1, т, П1 непропорциональны величинам /2, m2, «2, то указанное соотношение является необходимым и достаточным условием пересечения двух прямых в пространстве.

условие параллельности прямой и плоскости: Составить уравнение плоскости проходящей через две точки параллельно оси ox Составить уравнение плоскости проходящей через две точки параллельно оси ox Составить уравнение плоскости проходящей через две точки параллельно оси oxусловие перпендикулярности прямой и плоскости:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси oxОпределяется по формуле

Составить уравнение плоскости проходящей через две точки параллельно оси ox

9. Для определения точки пересечения прямойСоставить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси oxС плоскостью Ах + Ву + Cz + D = 0 нужно решить совместно их уравнения, для чего следует воспользоваться параметрическими уравнениями прямой x = /t + X0, у = mt + у0, z = nt + z0:

а) если А/ + Вт + Cn ф 0, то прямая пересекает плоскость в одной точке;

б) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D ф 0, то прямая параллельна плоскости;

в) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D = 0, то прямая лежит в плоскости.

Пример 1.26. Привести к каноническому виду уравнения прямой 2х — у + 3z — 1 = 0 и 5х + 4у — z — 7 = 0.

Решение. Исключив вначале у, а затем z, получим:

Если разрешим каждое из уравнений относительно х, то будем иметь:

отсюдаСоставить уравнение плоскости проходящей через две точки параллельно оси ox

Второй способ: найдем вектор S = li + mj + nk, параллельный искомой прямой. Так как он должен быть перпендикулярен к нормальным векторам заданных плоскостей N1 = 2i — j + 3k и N2= 5i + 4 j — k, то за него можно принять векторное произведение векторов N1 и N2.

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Таким образом, l = -11; m = 17; n = 13.

За точку M1(x1, у1, z1), через которую проходит искомая прямая, можно принять точку пересечения ее с любой из координатных плоскостей, например с плоскостью yoz. Т ак как при этом x1 = 0, то координаты y1 и z1 этой точки определятся из системы уравнений заданных плоскостей, если в них положить х = 0:

Решая эту систему, находим у1 = 2; z1 = 1.

Итак, искомая прямая определяется уравнениями:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Мы получили прежний ответ.

Пример 1.27. Построить прямую

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Решение. Искомую прямую можно построить как линию пересечения плоскостей. Для этого напишем уравнения плоскостей, которыми определена прямая, в отрезках на осях:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Пример 1.28. Из начала координат опустить перпендикуляр на прямую

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Решение. Составим уравнение плоскости, проходящей через начало координат и перпендикулярной заданной прямой: 2х + 3у + z = 0. (Для этой плоскости можно принять А = l; B = m; C = n; D = 0; использовано условие перпендикулярности прямой и плоскости, см. п. 8 введения к настоящему разделу).

Найдем точку пересечения этой плоскости и данной прямой. Параметрические уравнения прямой имеют вид:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Построив данные плоскости, мы получим искомую прямую как линию пересечения этих плоскостей (рис. 20).

Для определения t имеем уравнение:

Составить уравнение плоскости проходящей через две точки параллельно оси oxСоставить уравнение плоскости проходящей через две точки параллельно оси ox

Остается составить уравнения прямой, проходящей через начало координат и через точку М (см. п. 3 введения к настоящему разделу):

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Пример 1.29. В уравнениях прямойСоставить уравнение плоскости проходящей через две точки параллельно оси oxОпределить

параметр n так, чтобы эта прямая пересекалась с прямой

Составить уравнение плоскости проходящей через две точки параллельно оси ox, и найти точку их пересечения.

Решение. Для нахождения параметра n используем условие пересечения 2-х прямых:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Следовательно, уравнения пересекающихся прямых таковы: искомой:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Для вычисления координат точки пересечения этих прямых выразим из первого уравнения х и у через z: х = 2z, у = -3z. Подставляя их значения в равенствоСоставить уравнение плоскости проходящей через две точки параллельно оси oxИмеемСоставить уравнение плоскости проходящей через две точки параллельно оси ox,

отсюда z = 1. Зная z, находим х и у: х = 2z = 2, у = -3z = -3. Следовательно M(2; -3; 1).

Пример 1.30. Прямая задана каноническими уравнениями

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить общие уравнения этой прямой.

Решение. Канонические уравнения прямой можно записать в виде системы двух независимых уравнений:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Получили общие уравнения прямой, которая теперь задана пересечением 2-х плоскостей, одна из которых 5х — 3у — 13 = 0 параллельна оси Oz, а другая х + 3z — 11 = 0 параллельна оси Oy.

Пример 1.31. Найти координаты точки M, делящей попалам отрезок прямой

Составить уравнение плоскости проходящей через две точки параллельно оси ox

заключенный между плоскостями хoz и xoy.

Решение. Найдем точку А пересечения прямой с плоскостью хoz, полагая в уравнениях прямой у = 0. Тогда получим:

отсюда x = 2,6; z = 2,8. Тогда А(2,6; 0; 2,8).

Составить уравнение плоскости проходящей через две точки параллельно оси oxСоставить уравнение плоскости проходящей через две точки параллельно оси ox

отсюда X = 11, у = 14, или В(11; 14; 0).

Определяем координаты точки М, делящей отрезок АВ пополам:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Следовательно, координаты искомой точки М будут: М(6,8; 7; 1,4).

Пример 1.32. Составить уравнение плоскости, проходящей через прямую

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Решение. Составим уравнение пучка плоскостей, проходящих через первую из данных прямых:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

которое делим на а ф 0, и пусть b /а = I:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Аналогично, полагая в уравнениях прямой z = 0, найдем координаты точки В пересечения прямой с плоскостью хоу:

В этом пучке нужно выбрать плоскость, параллельную 2-й данной прямой. Из условия параллельности плоскости и прямой, имеем:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Подставляя I = 1 в уравнение пучка плоскостей, получим: Составить уравнение плоскости проходящей через две точки параллельно оси oxТогда искомое уравнение плоскости будет:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Пример 1.33. Дана прямая Составить уравнение плоскости проходящей через две точки параллельно оси oxНайти ее проекцию на плоскость

Решение. Нужно найти плоскость, которая проходит через данную прямую перпендикулярно к данной плоскости; тогда искомая проекция определится как пересечение этой плоскости с данной.

Составим уравнение пучка плоскостей, проходящих через данную прямую:

Эта плоскость должна быть перпендикулярной к данной плоскости, что можно записать как:

Тогда уравнение плоскости, проходящей через данную прямую и перпендикулярной данной плоскости, будет:

Проекция данной прямой на данную плоскость определяется как прямая пересечения плоскостей:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Запишем эту прямую в каноническом виде. Найдем на прямой какую-либо точку. Для этого положим, например х0 = 1, и система запишется в виде:

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Отсюда, у0 = 1, z0 = 0, т. е. точка M(1; 1; 0) принадлежит искомой прямой.

Направляющий вектор прямой S = (l; m; n) найдем из того условия, что он перпендикулярен нормальным векторам

N1 = (2; -3; -2) и N2 = (5; 2; 2) плоскостей, определяющих искомую прямую.

В качестве S берем векторное произведение векторов N1 и N2 , т. е.

Составить уравнение плоскости проходящей через две точки параллельно оси ox

Тогда искомое уравнение в каноническом виде будет:

Видео:3. Частные случаи общего уравнения плоскости Неполные уравнения плоскостиСкачать

3. Частные случаи общего уравнения плоскости Неполные уравнения плоскости

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Калькулятор онлайн.
Составить уравнение плоскости

Этот калькулятор онлайн составляет (находит) уравнение плоскости по трем точкам, лежащим на плоскости или по нормали и одной точке лежащей на плоскости.

Онлайн калькулятор для нахождения уравнения плоскости не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: ( -frac )

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: ( -1frac )

Составить уравнение плоскости

Видео:Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).Скачать

Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).

Немного теории.

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Общее уравнение плоскости

Пусть заданы:
прямоугольная система координат Oxyz,
произвольная плоскость ( pi );
точка ( M_0(x_0;y_0;z_0) in pi );
вектор ( vec(A;B;C) ), перпендикулярный плоскости ( pi ) (смотри рисунок).
Составить уравнение плоскости проходящей через две точки параллельно оси ox

Рассмотрим произвольную точку М(х; у; z). Точка М лежит на плоскости ( pi ) тогда и только тогда, когда векторы ( vec ) и ( vec ) взаимно перпендикулярны. Так как координаты вектора ( vec ) равны ( x-x_0, ; y-y_0, ; z-z_0 ) , то в силу условия перпендикулярности двух векторов (скалярное произведение должно быть равно нулю) получаем, что точка М (х; у; z) лежит на плоскости ( pi ) тогда и только тогда, когда

