Смешанные уравнения с логарифмами и степенями

Содержание
  1. Задача 13 (С1). Логарифмические уравнения. Уравнения смешанного типа.
  2. Конспект занятия «Задача 13 (С1). Логарифмические уравнения. Уравнения смешанного типа.»
  3. Как решать логарифмические уравнения подробный разбор примеров
  4. Сложение и вычитание логарифмов.
  5. Что такое логарифм и как его посчитать
  6. Два очевидных следствия определения логарифма
  7. Свойства логарифмов
  8. Степень можно выносить за знак логарифма
  9. Логарифм произведения и логарифм частного
  10. Формула перехода к новому основанию
  11. Сумма логарифмов. Разница логарифмов
  12. Логарифмический ноль и логарифмическая единица
  13. Как решать уравнения с логарифмами: 2 способа с примерами
  14. Сравнение логарифмов
  15. Пример Найдите корень уравнения.
  16. Логарифмы со специальным обозначением
  17. Десятичный логарифм
  18. Натуральный логарифм
  19. Пример решения логарифмического уравнения с разными основаниями
  20. Пример решения логарифмического уравнения с переменными основаниями
  21. Использование свойств логарифмов при решении логарифмических уравнений и неравенств
  22. Задача C1: логарифмы и тригонометрия в одном уравнении
  23. Решение логарифмического уравнения
  24. Решение тригонометрического уравнения
  25. Формула синуса двойного угла
  26. Разложение уравнения на множители
  27. Особенности решения тригонометрических уравнений с синусом
  28. Область определения логарифмов — считать или не считать?
  29. Отбор корней на отрезке
  30. Особенности вычисления дробных корней
  31. Заключительные выкладки

Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.

Задача 13 (С1). Логарифмические уравнения. Уравнения смешанного типа.

Сегодня на занятии мы разберем способы решения логарифмических уравнений, рассмотрим смешанные уравнения, в которых вместе с логарифмами встречаются тригонометрические или показательные элементы.

Смешанные уравнения с логарифмами и степенями

Конспект занятия «Задача 13 (С1). Логарифмические уравнения. Уравнения смешанного типа.»

Решение логарифмических уравнений.

Логарифмические уравнения – уравнения, содержащие неизвестную под знаком логарифма. При решении логарифмических уравнений часто используются теоретические сведения:

Смешанные уравнения с логарифмами и степенями

Основное логарифмическое тождество: Смешанные уравнения с логарифмами и степенямигде a 0, a ≠ 1 и b 0.

Простейшим логарифмическим уравнением является уравнение вида

Утверждение 1. Если a 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = a b .

Утверждение 2. Уравнение loga f(x) = loga g(x) (a 0, a ≠ 1) равносильно одной из систем (очевидно, выбирается та система, неравенство которой решается проще)

Видео:Интересная задача на логарифмы в ЕГЭСкачать

Интересная задача на логарифмы в ЕГЭ

Как решать логарифмические уравнения подробный разбор примеров

Видео:Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭ

Сложение и вычитание логарифмов.

Возьмем два логарифма с одинаковыми основаниями: loga x и loga y. Тогда сними возможно выполнять операции сложения и вычитания:

Как видим, сумма логарифмов равняется логарифму произведения, а разность логарифмов – логарифму частного. Причем это верно если числа а, х и у положительны и а ≠ 1.

Важно обращать внимание, что основным аспектом в данных формулах выступают одни и те же основания. Если основания отличаются друг от друга, эти правила не применимы!

Правила сложения и вычитания логарифмов с одинаковыми основаниями читаются не только с лева на право, но и на оборот. В результате мы имеем теоремы логарифма произведения и логарифма частного.

Логарифм произведения двух положительных чисел равен сумме их логарифмов; перефразируя данную теорему получим следующее, если числа а, x и у положительны и а ≠ 1, то:

Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя. Говоря по другому, если числа а, х и у положительны и а ≠ 1, то:

Применим вышеизложенные теоремы для решения примеров:

Если числа x и у отрицательны, то формула логарифма произведения становится бессмысленной. Так, запрещено писать:

так как выражения log2(-8) и log2(-4) вообще не определены (логарифмическая функция у = log2х определена лишь для положительных значений аргументах).

Теорема произведения применима не только для двух, но и для неограниченного числа сомножителей. Это означает, что для всякого натурального k и любых положительных чисел x1, x2, . . . ,xn существует тождество :

Из теоремы логарифма частного можно получить еще одно свойство логарифма. Общеизвестно, что loga1= 0, следовательно,

А значит имеет место равенство:

Логарифмы двух взаимно обратных чисел по одному и тому же основанию будут различны друг от друга исключительно знаком. Так:

Видео:Логарифмы в ЕГЭ🫢 Решишь второй?!Скачать

Логарифмы в ЕГЭ🫢 Решишь второй?!

Что такое логарифм и как его посчитать

Логарифм имеет следующий вид:

Смешанные уравнения с логарифмами и степенямигде a – это основание логарифма,

b – это аргумент логарифма

Чтобы узнать значение логарифма приравняем его к X. Смешанные уравнения с логарифмами и степенямии преобразовываем в Смешанные уравнения с логарифмами и степенямии преобразовываем в Запомните, что именно основание (оно выделено красным) возводится в степень.

Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!

Смешанные уравнения с логарифмами и степенями

Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:Смешанные уравнения с логарифмами и степенямиА в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:

Смешанные уравнения с логарифмами и степенямиЕще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.

Смешанные уравнения с логарифмами и степенями

Видео:Десятичные и натуральные логарифмы. Видеоурок 16. Алгебра 10 классСкачать

Десятичные и натуральные логарифмы. Видеоурок 16. Алгебра 10 класс

Два очевидных следствия определения логарифма

log a 1 = 0 ( a > 0, a ≠ 1 )

Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень – единицу.

Видео:✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис ТрушинСкачать

✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис Трушин

Свойства логарифмов

Перечисленные ниже свойства логарифмов вытекают из основного логарифмического тождества:

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

( основное свойство логарифмов ),

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

( основное свойство логарифмов ),

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Проверь удачу, набери 60+

Математика – это систематицация и результат, а общественные науки и история – процесс осмысления результата.

Видео:Проще простого! Как решить Логарифмическое Уравнение?Скачать

Проще простого! Как решить Логарифмическое Уравнение?

Пример Найдите корень уравнения.

Смешанные уравнения с логарифмами и степенями

Используя определение логарифма, получим:

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Проверим: Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Ответ: Смешанные уравнения с логарифмами и степенями.

Таким образом, теперь вы можете составить четкую инструкцию, как решать логарифмические уравнения. Она заключается в следующих шагах:

  1. Сделать справа и слева от знака равенства (=) логарифмы по одному основанию, избавившись от коэффициентов перед логарифмами, используя свойства логарифмов.
  2. Избавляемся от логарифмов, используя правило потенцирования. Остаются только числа, которые были под знаком логарифма.
  3. Решаем получившееся обычное уравнение — как найти корень уравнения смотрите здесь .
  4. Делаем проверку
  5. Записываем ответ.

Видео:Логарифмы в ЕГЭ⚡️что получилось?!Скачать

Логарифмы в ЕГЭ⚡️что получилось?!

Логарифмы со специальным обозначением

Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.

Десятичный логарифм

Десятичный логарифм обозначается lg и имеет основание 10, т.е.

Смешанные уравнения с логарифмами и степенямиЧтобы вычислить десятичный логарифм, нужно 10 возвести в степень X.

Например, вычислим lg100Смешанные уравнения с логарифмами и степенями

Натуральный логарифм

Натуральный логарифм обозначается ln и имеет основание e, то есть

Смешанные уравнения с логарифмами и степенями

Чтобы вычислить данный логарифм нужно число е возвести в степень x. Некоторые из вас спросят, что это за число такое е? Число е – это иррациональное число, т.е. точное его значение вычислить невозможно. е = 2,718281…

Сейчас не будем подробно разбирать, зачем это число нужно, просто запомним, что

Смешанные уравнения с логарифмами и степенями

И вычислить его можно таким образом:Смешанные уравнения с логарифмами и степенями

Видео:Умножаем логарифмы В УМЕ🧠Скачать

Умножаем логарифмы В УМЕ🧠

Пример решения логарифмического уравнения с разными основаниями

Выше мы решали логарифмические уравнения, в которых участвовали логарифмы с одинаковыми основаниями. А что же делать, если основания у логарифмов разные? Например,

Смешанные уравнения с логарифмами и степенямиПравильно, нужно привести логарифмы в правой и левой части к одному основанию!

Итак, разберем наш пример:Смешанные уравнения с логарифмами и степенямиПреобразуем правую часть нашего уравнения:

Смешанные уравнения с логарифмами и степенями

Мы знаем, что 1/3 = 3 -1 . Еще мы знаем свойство логарифма, а именно вынесение показателя степени из логарифма: Смешанные уравнения с логарифмами и степенямиПрименяем эти знания и получаем: Смешанные уравнения с логарифмами и степенямиНо пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма: Смешанные уравнения с логарифмами и степенямиНо пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма:

Тогда получим: Смешанные уравнения с логарифмами и степенямиВот теперь в правой и левой части уравнения у нас стоят логарифмы с одинаковыми основаниями и мы можем их зачеркнуть: Смешанные уравнения с логарифмами и степенямиДелаем проверку: Смешанные уравнения с логарифмами и степенямиДелаем проверку: Если мы преобразуем правую часть, воспользовавшись свойствами логарифма, то получим:Смешанные уравнения с логарифмами и степенямиВерно, следовательно, х = 4 является корнем уравнения.

Видео:11 класс, 17 урок, Логарифмические уравненияСкачать

11 класс, 17 урок, Логарифмические уравнения

Пример решения логарифмического уравнения с переменными основаниями

Выше мы разобрали примеры решения логарифмических уравнений, основания которых были постоянными, т.е. определенным значением – 2, 3, ½ … Но в основании логарифма может содержаться Х, тогда такое основание будет называться переменным. Например, logx+1(х 2 +5х-5) = 2. Мы видим, что основание логарифма в данном уравнении – х+1. Как же решать уравнение такого вида? Решать мы его будем по тому же принципу, что и предыдущие. Т.е. мы будем преобразовывать наше уравнение таким образом, чтобы слева и справа были логарифмы с одинаковым основанием. Смешанные уравнения с логарифмами и степенямиПреобразуем правую часть уравнения: Смешанные уравнения с логарифмами и степенямиПреобразуем правую часть уравнения: Теперь логарифм в правой части уравнения имеет такое же основание, как и логарифм в левой части: Смешанные уравнения с логарифмами и степенямиТеперь мы можем зачеркнуть логарифмы: Смешанные уравнения с логарифмами и степенямиТеперь мы можем зачеркнуть логарифмы: Но данное уравнение неравносильно исходному уравнению, так как не учтена область определения. Запишем все требования, относящиеся к логарифму:

1. Аргумент логарифма должен быть больше ноля, следовательно:

Смешанные уравнения с логарифмами и степенями

2. Основание логарифма должно быть больше 0 и не должно равняться единице, следовательно:

Смешанные уравнения с логарифмами и степенями

Сведем все требования в систему:Смешанные уравнения с логарифмами и степенями

Данную систему требований мы можем упростить. Смотрите х 2 +5х-5 больше ноля, при этом оно приравнивается к (х + 1) 2 , которую в свою очередь так же больше ноля. Следовательно, требование х 2 +5х-5 > 0 выполняется автоматически и мы можем его не решать. Тогда наша система будет сведена к следующему: Смешанные уравнения с логарифмами и степенямиПерепишем нашу систему: Смешанные уравнения с логарифмами и степенямиПерепишем нашу систему: Следовательно, наша система примет следующий вид: Смешанные уравнения с логарифмами и степенямиТеперь решаем наше уравнение: Смешанные уравнения с логарифмами и степенямиТеперь решаем наше уравнение: Справа у нас квадрат суммы:Смешанные уравнения с логарифмами и степенямиДанный корень удовлетворяет наши требования, так как 2 больше -1 и не равно 0. Следовательно, х = 2 – корень нашего уравнения.

Для полной уверенности можем выполнить проверку, подставим х = 2 в исходное уравнение:

Смешанные уравнения с логарифмами и степенями

Т.к. 3 2 =9, то последнее выражение верно.

Видео:Логарифмы-1. Уравнения: от базы до олимпиадСкачать

Логарифмы-1. Уравнения: от базы до олимпиад

Использование свойств логарифмов при решении логарифмических уравнений и неравенств

Для того, чтобы не ошибаться при решении логарифмических уравнений и неравенств, свойства логарифмов, перечисленные в предыдущем разделе, следует применять внимательно и аккуратно.

Например, если при решении уравнения или неравенства требуется преобразовать выражение

Видео:ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯСкачать

ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ

Задача C1: логарифмы и тригонометрия в одном уравнении

19 февраля 2014

Сегодня у нас будет насыщенный урок, потому что уравнение, которое мы будем сегодня разбирать, содержит в себе и логарифмическую, и тригонометрическую функцию. Но все по порядку.

Задача C1. Решите уравнение. Найдите все корни этого уравнения, принадлежащие промежутку.

Смешанные уравнения с логарифмами и степенями

На первый взгляд, задача кажется весьма нестандартной: тут и логарифмы, и тригонометрия. Но если разобраться, то окажется, что уравнения такого типа вполне под силу большинству учеников.

Видео:ПОКАЗАТЕЛЬНОЕ УРАВНЕНИЕ С ЛОГАРИФМОМ ЧАСТЬ II #shorts #математика #егэ #огэ #профильныйегэСкачать

ПОКАЗАТЕЛЬНОЕ УРАВНЕНИЕ С ЛОГАРИФМОМ ЧАСТЬ II #shorts #математика #егэ #огэ #профильныйегэ

Решение логарифмического уравнения

Итак, нужно решить уравнение:

log5 (cos x − sin 2 x + 25) = 2

Как видим, в первую очередь перед нами логарифмическое уравнение. Вспоминаем: как мы решаем логарифмическое уравнение? Очевидно, приводим его к каноническому виду, а именно:

log a f ( x ) = log a g ( x )

В нашем случае слева уже стоит логарифм по основанию 5. Следовательно, двойку тоже нужно представить в виде логарифма по тому же самому основанию 5. Вспоминаем, как это делается. С помощью нашей замечательной формулы:

Разумеется, мы можем подставить любое число b , удовлетворяющее требованиям, которые накладываются на основание логарифма:

Иначе наш логарифм просто не имеет смысла. Но какое именно b выбрать? Очевидно, что основание логарифма по нашей канонической записи должно быть равно основанию уже имеющегося логарифма, т. е. 5. Т.е. в нашем случае запишем:

Перепишем Все уравнение с учетом этого факта:

log5 (cos x − sin 2 x + 25) = log5 25

Перед нами каноническое логарифмическое уравнение. В нем мы можем смело убрать знаки логарифма (т.е. просто приравнять аргументы логарифмов). Получим:

cos x − sin 2 x + 25 = 25

Решение тригонометрического уравнения

Перед нами тригонометрическое уравнение. Переносим 25 влево и получаем:

cos x − sin 2 x = 0

Теперь нам нужно решить обычное тригонометрическое уравнение. Все тригонометрические уравнения должны быть сведены к простейшему уравнению одного из трех видов:

Подобно тому, как в логарифмах есть каноническая запись, точно так же и в тригонометрии есть каноническая запись уравнений. Давайте еще раз посмотрим на наше уравнение:

cos x − sin 2 x = 0

Что-то канонической записью тут не пахнет. Во-первых, аргументы у наших тригонометрических функций разные. И это первая проблема. Следовательно, надо каким-то образом избавится от аргумента 2 x и свести его к х. Или, наоборот: сделать так, чтобы вместо переменной x стояло 2 x .

Еще раз: когда мы видим тригонометрическое уравнение, первое, что нам нужно — это постараться сделать так, чтобы во всех тригонометрических функциях были одинаковые аргументы: везде либо х, либо 2х. Любыми правдами и неправдами, любыми преобразованиями функций мы должны добиться того, чтобы аргументы были равными.

При решении тригонометрических уравнений сводите все функции к одному и тому же аргументу.

Формула синуса двойного угла

В данном случае все очень легко. Вспоминаем формулу синуса двойного угла:

sin 2 x = 2sin x · cos x

Подставляем это выражение в наше уравнение:

cos x − 2sin x · cos x = 0

Мы видим, что и в первом, и во втором слагаемом есть cos x . Выносим его за скобку:

cos x (1- 2sin x · 1) = 0

Кто-то скажет, что 1 в скобках писать излишне. Да, я не спорю, можно сразу записать так:

cos x (1- 2sin x ) = 0

Однако если вы только разбираетесь в тригонометрических уравнениях, то лучше использовать эту избыточность и записать ту самую единицу. Почему? Да потому что если вы не запишете 1 в конце перед скобкой, то велика вероятность, что вы забудете про единицу и в начале. В итоге у вас получится неверное выражение и, соответственно, мы получим неверный ответ.

А вот так, с дополнительной единичкой, никаких проблем не возникнет. В общем, запомните правило: если из какого-то выражения выносим переменную или функцию, вместо этой нее мы везде пишем единицу. И лишь затем, после того, как мы запишем эту конструкцию в скобках, мы можем убрать лишние единицы, если это возможно.

Рекомендую оставлять единицы на месте <> общих множителей, которые выносятся за скобку. Так вы застрахуете себя от обидных ошибок.

Разложение уравнения на множители

В нашем случае все возможно. Получим:

cos x (1- 2sin x ) = 0

Произведение равно нулю, когда хотя бы один из множителей равен нулю: либо cos x = 0, либо 1 − 2sin x = 0

Перед нами совокупность из двух простейших тригонометрических уравнений:

cos x = 0; 1 = 2sin x = 0.

Однако cos x = 0 — это уже каноническая запись вида cos x = a — именно так, как нужно для решения задачи. А вот второе уравнение — 1− 2sin x — нужно преобразовать. Предлагаю выразить отсюда sin x :

-2sin x = -1;
sin x = 1/2.

Мы получили окончательную совокупность:

cos x = 0; sin x = 1/2.

Таким образом, перед нами два канонических уравнения, которые легко решаются. Вспоминаем, что cos x = 0 — это частный случай, поэтому x = π/2 + π n , n ∈ Z .

Особенности решения тригонометрических уравнений с синусом

С другой стороны, sin x = 1/2 — это не частный, а общий случай. Кроме того, всем своим ученикам я рекомендую расписывать решения уравнений вида sin x = a через совокупность двух множеств:

sin x = a ⇒
x = arcsin a + 2π n , n ∈ Z;
x = π − arcsin a + 2π n , n ∈ Z .

Обратите внимание: в обоих вариантах периодом будет именно величина 2π, т.е. полный оборот на тригонометрическом круге! В нашем случае получим:

Смешанные уравнения с логарифмами и степенями

Итого мы получили совокупность из трех наборов корней:

Смешанные уравнения с логарифмами и степенями

Область определения логарифмов — считать или не считать?

Внимательные ученики наверняка заметят: изначально мы решали логарифмическое уравнение и, следовательно, должны учесть область определения логарифма. Потому что если где-то в уравнении встречается выражение вида log a f ( x ) = log a g ( x ), мы обязаны проверить, что f ( x ) > 0.

Почему же при решении данного уравнения мы нигде это не записали? Это же ошибка! Спокойно: в данном случае никакой ошибки нет. Требование к логарифму, чтобы аргумент был больше нуля, выполняется автоматически на следующем шаге:

cos x − sin 2 x + 25 = 25

Получается, что выражение под знаком логарифма в нашем случае должно быть равно 25. А 25 заведомо больше нуля, т. е. область определения автоматически выполняется для всех корней, которые мы получим в процессе решения уравнения.

И вообще, запомните: когда в уравнении присутствует лишь один логарифм, в аргументе которого имеется функция переменного х, можно вообще не заморачиваться с проверкой области определения, потому что эта область определения будет автоматически выполняться в процессе решения уравнения. Но это работает только для уравнений и только в том случае, если логарифм с функцией присутствует лишь в одном экземпляре на все уравнение.

Требования к области определения выполняются автоматически, если функция стоит в аргументе логарифма, а сам логарифм встречается в уравнении лишь один раз.

В нашем случае это требование выполняется, потому что мы решаем именно уравнение, а не неравенство, и логарифм с функцией в аргументе встречается только один. Собственно, исходное уравнение вообще содержит только один логарифм, поэтому считать область определения в данном случае излишне. Следовательно, мы решили уравнение — получили ответ к первой части задачи.

Отбор корней на отрезке

Переходим ко второй части задачи и находим корни, лежащие на заданном отрезке [2π; 7π/2]. Искать корни будем с помощью тригонометрического круга.

Первым делом обозначаем все три корня на тригонометрическом круге. Кроме того, отметим концы отрезка: 2π и 7π/2. Точка 2π совпадает с точкой началом отсчета, а в числе 7π/2 давайте выделим целую часть — по аналогии с обычными дробями:

Смешанные уравнения с логарифмами и степенями

Отметим полученное число на тригонометрическом круге. Теперь проведем лучи из начала координат в каждую точку. После этого ставим маркер в точку 2π и начинаем двигаться к точке 7π/2 против часовой стрелки. Получим:

Смешанные уравнения с логарифмами и степенями

  1. Самый первый корень: 2π + π/6;
  2. Затем — второй корень: 2π + π/2;
  3. Следующий корень: 2π + 5π/6;
  4. Наконец, последний корень совпадает с концом отрезка: 7π/2.

Особенности вычисления дробных корней

Ключевой момент в решении задачи таким методом состоит в том, каким образом мы отбираем корни. В первую очередь мы ставим маркер (ручку, карандаш или что там к вас) в самый левый конец отрезка — в нашем случае это 2π. Затем мы начинаем двигаться против часовой стрелки, т. е. в положительном направлении отсчета на тригонометрическом круге.

Первая точка, которую мы встречаем на своем пути, будет x = π/6. Чтобы записать корень, мы добавляем π/6 к началу отсчета 2π — это мы и записали. Идем дальше и прибавляем π/2. Потом, если идти еще дальше, мы попадаем точку 5π/6. И когда мы дойдем до конца, то обнаружим еще один корень — точку 7π/2.

Осталось посчитать те три корня из четырех, которые мы записали в виде выражения, потому что оставлять их в таком нерассчитанном виде нехорошо. Давайте посчитаем:

Смешанные уравнения с логарифмами и степенями

С последним корнем 7π/2 никаких дополнительных преобразований проводить не нужно — он уже рассчитан. Итого при отборе корней из всего бесконечного множества, разделенного на три набора, которые мы получили при решении нашего уравнения, остались лишь четыре конкретных корня:

Смешанные уравнения с логарифмами и степенями

Заключительные выкладки

Вот и все — задача решена. Как ни странно, решение получилось довольно простым, хотя изначально уравнение выглядело весьма угрожающе: в нем есть и логарифм, и тригонометрические функции. А получилось, что любой среднестатистический ученик вполне в состоянии справится с такими уравнениями.

И это правда. Достаточно помнить два простых факта:

  1. Логарифмические уравнения мы всегда стараемся привести к каноническому виду: log_a f(x) = log_a g(x) — основания должны быть одинаковыми.
  2. Тригонометрические уравнения тоже сводятся к каноническому виду. Точнее, к одной из трех моделей: sin x = a; cos x = a; tg x = a.

Однако нашем случае на пути к каноническому виду есть одна заминка. Дело в том, что в одной из функций, а именно sin 2 x , присутствует аргумент 2 x , в то время как в cos x есть только переменная х. Следовательно, придется вспомнить формулу двойного угла: sin 2 x = 2sin x · cos x — и уже на основании этой формулы наше исходное уравнение легко раскладывается на множители, откуда возникают канонические уравнения.

В общем, все, что требуется для решения уравнений подобного вида — это научиться работать с логарифмами, выучить несколько тригонометрических формул (особенно это касается формул синуса и косинуса двойного угла) и, конечно, не бояться преобразовать наше уравнение для того, чтобы получить красивые и легко решаемые конструкции.

Поделиться или сохранить к себе:
Смешанные уравнения с логарифмами и степенямиСмешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенямиСмешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенямиСмешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

( формула перехода к новому основанию логарифмов ),

Смешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями

Смешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями
( основное свойство логарифмов ),
Смешанные уравнения с логарифмами и степенями
( основное свойство логарифмов ),
Смешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями
( формула перехода к новому основанию логарифмов ),
Смешанные уравнения с логарифмами и степенями
Смешанные уравнения с логарифмами и степенями

Видео:Логарифмы с нуля за 30 минут. Логарифмы 10 класс ЕГЭ профиль математика | УмскулСкачать

Логарифмы с нуля за 30 минут. Логарифмы 10 класс ЕГЭ профиль математика | Умскул

Степень можно выносить за знак логарифма

И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

log a ( f ( x ) 2 = 2 log a f ( x )

Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть – только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.

Видео:84 людей этого не знают! Секретный способ решения Логарифмических УравненийСкачать

84 людей этого не знают! Секретный способ решения Логарифмических Уравнений

Логарифм произведения и логарифм частного

log a b c = log a b − log a c ( a > 0, a ≠ 1, b > 0, c > 0 )

Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании “слева направо” происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного – расширение ОДЗ.

log a ( f ( x ) g ( x ) )

определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля.

Преобразуя данное выражение в сумму

log a f ( x ) + log a g ( x )

, мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6).

Видео:Логарифмы с Нуля, Что Такое Логарифм? + ДЗ (ЕГЭ 2024 Математика Профиль и База, 10 и 11 класс)Скачать

Логарифмы с Нуля, Что Такое Логарифм? + ДЗ (ЕГЭ 2024 Математика Профиль и База, 10 и 11 класс)

Формула перехода к новому основанию

Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

log a b = 1 log b a ( a > 0, a ≠ 1, b > 0, b ≠ 1 )

Видео:ЛОГАРИФМИЧЕСКОЕ УРАВНЕНИЕ: ОДЗ ИЛИ НЕ ОДЗ?Скачать

ЛОГАРИФМИЧЕСКОЕ УРАВНЕНИЕ: ОДЗ ИЛИ НЕ ОДЗ?

Сумма логарифмов. Разница логарифмов

Логарифмы с одинаковыми основаниями можно складывать: Смешанные уравнения с логарифмами и степенями Смешанные уравнения с логарифмами и степенямиЛогарифмы с одинаковыми основаниями можно вычитать: Смешанные уравнения с логарифмами и степенями Смешанные уравнения с логарифмами и степенямиМы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!

Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!

Видео:Логарифмические уравнения. 11 класс.Скачать

Логарифмические уравнения. 11 класс.

Логарифмический ноль и логарифмическая единица

Смешанные уравнения с логарифмами и степенями

Это следствия из определения логарифма. И их нужно обязательно запомнить. Эти простейшие свойства нередко вводят учеников в ступор.

Запомните, что логарифм от a по основанию а всегда равен единице:

loga a = 1 – это логарифмическая единица.

Если же в аргументе стоит единица, то такой логарифм всегда равен нулю независимо от основания, так как a 0 = 1:

loga 1 = 0 – логарифмический ноль.

Видео:Преобразование логарифмических выраженийСкачать

Преобразование логарифмических выражений

Как решать уравнения с логарифмами: 2 способа с примерами

Решить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида: Смешанные уравнения с логарифмами и степенямиВспоминаем определение логарифма и получаем следующее: Смешанные уравнения с логарифмами и степенямиВспоминаем определение логарифма и получаем следующее: Таким образом мы получаем простое уравнение, которое сможем легко решить.

При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку!

Давайте посмотрим, как это работает на примере:

Смешанные уравнения с логарифмами и степенями

Воспользуемся определением логарифма и получим:

Теперь перед нами простейшее уравнение, решить которое не составит труда:

Сделаем проверку. Подставим найденный Х в исходное уравнение:Смешанные уравнения с логарифмами и степенямиТак как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ.

Поэтому мы покажем еще один способ решения логарифмических уравнений.

Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так:

Смешанные уравнения с логарифмами и степенями

Когда уравнение приведено к такому виду, то мы можем «зачеркнуть» логарифмы и решить простое уравнение. Давайте разбираться на примере.

Решим еще раз то же самое уравнение, но теперь этим способом: Смешанные уравнения с логарифмами и степенямиВ левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2.

Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его: Смешанные уравнения с логарифмами и степенямиТо есть в нашем случае: Смешанные уравнения с логарифмами и степенямиТо есть в нашем случае: Возьмем правую часть нашего уравнения и начнем ее преобразовывать:Смешанные уравнения с логарифмами и степенямиТеперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма:

Смешанные уравнения с логарифмами и степенями

Воспользуемся этим свойством в нашем случае, получим: Смешанные уравнения с логарифмами и степенямиМы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили:Смешанные уравнения с логарифмами и степенямиТеперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение:

Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений.

Разберем другой пример: Смешанные уравнения с логарифмами и степенямиИтак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом: Смешанные уравнения с логарифмами и степенямиИтак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом: После преобразования правой части наше уравнение принимает следующий вид: Смешанные уравнения с логарифмами и степенямиТеперь можно зачеркнуть логарифмы и тогда получим: Смешанные уравнения с логарифмами и степенямиТеперь можно зачеркнуть логарифмы и тогда получим: Вспоминаем свойства степеней:

Теперь делаем проверку:Смешанные уравнения с логарифмами и степенямито последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Еще один пример решения логарифмического уравнения: Смешанные уравнения с логарифмами и степенямиПреобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим: Смешанные уравнения с логарифмами и степенямиПреобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим: Теперь преобразуем правую часть уравнения: Смешанные уравнения с логарифмами и степенямиВыполнив преобразования правой и левой частей уравнения, мы получили: Смешанные уравнения с логарифмами и степенямиВыполнив преобразования правой и левой частей уравнения, мы получили: Теперь мы можем зачеркнуть логарифмы:

Смешанные уравнения с логарифмами и степенямиРешим данное квадратное уравнение, найдем дискриминант:

Смешанные уравнения с логарифмами и степенямиСделаем проверку, подставим х1 = 1 в исходное уравнение: Смешанные уравнения с логарифмами и степенямиСделаем проверку, подставим х1 = 1 в исходное уравнение: Смешанные уравнения с логарифмами и степенямиВерно, следовательно, х1 = 1 является корнем уравнения.

Теперь подставим х2 = -5 в исходное уравнение:Смешанные уравнения с логарифмами и степенямиТак как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень.

Видео:ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэСкачать

ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэ

Сравнение логарифмов

Если 012, то
logax1> logax2– знак неравенства меняется
Если a > 1 и 012, то
logax1ax2– знак неравенства не меняется
Если 1 1, то logax> logbx
Если 0 1, то logax> logbx
Если 1axbx
Если 0axbx