Разделы: Математика
Если в задаче меньше трех переменных, это не задача; если больше восьми – она неразрешима. Энон.
Задачи с параметрами встречаются во всех вариантах ЕГЭ, поскольку при их решении наиболее ярко выявляется, насколько глубоки и неформальны знания выпускника. Трудности, возникающие у учащихся при выполнении подобных заданий, вызваны не только относительной их сложностью, но и тем, что в учебных пособиях им уделяется недостаточно внимания. В вариантах КИМов по математике встречается два типа заданий с параметрами. Первый: «для каждого значения параметра решить уравнение, неравенство или систему». Второй: «найти все значения параметра, при каждом из которых решения неравенства, уравнения или системы удовлетворяют заданным условиям». Соответственно и ответы в задачах этих двух типов различаются по существу. В первом случае в ответе перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. Во втором – перечисляются все значения параметра, при которых выполнены условия задачи. Запись ответа является существенным этапом решения, очень важно не забыть отразить все этапы решения в ответе. На это необходимо обращать внимание учащихся.
В приложении к уроку приведен дополнительный материал по теме «Решение систем линейных уравнений с параметрами», который поможет при подготовке учащихся к итоговой аттестации.
- систематизация знаний учащихся;
- выработка умений применять графические представления при решении систем уравнений;
- формирование умения решать системы линейных уравнений, содержащих параметры;
- осуществление оперативного контроля и самоконтроля учащихся;
- развитие исследовательской и познавательной деятельности школьников, умения оценивать полученные результаты.
Урок рассчитан на два учебных часа.
- Ход урока
- Система линейных уравнений с тремя переменными
- Линейное уравнение с тремя переменными и его решение
- Решение системы линейных уравнений с тремя переменными методом подстановки
- Решение системы линейных уравнений с тремя переменными методом Крамера
- Примеры
- Задания по теме «Системы уравнений с параметром»
- Задание №1227
- Условие
- Решение
- 🌟 Видео
Ход урока
- Организационный момент
Сообщение темы, целей и задач урока.
- Актуализация опорных знаний учащихся
Проверка домашней работы. В качестве домашнего задания учащимся было предложено решить каждую из трех систем линейных уравнений
а) б) в)
графически и аналитически; сделать вывод о количестве полученных решений для каждого случая
Ответы:
Заслушиваются и анализируются выводы, сделанные учащимися. Результаты работы под руководством учителя в краткой форме оформляются в тетрадях.
В общем виде систему двух линейных уравнений с двумя неизвестными можно представить в виде: .
Решить данную систему уравнений графически – значит найти координаты точек пересечения графиков данных уравнений или доказать, что таковых нет. Графиком каждого уравнения этой системы на плоскости является некоторая прямая.
Возможны три случая взаимного расположения двух прямых на плоскости:
- если (если хотя бы один из знаменателей равен нулю, последнее неравенство надо понимать как ), то прямые пересекаются в одной точке; в этом случае система имеет единственное решение
- если то прямые не имеют общих точек, т.е. не пересекаются; а значит, система решений не имеет
- если то прямые совпадают. В этом случае система имеет бесконечно много решений
К каждому случаю полезно выполнить рисунок.
Сегодня на уроке мы научимся решать системы линейных уравнений, содержащие параметры. Параметром будем называть независимую переменную, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству. Решить систему уравнений с параметром – значит установить соответствие, позволяющее для любого значения параметра найти соответствующее множество решений системы.
Решение задачи с параметром зависит от вопроса, поставленного в ней. Если нужно просто решить систему уравнений при различных значениях параметра или исследовать ее, то необходимо дать обоснованный ответ для любого значения параметра или для значения параметра, принадлежащего заранее оговоренному в задаче множеству. Если же необходимо найти значения параметра, удовлетворяющие определенным условиям, то полного исследования не требуется, и решение системы ограничивается нахождением именно этих конкретных значений параметра.
Пример 1. Для каждого значения параметра решим систему уравнений
- Система имеет единственное решение, если
В этом случае имеем
- Если а = 0, то система принимает вид
Система несовместна, т.е. решений не имеет.
- Если то система запишется в виде
Очевидно, что в этом случае система имеет бесконечно много решений вида x = t; где t-любое действительное число.
- при система имеет единственное решение
- при а = 0 — нет решений;
- при а = 3 — бесконечно много решений вида где t R
Пример 2. При каких значениях параметра a система уравнений
- имеет единственное решение;
- имеет множество решений;
- не имеет решений?
- система имеет единственное решение, если
- подставим в пропорцию значение а = 1, получим , т.е. система имеет бесконечно много решений;
- при а = -1 пропорция примет вид: . В этом случае система не имеет решений.
- при система имеет единственное решение;
- при система имеет бесконечно много решений;
- при система не имеет решений.
Пример 3. Найдем сумму параметров a и b, при которых система
имеет бесчисленное множество решений.
Решение. Система имеет бесчисленное множество решений, если
То есть если a = 12, b = 36; a + b = 12 + 36 =48.
- Закрепление изученного в ходе решения задач
- № 15.24(а) [1]. Для каждого значения параметра решите систему уравнений
- № 15.25(а) Для каждого значения параметра решите систему уравнений
- При каких значениях параметра a система уравнений
а) не имеет решений; б) имеет бесконечно много решений.
Ответ: при а = 2 решений нет, при а = -2 бесконечное множество решений
- Практическая работа в группах
Класс разбивается на группы по 4-5 человек. В каждую группу входят учащиеся с разным уровнем математической подготовки. Каждая группа получает карточку с заданием. Можно предложить всем группам решить одну систему уравнений, а решение оформить. Группа, первой верно выполнившая задание, представляет свое решение; остальные сдают решение учителю.
Карточка. Решите систему линейных уравнений
при всех значениях параметра а.
Ответ: при система имеет единственное решение ; при нет решений; при а = -1бесконечно много решений вида , (t; 1- t) где t R
Если класс сильный, группам могут быть предложены разные системы уравнений, перечень которых находится в Приложении1. Тогда каждая группа представляет классу свое решение.
Отчет группы, первой верно выполнившей задание
Участники озвучивают и поясняют свой вариант решения и отвечают на вопросы, возникшие у представителей остальных групп.
- При каком значении k система имеет бесконечно много решений?
- При каком значении p система не имеет решений?
- При каком значении k система имеет бесконечно много решений?
- При каком значении p система не имеет решений?
- Итоги урока
Решение систем линейных уравнений с параметрами можно сравнить с исследованием, которое включает в себя три основных условия. Учитель предлагает учащимся их сформулировать.
При решении следует помнить:
- для того, чтобы система имела единственное решение, нужно, чтобы прямые, отвечающие уравнению системы, пересекались, т.е. необходимо выполнение условия;
- чтобы не имела решений, нужно, чтобы прямые были параллельны, т.е. выполнялось условие,
- и, наконец, чтобы система имела бесконечно много решений, прямые должны совпадать, т.е. выполнялось условие.
Учитель оценивает работу на уроке класса в целом и выставляет отметки за урок отдельным учащимся. После проверки самостоятельной работы оценку за урок получит каждый ученик.
При каких значениях параметра b система уравнений
- имеет бесконечно много решений;
- не имеет решений?
Графики функций y = 4x + b и y = kx + 6 симметричны относительно оси ординат.
- Найдите b и k,
- найдите координаты точки пересечения этих графиков.
Решите систему уравнений при всех значениях m и n.
Решите систему линейных уравнений при всех значениях параметра а (любую на выбор).
- Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений : базовый и профил. уровни / С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин – М. : Просвещение, 2008.
- Математика : 9 класс : Подготовка к государственной итоговой аттестации / М. Н. Корчагина, В. В. Корчагин – М. : Эксмо, 2008.
- Готовимся в вуз. Математика. Часть 2. Учебное пособие для подготовки к ЕГЭ, участию в централизованном тестировании и сдаче вступительных испытаний в КубГТУ / Кубан. гос. технол. ун-т; Ин-т совр. технол. и экон.; Сост.: С. Н. Горшкова, Л. М. Данович, Н.А. Наумова, А.В. Мартыненко, И.А. Пальщикова. – Краснодар, 2006.
- Сборник задач по математике для подготовительных курсов ТУСУР: Учебное пособие / З. М. Гольдштейн, Г. А. Корниевская, Г. А. Коротченко, С.Н. Кудинова. – Томск: Томск. Гос. ун-т систем управления и радиоэлектроники, 1998.
- Математика: интенсивный курс подготовки к экзамену/ О. Ю. Черкасов, А.Г.Якушев. – М.: Рольф, Айрис-пресс, 1998.
Видео:Параметр. ЕГЭ профильная математика. Система уравнений с тремя переменными и параметром.Скачать
Система линейных уравнений с тремя переменными
Линейное уравнение с тремя переменными и его решение
Уравнение вида ax+by+cz = d , где a, b, c, d — данные числа, называется линейным уравнением с тремя переменными x, y и z.
Например: $2x+5y+z = 8; -x+1, 5y+2z = 0; frac x-8y-5z = 7$
Уравнение с тремя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x,y и z.
Например: $2x^2+xz+y^2+yz^2 = 3,x-5y^2+z^3 = 1, 7x^3+y+xyz = 7$
Решением уравнения с тремя переменными называется упорядоченная тройка значений переменных (x,y,z), обращающая это уравнение в тождество.
О тождествах – см. §3 данного справочника
Например: для уравнения 2x+5y+z=8 решениями являются тройки x = -2, y = 1, z = 7; x = -1, y = 1, 6 , z = 2; x = -3, y = 2, 4, z = 2 и т.д. Уравнение имеет бесконечное множество решений.
Геометрическим представлением линейного уравнения с тремя переменными является плоскость в трёхмерном координатном пространстве .
Решение системы линейных уравнений с тремя переменными методом подстановки
Алгоритм метода подстановки для системы уравнений с тремя переменными аналогичен алгоритму для двух переменных (см.§45 данного справочника)
Например: решить систему
$$ <left< begin 3x+2y-z = 8 \ x-y+z = -2 \ 2x-3y-5z = 1 end right.> Rightarrow <left< begin 3(y-z-2)+2y-z = 8 \ x = y-z-2 \ 2(y-z-2)-3y-5z = 1 end right.> Rightarrow $$
$$ Rightarrow <left< begin x = y-z-2 \ 5y-4z = 14 \ -y-7z = 5 end right.> Rightarrow <left< begin x = y-z-2 \ y = -7z-5 \ 5(-7z-5)-4z = 14 end right.> Rightarrow <left< begin x = y-z-2 \ y = -7z-5 \ -39z = 39 end right.> Rightarrow $$
$$ Rightarrow <left< begin x = 2-(-1)-2 = 1 \ y = -7cdot(-1)-5 = 2 \ z = -1 end right.> Rightarrow <left< begin x = 1 \ y = 2 \ z = -1 end right.> $$
Решение системы линейных уравнений с тремя переменными методом Крамера
Для системы с 3-мя переменными действуем по аналогии.
Дана система 3-х линейных уравнений с 3-мя переменными:
$$ <left< begin a_1 x+b_1 y+c_1 z = d_1 \ a_2 x+b_2 y+c_2 z = d_2 \ a_3 x+b_3 y+c_3 z = d_3 end right.> $$
Определим главный определитель системы:
$$ Delta = begin a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 end $$
и вспомогательные определители :
$$ Delta_x = begin d_1 & b_1 & c_1 \ d_2 & b_2 & c_2 \ d_3 & b_3 & c_3 end, Delta_y = begin a_1 & d_1 & c_1 \ a_2 & d_2 & c_2 \ a_3 & d_3 & c_3 end, Delta_z = begin a_1 & b_1 & d_1 \ a_2 & b_2 & d_2 \ a_3 & b_3 & d_3 end $$
Тогда решение системы:
Соотношение значений определителей, расположения плоскостей и количества решений:
Три плоскости пересекаются в одной точке
Три плоскости параллельны
Две или три плоскости совпадают или пересекаются по прямой
Бесконечное множество решений
Осталось определить правило вычисления определителя 3-го порядка.
Таких правил несколько, приведём одно из них (так называемое «раскрытие определителя по первой строке»):
$$ Delta = begin a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 end = a_1 = begin b_2 & c_2 \ b_3 & c_3 end — b_1 = begin a_2 & c_2 \ a_3 & c_3 end + c_1 = begin a_2 & b_2 \ a_3 & b_3 end = $$
$$ = a_1 (b_2 c_3-b_3 c_2 )-b_1 (a_2 c_3-a_3 c_2 )+c_1 (a_2 b_3-a_3 b_2 )$$
Примеры
Пример 1. Найдите решение системы уравнений методом подстановки:
$$<left< begin z = 3x+2y-13 \ 2x-y+3(3x+2y-13) = -2 \ x+2y-(3x+2y-13) = 9 end right.> Rightarrow <left< begin z = 3x+2y-13 \ 11x+5y = 37 \ -2x = -4 end right.> Rightarrow $$
$$Rightarrow <left< begin z = 3cdot2+2cdot3-13 = -1 \ y = frac = 3 \ x = 2 end right.> Rightarrow <left< begin x = 2 \ y = 3 \ z = -1 end right.> $$
$$ <left< begin x = -y-3z+6 \ 2(-y-3z+6)-5y-z = 5\ (-y-3z+6)+2y-5z = -11 end right.> Rightarrow <left< begin x = -y-3z+6 \ -7y-7z = -7 |:(-7) \ y-8z = -17 end right.> Rightarrow $$
$$ Rightarrow <left< begin x = -y-3z+6 \ y+z = 1 \ y-8z = -17 end right.> Rightarrow <left< begin x = -y-3z+6 \ 9z = 18 \ y = 1-z end right.> Rightarrow <left< begin x = 1-6+6 = 1 \ z = 2 \ y = 1-2 = -1 end right.> Rightarrow$$
Пример 2. Найдите решение системы уравнений методом Крамера:
$$ Delta = begin 3 & 2 & -1 \ 2 & -1 & 3\ 1 & 2 & -1 end = 3 = begin -1 & 3 \ 2 & -1 \ end — 2 = begin 2 & 3 \ 1 & -1 \ end — 1 = begin 2 & -1 \ 1 & 2 \ end = $$
$$ Delta_x = begin 13 & 2 & -1 \ -2 & -1 & 3 \ 9 & 2 & -1 \ end = 13 = begin -1 & 3 \ 2 & -1 \ end — 2 = begin -2 & 3 \ 9 & -1 \ end — 1 = begin -2 & -1 \ 9 & 2 \ end = $$
$$ Delta_y = begin 3 & 13 & -1 \ 2 & -2 & 3 \ 1 & 9 & -1 \ end = 3 = begin -2 & 3 \ 9 & -1 \ end — 13 = begin 2 & 3 \ 1 & -1 \ end — 1 = begin 2 & -2 \ 1 & 9 \ end = $$
$$ Delta_z = begin 3 & 2 & 13 \ 2 & -1 & -2 \ 1 & 2 & 9 \ end = 3 = begin -1 & -2 \ 2 & 9 \ end — 2 = begin 2 & -2 \ 1 & 9 \ end + 13 = begin 2 & -1 \ 1 & 2 \ end = $$
$$ Delta = begin 1 & 1 & 3 \ 2 & -5 & -1\ 1 & 2 & -5 end = 1 = begin -5 & -1 \ 2 & -5 \ end — 1 = begin 2 & -1 \ 1 & -5 \ end + 3 = begin 2 & -5 \ 1 & 2 \ end = $$
$$ Delta_x = begin 6 & 1 & 3 \ 5 & -5 & -1 \ -11 & 2 & -5 \ end = 6 = begin -5 & -1 \ 2 & -5 \ end — 1 = begin 5 & -1 \ -11 & -5 \ end + 3 = begin 5 & -5 \ -11 & 2 \ end = $$
$$ = 6(25+2)—(-25-11)+3(10-55) = 162+36-135 = 63 $$
$$ Delta_y = begin 1 & 16 & 3 \ 2 & 5 & -1 \ 1 & -11 & -5 \ end = 1 = begin 5 & -1 \ -11 & -5 \ end — 6 = begin 2 & -1 \ 1 & -5 \ end + 3 = begin 2 & 5 \ 1 & -11 \ end = $$
$$ Delta_z = begin 1 & 1 & 6 \ 2 & -5 & 5 \ 1 & 2 & -11 \ end = 1 = begin -5 & 5 \ 2 & -11 \ end — 1 = begin 2 & 5 \ 1 & -11 \ end + 6 = begin 2 & -5 \ 1 & 2 \ end = $$
Пример 3*. Решите систему уравнений относительно x,y,и z:
$$ a neq b, b neq c, a neq c $$
Решаем методом замены:
$$ <left< begin z = -(a^3+a^2 x+ay)\ b^3+b^2 x+by-(a^3+a^2 x+ay) = 0 \ c^3+c^2 x+cy-(a^3+a^2 x+ay) = 0 end right.> Rightarrow <left< beginz = -(a^3+a^2 x+ay)\ (b^2-a^2 )x+(b-a)y = a^3-b^3 \ (c^2-a^2 )x+(c-a)y = a^3-c^3 end right.> $$
Т.к. $ a neq b$ второе уравнение можно сократить на $(a-b) neq 0$
Т.к.$ a neq c$ третье уравнение можно сократить на $(a-с) neq 0 $. В третьем уравнении после сокращения поменяем знаки:
Из второго уравнения получаем:
Т.к. $b neq c$ можно сократить на $(b-c) neq 0$:
$$ z = -(a^3+a^2 x+ay) = -a^3+a^2 (a+b+c)-a(ab+ac+bc) = $$
$$ = -a^3+a^3+a^2 b+a^2 c-a^2 b-a^2 c-abc = -abc $$
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Задания по теме «Системы уравнений с параметром»
Открытый банк заданий по теме системы уравнений с параметром. Задания C6 из ЕГЭ по математике (профильный уровень)
Видео:Математика | Параметр. Система уравнений с параметромСкачать
Задание №1227
Условие
Найдите все значения a > 0, при каждом из которых система begin(x-4)^2+(|y|-4)^2=9,\ x^2+(y-4)^2=a^2end имеет ровно 2 решения.
Решение
Если y geqslant 0, то первое уравнение задаёт окружность phi _1 с центром в точке C_1 (4; 4) радиуса 3 , а если y то оно задаёт окружность phi _2 с центром в точке C_2 (4; -4) того же радиуса.
При a > 0 второе уравнение задаёт окружность phi с центром в точке C(0; 4) радиуса a . Поэтому задача состоит в том, чтобы найти все значения параметра a , при каждом из которых окружность phi имеет ровно две общие точки с объединением окружностей phi _1 и phi _2.
Координаты точки касания окружностей phi и phi _1 явно видны на чертеже — точки A_1 (1; 4) и B_1 (7; 4) . То есть при a=CA_1=1 и a=CB_1=7 окружности phi и phi _1 касаются. При a > 7 и a окружности phi и phi _1 не пересекаются, при 1 окружности phi и phi _2 имеют 2 общие точки.
Далее, из точки C проведём луч CC_2 и обозначим A_2 и B_2 точки его пересечения с окружностью phi_2 , где A_2 лежит между C и C_2. Заметим, что длина отрезка CC_2= sqrt <4^2+(4-(-4))^>= sqrt = 4sqrt 5.
При a или a > CB_2 окружности phi и phi_2 не пересекаются. При CA_2 окружности phi и phi _2 имеют 2 общие точки. При a =CA_2=4sqrt 5-3 или a=CB_2=4sqrt 5+3, окружности phi и phi _2 касаются.
Исходная система имеет ровно 2 решения тогда и только тогда, когда окружность phi с одной из окружностей phi _1 и phi _2 имеет 2 общие точки, а с другой не пересекается, либо касается одновременно двух окружностей.
Так как 1 то условию задачи удовлетворяют значения ain (1;4sqrt 5-3) cup (7; 4sqrt 5+3).
🌟 Видео
✓ Система уравнений с параметром | ЕГЭ-2018. Задание 17. Математика. Профиль | Борис ТрушинСкачать
15.12 (Алгебра 9Б Решение систем с параметром)Скачать
#11. Как решать системы уравнений с параметром графически?Скачать
Система с тремя переменнымиСкачать
✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать
✓ Система уравнений с параметром | ЕГЭ-2016. Задание 17. Математика. Профиль | Борис ТрушинСкачать
Системы линейных уравнений с параметром.Скачать
системы линейных уравнений с параметромСкачать
Всего минута - и ты умеешь решать систему с параметром!Скачать
3. Системы с параметрами. Часть 1Скачать
✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать
СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать
Система уравнений с параметром | 3 способа решения | Параметр №7 | ЕГЭ по математикеСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
СИСТЕМА УРАВНЕНИЙ С ПАРАМЕТРОМ или КАК РАЗВЛЕЧЬСЯСкачать
Уравнения с параметром. Алгебра, 8 классСкачать
Линейные системы с параметрами (ДВИ, ЕГЭ)Скачать