Раскрывая скобки, приведем уравнение (1) к виду
( Ax+By+Cz+(-Ax_0-By_0-Cz_0)=0 )
Далее, обозначая число ( -Ax_0-By_0-Cz_0 ) через ( D ), получаем

Верно и обратное: всякое уравнение первой степени вида (2) определяет в заданной прямоугольной системе координат плоскость. Действительно, пусть заданы прямоугольная система координат Oxyz и уравнение ( Ax+By+Cz+D=0 ) с произвольными коэффициентами А, В, С и D, причем из коэффициентов А, В и С хотя бы один отличен от нуля. Данное уравнение заведомо имеет хотя бы одно решение ( x_0, ; y_0, ; z_0 ) ( если, например, ( C neq 0 ), то, взяв произвольные х0, и y0, из уравнения получим: ( z_0 = -fracx_0 — fracy_0-frac ) ).

Таким образом, существует хотя бы одна точка M0(x0; y0; z0), координаты которой удовлетворяют уравнению, т.е. Ax0+By0+Cz0+D=0. Вычитая это числовое равенство из уравнения Ax+By+Cz+D=0, получаем уравнение
A(x-x0) + B(y-y0) + C(z-z0) + D=0,
эквивалентное данному. Полученное уравнение (а стало быть, и уравнение Ax+By+Cz+D=0 ) совпадает с уравнением (1) и, значит, определяет плоскость ( pi ), проходящую через точку M0(x0 и перпендикулярную вектору ( vec(A;B;C) ).

Вектор ( vec(A;B;C) ), перпендикулярный плоскости, называется нормальным вектором или нормалью этой плоскости.

Теорема
Если два уравнения ( A_1x+B_1y+C_1z+D_1=0 ) и ( A_2x+B_2y+C_2z+D_2=0 ) определяют одну и ту же плоскость, то их коэффициенты пропорциональны, т.е. $$ frac = frac = frac = frac $$

Угол между двумя плоскостями

Рассмотрим две плоскости ( pi_1 ), и ( pi_2 ), заданные соответственно уравнениями

При любом расположении плоскостей ( pi_1 ), и ( pi_2 ) в пространстве один из углов ( varphi ) между ними равен углу между их нормалями ( vec(A_1;B_1;C_1) ) и ( vec(A_2;B_2;C_2) ) и вычисляется по следующей формуле:
$$ cos varphi = frac < veccdot vec>< |vec| |vec| > = frac <sqrt; sqrt > tag $$

Второй угол равен ( 180^circ -cos varphi )

Условие параллельности плоскостей

Если плоскости ( pi_1 ) и ( pi_2 ) параллельны, то коллинеарны их нормали ( vec ) и ( vec ), и наоборот. Но тогда
$$ frac = frac = frac tag $$
Условие (4) является условием параллельности плоскостей ( pi_1 ) и ( pi_2 )

Условие перпендикулярности плоскостей

Если плоскости ( pi_1 ) и ( pi_2 ) взаимно перпендикулярны, то их нормали ( vec ) и ( vec ) также перпендикулярны, и наоборот. Поэтому из формулы (3) непосредственно получаем условие перпендикулярности плоскостей ( pi_1 ) и ( pi_2 ):
( A_1 A_2 + B_1 B_2 + C_1 C_2 = 0 )

💡 Видео

Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать

Матан за час. Шпаргалка для первокурсника. Высшая математика

2. Уравнение плоскости примеры решения задач #1Скачать

2. Уравнение плоскости примеры решения задач #1

Уравнение плоскости через 2 точки параллельно прямойСкачать

Уравнение плоскости через 2 точки параллельно прямой

12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

455. Уравнение плоскости, параллельной осиСкачать

455. Уравнение плоскости, параллельной оси

Расстояние от точки до плоскости / Вывод формулыСкачать

Расстояние от точки до плоскости / Вывод формулы

Составить уравнение плоскости. ПримерыСкачать

Составить уравнение плоскости. Примеры

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертеж

Уравнение плоскости через 3 точкиСкачать

Уравнение плоскости через 3 точки

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 клСкачать

Уравнение прямой, проходящей через точку параллельно OX, OY или через начало координат. Урок 5. 8 кл
Поделиться или сохранить к себе: