Сложные системы уравнения за 7 класс

Системы линейных уравнений (7 класс)
Содержание
  1. Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.
  2. Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.
  3. Как решить систему линейных уравнений?
  4. Задания по теме Системы уравнений
  5. Дистанционное обучение как современный формат преподавания
  6. Математика: теория и методика преподавания в образовательной организации
  7. Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
  8. Дистанционные курсы для педагогов
  9. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  10. Материал подходит для УМК
  11. Другие материалы
  12. Вам будут интересны эти курсы:
  13. Оставьте свой комментарий
  14. Автор материала
  15. Дистанционные курсы для педагогов
  16. Подарочные сертификаты
  17. Решение систем уравнений
  18. Графический метод решения систем уравнений
  19. Начнём с графического метода
  20. Примеры с решением
  21. Решение систем уравнений методом подстановки
  22. Симметричные системы уравнений с двумя неизвестными
  23. 💡 Видео

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений (x=3);(y=-1) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо (x) и (y), оба уравнения превратятся в верные равенства (begin3-2cdot (-1)=5 \3 cdot 3+2 cdot (-1)=7 end)

А вот (x=1); (y=-2) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» (begin1-2cdot(-2)=5 \3cdot1+2cdot(-2)≠7 end)

Отметим, что такие пары часто записывают короче: вместо «(x=3); (y=-1)» пишут так: ((3;-1)).

Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел ((x_0;y_0))

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:(begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, ((3) и (3)) или противоположны по значению (например, (5) и (-5)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на (2), а второе — на (3).

    (begin2x+3y=13 |cdot 2\ 5x+2y=5 |cdot 3end)(Leftrightarrow)(begin4x+6y=26\15x+6y=15end)(Leftrightarrow)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Сложные системы уравнения за 7 класс

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел ((x_0;y_0)).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: (begin12x-7y=2\5y=4x-6end)

    Приводим систему к виду (begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на (3).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на (8), чтобы найти (y).

    Игрек нашли. Теперь найдем (x), подставив вместо игрека (-2) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции (y=kx+b).

    Постройте графики этих функций. Как? Можете прочитать здесь .

    Сложные системы уравнения за 7 класс

  1. Найдите координаты ((x;y)) точки пересечения графиков и запишите их в ответ в виде ((x_0;y_0 )).
    Ответ: ((4;2))
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений (x_0) и (y_0) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему (begin3x-8=2y\x+y=6end), мы получили ответ ((4;2)). Проверим его, подставив вместо икса (4), а вместо игрека (2).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: (begin3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на (2).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим (6x-13) вместо (y) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем (117) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на (67).

    Ура, мы нашли (x)! Подставим его значение во второе уравнение и найдем (y).

    Видео:7 класс, 39 урок, Метод алгебраического сложенияСкачать

    7 класс, 39 урок, Метод алгебраического сложения

    Задания по теме Системы уравнений

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Задания по теме Системы уравнений.7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 классСложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Курс повышения квалификации

    Дистанционное обучение как современный формат преподавания

    • Сейчас обучается 945 человек из 80 регионов

    Сложные системы уравнения за 7 класс

    Курс профессиональной переподготовки

    Математика: теория и методика преподавания в образовательной организации

    • Сейчас обучается 687 человек из 75 регионов

    Сложные системы уравнения за 7 класс

    Курс повышения квалификации

    Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

    • Сейчас обучается 315 человек из 69 регионов

    Ищем педагогов в команду «Инфоурок»

    Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Дистанционные курсы для педагогов

    «Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

    Свидетельство и скидка на обучение каждому участнику

    Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

    5 593 155 материалов в базе

    Материал подходит для УМК

    Сложные системы уравнения за 7 класс

    «Алгебра», Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. / Под ред. Теляковского С.А.

    § 16. Решение систем линейных уравнений

    Самые массовые международные дистанционные

    Школьные Инфоконкурсы 2022

    33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

    «Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

    Свидетельство и скидка на обучение каждому участнику

    Другие материалы

    • 22.04.2018
    • 2526
    • 0

    Сложные системы уравнения за 7 класс

    • 22.04.2018
    • 1166
    • 13

    Сложные системы уравнения за 7 класс

    • 22.04.2018
    • 2809
    • 10

    Сложные системы уравнения за 7 класс

    • 22.04.2018
    • 434
    • 1

    Сложные системы уравнения за 7 класс

    • 21.04.2018
    • 550
    • 1

    Сложные системы уравнения за 7 класс

    • 21.04.2018
    • 563
    • 3

    Сложные системы уравнения за 7 класс

    • 21.04.2018
    • 825
    • 0

    Сложные системы уравнения за 7 класс

    • 20.04.2018
    • 216
    • 0

    Сложные системы уравнения за 7 класс

    Вам будут интересны эти курсы:

    Оставьте свой комментарий

    Авторизуйтесь, чтобы задавать вопросы.

    Добавить в избранное

    • 22.04.2018 21526
    • DOCX 718.4 кбайт
    • 1062 скачивания
    • Рейтинг: 3 из 5
    • Оцените материал:

    Настоящий материал опубликован пользователем Булдакова Любовь Петровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Автор материала

    Сложные системы уравнения за 7 класс

    • На сайте: 7 лет и 3 месяца
    • Подписчики: 12
    • Всего просмотров: 745239
    • Всего материалов: 430

    Московский институт профессиональной
    переподготовки и повышения
    квалификации педагогов

    Видео:Решение систем уравнений методом сложенияСкачать

    Решение систем уравнений методом сложения

    Дистанционные курсы
    для педагогов

    663 курса от 690 рублей

    Выбрать курс со скидкой

    Выдаём документы
    установленного образца!

    Сложные системы уравнения за 7 класс

    Учителя о ЕГЭ: секреты успешной подготовки

    Время чтения: 11 минут

    Сложные системы уравнения за 7 класс

    В приграничных пунктах Брянской области на день приостановили занятия в школах

    Время чтения: 0 минут

    Сложные системы уравнения за 7 класс

    Новые курсы: функциональная грамотность, ФГОС НОО, инклюзивное обучение и другие

    Время чтения: 15 минут

    Сложные системы уравнения за 7 класс

    Курские власти перевели на дистант школьников в районах на границе с Украиной

    Время чтения: 1 минута

    Сложные системы уравнения за 7 класс

    В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

    Время чтения: 0 минут

    Сложные системы уравнения за 7 класс

    Студенты российских вузов смогут получить 1 млн рублей на создание стартапов

    Время чтения: 3 минуты

    Сложные системы уравнения за 7 класс

    В Курганской области дистанционный режим для школьников продлили до конца февраля

    Время чтения: 1 минута

    Подарочные сертификаты

    Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

    Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

    Видео:Алгебра 7 класс. 28 октября. Решаем систему уравнений методом сложения #2Скачать

    Алгебра 7 класс. 28 октября. Решаем систему уравнений методом сложения #2

    Решение систем уравнений

    Содержание:

    Графический метод решения систем уравнений

    Вспоминаем то, что знаем

    Что такое график уравнения с двумя неизвестными?

    Что представляет собой график линейного уравнения с двумя неизвестными?

    Решите графическим методом систему линейных уравнений:

    Сложные системы уравнения за 7 классОткрываем новые знания

    Решите графическим методом систему уравнений:

    Сложные системы уравнения за 7 класс

    Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту

    В курсе алгебры 7-го класса вы изучали системы линейных уравнений.

    Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.

    По этой ссылке вы найдёте полный курс лекций по высшей математике:

    Начнём с графического метода

    Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.

    Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.

    Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.

    Возможно вам будут полезны данные страницы:

    Примеры с решением

    Пример 1:

    Решим систему уравнений:

    Сложные системы уравнения за 7 класс

    Построим графики уравнений Сложные системы уравнения за 7 класс

    Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).

    Сложные системы уравнения за 7 классПарабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).

    Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.

    Ответ: (2; 5) и (-1; 2).

    Пример 2:

    Выясним количество решений системы уравнений:

    Сложные системы уравнения за 7 класс

    Построим графики уравнений Сложные системы уравнения за 7 класс

    Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.

    Сложные системы уравнения за 7 классОкружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.

    Ответ: Два решения.

    Решение систем уравнений методом подстановки

    Вспоминаем то, что знаем

    Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.

    Решите систему линейных уравнений методом подстановки:

    Сложные системы уравнения за 7 класс

    Открываем новые знания

    Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?

    Решите систему уравнений методом подстановки:

    Сложные системы уравнения за 7 класс

    Как решить систему двух уравнений с двумя неизвестными методом подстановки?

    Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?

    Ранее вы решали системы уравнений первой степени.

    Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.

    Пример 3:

    Сложные системы уравнения за 7 класс

    Пусть (х; у) — решение системы.

    Выразим х из уравнения Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Подставим найденное выражение в первое уравнение:

    Сложные системы уравнения за 7 класс

    Решим полученное уравнение:

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.

    Чуть сложнее дело обстоит в следующем примере.

    Пример 4:

    Решим систему уравнений:

    Сложные системы уравнения за 7 класс

    Пусть (х; у) — решение системы.

    Выразим у из линейного уравнения:

    Сложные системы уравнения за 7 класс

    Подставим найденное выражение в первое уравнение системы:

    Сложные системы уравнения за 7 класс

    После преобразований получим:

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Ответ: (-0,5; 0,5), (4; 5).

    Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».

    Пример 5:

    Сложные системы уравнения за 7 класс

    Подставим во второе уравнение Сложные системы уравнения за 7 класстогда его можно переписать в виде:

    Сложные системы уравнения за 7 класс

    Теперь выразим х через у из первого уравнения системы:

    Сложные системы уравнения за 7 класс

    Подставим в полученное ранее уравнение ху = 2:

    Сложные системы уравнения за 7 класс

    Корни этого уравнения: Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс.

    Иногда решить систему можно, используя метод алгебраического сложения.

    Пример 6:

    Сложные системы уравнения за 7 класс

    Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:

    Сложные системы уравнения за 7 класс.

    Корни этого уравнения: Сложные системы уравнения за 7 класс

    Подставим найденные значения в первое уравнение. Рассмотрим два случая:

    1) Сложные системы уравнения за 7 класс

    2) Сложные системы уравнения за 7 класс, получим уравнение Сложные системы уравнения за 7 класскорней нет.

    Иногда упростить решение удаётся, используя различные варианты замены неизвестных.

    Пример 7:

    Решим систему уравнений:

    Сложные системы уравнения за 7 класс

    Обозначим Сложные системы уравнения за 7 класс

    Второе уравнение системы примет вид:

    Сложные системы уравнения за 7 класс

    Решим полученное уравнение. Получим, умножая обе части на 2а:

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Осталось решить методом подстановки линейные системы:

    Сложные системы уравнения за 7 класс

    Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями

    Напомним, что при решении задач обычно действуют следующим образом:

    1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;

    2) решают полученную систему;

    3) отвечают на вопрос задачи.

    Пример 8:

    Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.

    Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — Сложные системы уравнения за 7 класссм.

    Воспользуемся теоремой Пифагора: Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Решим систему. Выразим из первого уравнения у:

    Сложные системы уравнения за 7 класс

    Подставим во второе уравнение:

    Сложные системы уравнения за 7 класс

    Корни уравнения: Сложные системы уравнения за 7 класс

    Найдём Сложные системы уравнения за 7 класс

    С учётом условия Сложные системы уравнения за 7 классполучим ответ: длина — 12 см, ширина — 5 см.

    Пример 9:

    Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.

    Пусть х — первое число, у — второе число.

    Тогда: Сложные системы уравнения за 7 класс— произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.

    Сложные системы уравнения за 7 класс

    Вычтем из второго уравнения первое. Получим:

    Сложные системы уравнения за 7 класс

    Дальше будем решать методом подстановки:

    Сложные системы уравнения за 7 класс

    Подставим в первое уравнение выражение для у:

    Сложные системы уравнения за 7 класс

    Корни уравнения: Сложные системы уравнения за 7 класс(не подходит по смыслу задачи).

    Найдём у из уравнения:

    Сложные системы уравнения за 7 класс

    Получим ответ: 16 и 7.

    Симметричные системы уравнений с двумя неизвестными

    Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение Сложные системы уравнения за 7 класссимметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Сложные системы уравнения за 7 класс, то есть не меняется. А вот уравнение Сложные системы уравнения за 7 классне симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Сложные системы уравнения за 7 класс, то есть меняется.

    Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.

    ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.

    Например, если в системе уравнений

    Сложные системы уравнения за 7 класс

    переставить местами неизвестные х и у, то получим систему:

    Сложные системы уравнения за 7 класс

    Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.

    Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:

    Сложные системы уравнения за 7 класс

    Сначала научитесь выражать через неизвестные Сложные системы уравнения за 7 классвыражения:

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Сложные системы уравнения за 7 класс

    Присылайте задания в любое время дня и ночи в ➔ Сложные системы уравнения за 7 классСложные системы уравнения за 7 класс

    Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

    Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

    Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

    💡 Видео

    Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать

    Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)

    Решение системы линейных уравнений графическим методом. 7 класс.Скачать

    Решение системы линейных уравнений графическим методом. 7 класс.

    Алгебра 7 класс с нуля | Математика | УмскулСкачать

    Алгебра 7 класс с нуля | Математика | Умскул

    Решение систем уравнений методом подстановкиСкачать

    Решение систем уравнений методом подстановки

    Решение систем уравнений. Методом подстановки. Выразить YСкачать

    Решение систем уравнений. Методом подстановки. Выразить Y

    Как решать уравнения с дробью? #shortsСкачать

    Как решать уравнения с дробью? #shorts

    Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

    Как решать уравнения? уравнение 7 класс. Линейное уравнение

    Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать

    Урок по теме СПОСОБ ПОДСТАНОВКИ 7 класс

    ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

    ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

    Решение систем уравнений методом сложенияСкачать

    Решение систем уравнений методом сложения

    Системы уравнений.Как решать системы уравнений. Метод подстановки. Разбор примеровСкачать

    Системы уравнений.Как решать системы уравнений. Метод подстановки. Разбор примеров

    Система с тремя переменнымиСкачать

    Система с тремя переменными

    Алгебра 7 класс. Системы уравнения как модели реальных ситуацийСкачать

    Алгебра 7 класс. Системы уравнения как модели реальных ситуаций

    Системы уравнений 7-11 класс. Вебинар | МатематикаСкачать

    Системы уравнений 7-11 класс. Вебинар | Математика

    СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

    СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ
    Поделиться или сохранить к себе: