Реакция Фишера-Тропша — каталитическое гидрирование оксида углерода с образованием смеси углеводородов.
Направление реакции и состав продуктов синтеза углеводородов из синтез-газа (СО и Н2) зависят от применяемых катализаторов, температуры, давления и объемного соотношения окиси углерода и водорода. В качестве катализаторов используются металлы VIII группы.
Продуктами реакции являются алканы, алкены и кислородсодержащие соединения, т.е. образуется сложная смесь продуктов.
На железных катализаторах образуются в основном α-олефины (60-70%). На кобальтовых катализаторах получают насыщенные парафины. На рутениевых катализаторах синтезируется полиметилен.
Синтез углеводородов на основе СО и H2 сильно экзотермическая реакция. Смесь СО и Н2 предварительно очищают от примесей сернистых, азотистых и ароматических соединений.
Синтез углеводородов на основе СО и H2 открыт немецкими химиками Ф. Фишером и Г. Тропшем в 1923 г.
Все получаемые продукты могут быть сырьем для нефтеперерабатывающей, нефтехимической и химической промышленности, в том числе для производства высококачественных моторных топлив.
Высшие α-олефины являются ценным сырьем при получении бытовых моющих средств, эмульгаторов, смазочно-охлаждающих и бурильных жидкостей, пластификаторов, различных типов присадок, синтетических низко застывающих масел, полимеров, теплоносителей, синтетических жирных спиртов и кислот, а также при получении мастик, герметиков, покрытий.
- Синтез фишера тропша уравнение реакции
- ВВЕДЕНИЕ
- ПОЛУЧЕНИЕ СИНТЕЗ-ГАЗА
- МОНООКСИД УГЛЕРОДА, КАРБОНИЛЫ МЕТАЛЛОВ И ПРАВИЛО 18 ЭЛЕКТРОНОВ
- ПРЕДСТАВЛЕНИЯ О КЛЮЧЕВЫХ РЕАКЦИЯХ В КАТАЛИЗЕ
- СИНТЕЗ ФИШЕРА-ТРОПША
- ГИДРОФОРМИЛИРОВАНИЕ ОЛЕФИНОВ
- ПЕРСПЕКТИВЫ СИНТЕЗА КИСЛОРОДСОДЕРЖАЩИХ СОЕДИНЕНИЙ
- ЛИТЕРАТУРА
- Синтез фишера тропша уравнение реакции
- 🔍 Видео
Видео:Синтез Фишера Тропша — Владимир МордковичСкачать
Синтез фишера тропша уравнение реакции
Статья посвящена использованию синтез-газа в качестве альтернативного нефти сырья для производства искусственного жидкого топлива, углеводородов (синтез Фишера-Тропша) и альдегидов (гидроформилирование или оксо-синтез). Обсуждаются механизмы рассматриваемых реакций.
Видео:ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать
ВВЕДЕНИЕ
История знает немало примеров, когда в силу острой необходимости рождались новые оригинальные подходы к решению давно существующих жизненно важных проблем. Так, в предвоенной Германии, лишенной доступа к нефтяным источникам, назревал жесткий дефицит топлива, необходимого для функционирования мощной военной техники. Располагая значительными запасами ископаемого угля, Германия была вынуждена искать пути его превращения в жидкое топливо. Эта проблема была успешно решена усилиями превосходных химиков, из которых прежде всего следует упомянуть Франца Фишера, директора Института кайзера Вильгельма по изучению угля.
В 1926 году была опубликована работа Ф. Фишера и Г. Тропша «О прямом синтезе нефтяных углеводородов при обыкновенном давлении», в которой сообщалось, что при восстановлении водородом монооксида углерода при атмосферном давлении в присутствии различных катализаторов (железо — оксид цинка или кобальт — оксид хрома) при 270°С получаются жидкие и даже твердые гомологи метана.
Так возник знаменитый синтез углеводородов из монооксида углерода и водорода, называемый с тех пор синтезом Фишера-Тропша. Смесь CO и H2 в различных соотношениях, называемая синтез-газом, легко может быть получена как из угля, так и из любого другого углеродсодержащего сырья.
Следует отметить, что к моменту разработки синтеза Фишера-Тропша существовал другой способ получения жидкого топлива — не из синтез-газа, а непосредственно из угля прямой гидрогенизацией. В этой области значительных успехов добился также немецкий химик Ф. Бергиус, который в 1911 году получил из угля бензин. Справедливости ради подчеркнем, что синтез Фишера-Тропша возник не на пустом месте — к тому времени существовали научные предпосылки, которые базировались на достижениях органической химии и гетерогенного катализа. Еще в 1902 году П. Сабатье и Ж. Сандеран впервые получили метан из СО и H2 . В 1908 году Е. Орлов открыл, что при пропускании монооксида углерода и водорода над катализатором, состоящим из никеля и палладия, нанесенных на уголь, образуется этилен.
Промышленность искусственного жидкого топлива достигла наибольшего подъема в годы второй мировой войны. Достаточно сказать, что синтетическое топливо почти полностью покрывало потребности Германии в авиационном бензине. После 1945 года в связи с бурным развитием нефтедобычи и падением цен на нефть отпала необходимость синтеза жидких топлив из СО и Н2 . Наступил нефтехимический бум. Однако в 1973 году разразился нефтяной кризис — нефтедобывающие страны ОПЕК (Организация стран — экспортеров нефти — Organization of Petroleum Exporting Countries) резко повысили цены на сырую нефть, и мировое сообщество вынуждено было осознать реальную угрозу истощения в обозримые сроки дешевых и доступных нефтяных ресурсов. Энергетический шок 70-х годов возродил интерес ученых и промышленников к использованию альтернативного нефти сырья, и здесь первое место, бесспорно, принадлежит углю. Мировые запасы угля огромны, они, по различным оценкам, более чем в 50 раз превосходят нефтяные ресурсы, и их может хватить на сотни лет. Нет никаких сомнений, что в обозримом будущем использование синтез-газа будет играть ключевую роль не только и не столько для производства «угольных» топлив (здесь трудно пока конкурировать с нефтяным топливом), но прежде всего для целей органического синтеза. В настоящее время в промышленном масштабе по методу Фишера-Тропша получают бензин, газойль и парафины только в Южной Африке. На установках фирмы «Sasol» производят около 5 млн т в год жидких углеводородов.
Отражением интенсификации исследований по синтезам на основе СО и Н2 является резкое возрастание публикаций, посвященных химии одноуглеродных молекул (так называемая С1-химия). С 1984 года начал издаваться международный журнал «C1-Molecule Chemistry». Таким образом, мы являемся свидетелями наступающего ренессанса в истории углехимии. Рассмотрим некоторые пути превращения синтез-газа, приводящие к получению как углеводородов, так и некоторых ценных кислородсодержащих соединений. Важнейшая роль в превращениях СО принадлежит гетерогенному и гомогенному катализу 3.
Видео:Получение алканов. Реакция Вюрца (механизм + сложные случаи). ЕГЭ по химии.Скачать
ПОЛУЧЕНИЕ СИНТЕЗ-ГАЗА
Первым способом получения синтез-газа была газификация каменного угля, которая была осуществлена еще в 30-е годы XIX века в Англии с целью получения горючих газов: водорода, метана, монооксида углерода. Этот процесс широко использовался во многих странах до середины 50-х годов XX века, а затем был вытеснен методами, основанными на использовании природного газа и нефти. Однако в связи с сокращением нефтяных ресурсов значение процесса газификации снова стало возрастать.
В настоящее время существуют три основных промышленных метода получения синтез-газа.
1. Газификация угля. Процесс основан на взаимодействии угля с водяным паром:
Эта реакция является эндотермической, равновесие сдвигается вправо при температурах 900-1000°С. Разработаны технологические процессы, использующие парокислородное дутье, при котором наряду с упомянутой реакцией протекает экзотермическая реакция сгорания угля, обеспечивающая нужный тепловой баланс:
2. Конверсия метана. Реакция взаимодействия метана с водяным паром проводится в присутствии никелевых катализаторов (Ni-Al2O3) при повышенных температурах (800-900°С) и давлении:
В качестве сырья вместо метана может быть использовано любое углеводородное сырье.
3. Парциальное окисление углеводородов. Процесс заключается в неполном термическом окислении углеводородов при температурах выше 1300°С:
Способ применим к любому углеводородному сырью, но наиболее часто в промышленности используют высококипящую фракцию нефти — мазут.
Соотношение СО : Н2 существенно зависит от применяемого способа получения синтез-газа. При газификации угля и парциальном окислении это соотношение близко к 1 : 1, тогда как при конверсии метана соотношение СО : Н2 составляет 1 : 3. В настоящее время разрабатываются проекты подземной газификации, то есть газификации угля непосредственно в пласте. Интересно, что эта идея была высказана Д.И. Менделеевым более 100 лет назад. В перспективе синтез-газ будут получать газификацией не только угля, но и других источников углерода вплоть до городских и сельскохозяйственных отходов.
Видео:Получение алканов. Реакция Дюма (механизм + сложные случаи). ЕГЭ по химии.Скачать
МОНООКСИД УГЛЕРОДА, КАРБОНИЛЫ МЕТАЛЛОВ И ПРАВИЛО 18 ЭЛЕКТРОНОВ
Многочисленные синтезы на базе монооксида углерода и водорода представляют громадный как практический, так и теоретический интерес, так как позволяют из двух простейших веществ получать ценнейшие органические соединения. И здесь определяющую роль играет катализ переходными металлами, которые способны активировать инертные молекулы СО и Н2. Активация молекул — это перевод их в более реакционноспособное состояние. Особо следует отметить, что в превращениях синтез-газа широкое развитие получил новый тип катализа — катализ комплексами переходных металлов или металлокомплексный катализ (см. статью О.Н. Темкина [4]).
Так ли инертна молекула СО? Представления об инертности монооксида углерода носят условный характер. Еще в 1890 году Монд получил из металлического никеля и монооксида углерода первое карбонильное соединение металла, летучую жидкость с температурой кипения 43°С — Ni(CO)4 . Интересна история этого открытия, которое можно отнести к случайным. Монд, исследуя причины быстрой коррозии никелевых реакторов в производстве соды из NaCl, аммиака и СО2, нашел, что причиной коррозии является наличие в СО2 примесей монооксида углерода, который реагировал с никелем с образованием тетракарбонила Ni(CO)4 . Это открытие позволило Монду в дальнейшем разработать способы очистки никеля через получение летучего карбонила никеля и последующего его термического разложения снова до никеля и СО. Через 25 лет также случайно был открыт карбонил железа — Fe(CO)5. Когда на фирме BASF вскрыли давно забытый стальной баллон с СО, на дне его обнаружили желтую жидкость — пентакарбонил железа, который постепенно образовался в результате реакции металлического железа с СО под повышенным давлением. Поскольку карбонилы металлов являются весьма токсичными соединениями, поначалу отношение к ним химиков было весьма прохладным, однако в дальнейшем были открыты удивительные свойства, в том числе каталитические, которые определили их широкое применение, особенно в химии монооксида углерода. Отметим, что многие металлы в мелкодисперсном состоянии могут непосредственно вступать в реакцию с монооксидом углерода, но таким способом получают только карбонилы никеля и железа. Карбонилы других металлов получают при восстановлении их соединений в присутствии СО при высоких давлениях.
Состав карбонильных комплексов переходных металлов можно предсказать на основании правила 18 электронов, согласно которому комплекс будет стабильным, если сумма валентных электронов металла и электронов, предоставленных лигандом, в нашем случае СО, будет равна 18, так как при этом электронная конфигурация соответствует устойчивой конфигурации атомов благородных газов (криптона).
Молекула монооксида углерода имеет неподеленные пары электронов, при этом пара электронов на углероде может быть предоставлена для образования связи с металлом по донорно- акцепторному типу. В качестве примера рассмотрим структуру карбонилов железа и никеля Fe(CO)5 и Ni(CO)4. Атомы железа и никеля имеют соответственно 8 и 10 валентных электронов, и для заполнения электронной оболочки атома до конфигурации атома благородного газа криптона недостает 10 и 8 электронов, и поэтому при образовании карбонилов атому железа должны предоставить электронные пары пять молекул СО, а атому никеля — четыре.
Переходные металлы, имеющие нечетное число валентных электронов, образуют биядерные карбонильные комплексы. Так, для кобальта, имеющего девять валентных электронов, до устойчивой электронной конфигурации не хватает девяти электронов. Одноядерные комплексы за счет принятия четырех пар от молекул СО будут иметь неспаренные электроны, и такие частицы радикального характера взаимодействуют друг с другом с образованием связи металл-металл, и в результате образуется димерный комплекс Со2(СО)8.
Взаимодействие или координация монооксида углерода с металлом приводит к перераспределению электронной плотности не только на СО, но и на металле, что существенно влияет на реакционную способность карбонильного комплекса. Наиболее распространен так называемый линейный тип координации СО:
При этом происходит не только s-взаимодействие за счет свободной пары электронов углерода, но и p-взаимодействие за счет передачи электронов с d-орбитали металла на энергетически доступные вакантные орбитали углерода:
Видео:Получение алканов. 10 класс.Скачать
ПРЕДСТАВЛЕНИЯ О КЛЮЧЕВЫХ РЕАКЦИЯХ В КАТАЛИЗЕ
Отметим несколько важных ключевых реакций в металлокомплексном катализе. Это прежде всего реакции окислительного присоединения и восстановительного элиминирования. Окислительное присоединение — это реакции присоединения нейтральных молекул А-В, например H2 или галогена, к металлическому центру комплекса. При этом металл окисляется, что сопровождается повышением его координационного числа:
где L — лиганд. Такое присоединение сопровождается расщеплением связи А-В.
Очень важна реакция окислительного присоединения молекулы водорода, в результате которой происходит ее активация. Широкую известность получила открытая Васко и Дилюцио реакция окислительного присоединения водорода к плоскоквадратному комплексу одновалентного иридия. В результате степень окисления иридия возрастает от I до III:
Реакция, обратная окислительному присоединению, называется восстановительным элиминированием, при этом степень окисления и координационное число металла уменьшаются на два.
Отметим также реакцию миграционного внедрения, которая заключается во внедрении ненасыщенных соединений по связи металл-углерод и металл-водород. Реакция внедрения СО является ключевой для многих процессов с участием синтез-газа:
Внедрение олефина — важнейшая реакция среди каталитических превращений олефинов: гидрирования, гидроформилирования и др.
Видео:Процесс Фишера-Тропша. Получение синтез-газаСкачать
СИНТЕЗ ФИШЕРА-ТРОПША
Синтез Фишера-Тропша может рассматриваться как реакция восстановительной олигомеризации монооксида углерода, при которой образуются углерод-углеродные связи, и в общем виде она представляет собой сложную комбинацию ряда гетерогенных реакций, которую можно представить суммарными уравнениями:
Продуктами реакции являются алканы, алкены и кислородсодержащие соединения, то есть образуется сложная смесь продуктов, характерная для реакции полимеризации. Первичными продуктами синтеза Фишера-Тропша являются a- и b-олефины, которые превращаются в алканы в результате последующего гидрирования. Природа применяемого катализатора, температура, соотношение СО и Н2 существенно сказываются на распределении продуктов. Так, при использовании железных катализаторов велика доля олефинов, тогда как в случае кобальтовых катализаторов, обладающих гидрирующей активностью, преимущественно образуются насыщенные углеводороды.
В настоящее время в качестве катализаторов синтеза Фишера-Тропша в зависимости от поставленных задач (повышение выхода бензиновой фракции, увеличение выхода низших олефинов и др.) используются как высокодисперсные железные катализаторы, нанесенные на оксиды алюминия, кремния и магния, так и биметаллические катализаторы: железо-марганцевые, железо-молибденовые и др.
За 70 лет с момента открытия синтеза не утихают споры по поводу механизма реакции. В настоящее время рассматриваются три различных механизма. Первый механизм, называемый карбидным, впервые предложенный Фишером и Тропшем и в дальнейшем нашедший поддержку у других исследователей, предполагает образование С-С-связей в результате олигомеризации метиленовых фрагментов на поверхности катализатора. На первой стадии происходит адсорбция СО и образуется поверхностный карбид, а кислород превращается в воду или СО2:
На второй стадии поверхностный карбид гидрируется с образованием фрагментов СНx (х = 1-3):
Удлинение цепи происходит в результате реакции поверхностных метила и метилена и далее путем внедрения метиленовых групп идет рост цепи:
Стадия обрыва цепи происходит в результате десорбции алкена с поверхности катализатора:
Второй механизм, названный гидроксикарбеновым, предполагает также гидрирование координированного на металле СО с образованием поверхностных гидроксикарбеновых фрагментов, в результате конденсации которых и происходит образование С-С-связей:
Третий механизм, который можно назвать механизмом внедрения, предполагает образование С-С-связей в результате внедрения СО по связи металл-углерод (о способности СО к внедрению по связи металл-алкил говорилось выше):
Накоплен достаточно богатый экспериментальный материал, свидетельствующий в пользу того или иного варианта механизма, однако приходится констатировать, что к настоящему моменту невозможно сделать однозначный выбор между ними. Можно предположить, что в связи с большой важностью синтеза Фишера-Тропша исследования в этом направлении будут интенсивно продолжаться и мы станем свидетелями новых воззрений на механизмы протекающих реакций.
Видео:Синтез Фишера Тропша новыйСкачать
ГИДРОФОРМИЛИРОВАНИЕ ОЛЕФИНОВ
Одним из наиболее важных примеров промышленных процессов с участием синтез-газа является реакция гидроформилирования (оксо-синтез). В 1938 году Релен, исследуя механизм синтеза Фишера-Тропша, открыл эту замечательную реакцию, значение которой трудно переоценить. В этом процессе алкены в присутствии катализаторов, главным образом кобальтовых или родиевых, при давлениях свыше 100 атм и температурах 140-180°C взаимодействуют с синтез-газом и превращаются в альдегиды — важнейшие полупродукты в производстве спиртов, карбоновых кислот, аминов, многоатомных спиртов и др. В результате реакции гидроформилирования получаются альдегиды с прямой и разветвленной цепью, содержащие на один атом углерода больше, чем в исходной молекуле:
Наиболее ценными являются нормальные альдегиды, тогда как альдегиды изо-строения можно рассматривать как нежелательные побочные продукты. Мировое производство альдегидов по процессу гидроформилирования достигает 7 млн т в год, при этом около половины приходится на н-масляный альдегид, из которого получают н-бутиловый спирт. Альдольной конденсацией с последующим гидрированием получают 2-этилгексанол, используемый для производства пластификаторов поливинилхлорида.
В качестве катализаторов гидроформилирования наиболее широко используются карбонилы кобальта, в последнее время описано применение родиевых катализаторов, которые позволяют проводить процесс в более мягких условиях.
Механизм гидроформилирования основан на комбинации фундаментальных процессов, описанных выше: координации и внедрения олефинов и СО, окислительного присоединения и восстановительного элиминирования. В качестве примера рассмотрим механизм гидроформилирования этилена с использованием катализатора — октакарбонилдикобальта Со2(CO)8. Показано, что само гидроформилирование катализируется растворимым гидрокарбонилом кобальта НСо(СО)4 , в который под действием водорода превращается Со2(СО)8:
В результате диссоциации НСо(СО)4 = HCo(СО)3 + СО образуется координационно ненасыщенный интермедиат НСо(СО)3 , на котором и координируется этилен. Далее происходит внедрение этилена по связи Сo-Н и образуется этилкобальтовый комплекс, затем — координация и внедрение СО по связи Со-С с образованием ацилкобальтового комплекса. Окислительное присоединение водорода к кобальту и последующее восстановительное элиминирование приводят к альдегиду, катализатор регенерируется, и процесс продолжается. Механизм гидроформилирования можно наглядно представить в виде каталитического цикла:
Видео:Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакцийСкачать
ПЕРСПЕКТИВЫ СИНТЕЗА КИСЛОРОДСОДЕРЖАЩИХ СОЕДИНЕНИЙ
Огромное значение имеет освоенный в 20-е годы процесс получения из синтез-газа метанола — важнейшего продукта химической промышленности. В то же время прямой синтез других кислородсодержащих соединений из синтез-газа также представляется весьма привлекательным. Описано применение синтез-газа для получения спиртов состава С1-С4 (низших спиртов), из которых затем дегидратацией получают низшие олефины. В 70-е годы были предложены катализаторы сложного состава, состоящие из оксидов меди, кобальта, хрома, ванадия, марганца и солей щелочных металлов, которые позволили получить из синтез-газа спирты нормального строения состава С1-С4 при температуре 250°C и давлении всего 6 атм:
В литературе описано образование из синтез-газа самых различных кислородсодержащих соединений, например: ацетальдегида, уксусной кислоты, этиленгликоля и др.
Все эти реакции представляются вполне реальными. К сожалению, эти способы в настоящее время не могут конкурировать с уже освоенными промышленными процессами, поскольку протекают в очень жестких условиях и с небольшой селективностью. Можно надеяться, что поиски новых эффективных методов промышленного использования синтез-газа будут интенсивно продолжаться, и нет сомнения, что у этой области большое будущее.
Видео:Химические свойства алканов. 1 часть. 10 класс.Скачать
ЛИТЕРАТУРА
1. Катализ в C1-химии / Под ред. Л. Кайма. Л.: Химия, 1987. 296 с.
2. Караханов Э.А Что такое нефтехимия // Соросовский Образовательный Журнал. 1996. № 2. c. 65-73.
3. Харитонов Ю.Я. Комплексные соединения // Там же. № 1. c. 48-56.
4. Темкин О.Н. Каталитическая химия // Там же. c. 57-65
Видео:Синтез Фишера-ТропшаСкачать
Синтез фишера тропша уравнение реакции
Синтез углеводородов из СО и Н2 на гетерогенных катализаторах (синтез Фишера-Тропша) в настоящее время рассматривается как реальная альтернатива их получению из нефти.
Нефть является единственным глобальным сырьем для производства моторных топлив и важнейшим — для химического синтеза. Однако постепенно ситуация изменяется. Исчерпание мировых запасов нефти вынуждает обратиться к другим источникам углеводородного сырья, наиболее значительными из которых являются уголь и природный газ. Извлекаемые запасы газа в энергетическом эквиваленте превышают нефтяные в 1,5 раза, запасы угля — более чем в 20 раз [2, 3]. По экспертным оценкам, к 2015 г. доля нефти в мировом энергетическом балансе будет составлять 38 %, природного газа — 26 %, угля — 25 % [4].
Первой стадией превращения природного газа и угля в химические продуты и жидкие топлива является их конверсия в синтез-газ -смесь СО и Н2. Далее основные направления переработки синтез-газа выглядят следующим образом:
• синтез метанола;
• производство аммиака;
• оксо-синтез и формилирование ароматических соединений;
• карбонилирование метанола в уксусную кислоту;
• карбоксилирование олефинов;
• синтез Фишера-Тропша (ФТ).
Надо отметить, что получение синтез-газа (паровой конверсией или парциальным окислением метана, газификацией угля) является наиболее дорогой составляющей всего производства. Капитальные затраты на секцию синтез-газа в строительстве завода по получению метанола из природного газа или углеводородов по технологии ФТ из угля составляют 60-70 % 7.
Синтез Фишера-Тропша (ФТ) представляет собой сложную совокупность последовательных и параллельных превращений, протекающих на поверхности гетерогенного катализатора. Основными являются реакции гидрополимеризации СО с образованием парафинов и олефинов:
nCO + 2nH2 CnH2n + H2O, nCO + (2n + 1)H2 н> CnH 2 n + 2 + H2O. В присутствии железных катализаторов образуются также значимые количества оксигенатов — спиртов, альдегидов, кетонов и карбоновых кислот. При повышенных температурах в присутствии цеолитных сокатализаторов образуются ароматические соединения. Побочные реакции — прямое гидрирование СО в метан, диспропорционирование СО (реакция Белла-Будуара) и реакция водяного газа, интенсивно протекающая на железных катализаторах:
Максимальный теоретически возможный выход углеводородов из 1 нм3 синтез-газа состава СО:Н2 = 1:2 составляет 208 г.
В условиях синтеза ФТ термодинамические вероятности образования продуктов выглядят следующим образом [8]:
• метан > алканы > алкены > О-содержащие;
• низкомолекулярные н-алканы > высокомолекулярные н-алканы;
— высокомолекулярные н-олефины > низкомолекулярные н-олефины.
В действительности выход метана на хороших катализаторах синтеза ФТ не превышает 8 %. Молекулярно-массовое распределение диктуется кинетикой полимеризации (см. ниже). Таким образом, синтез ФТ является кинетически контролируемым процессом, состав конечных продуктов далек от равновесного.
Синтез ФТ — сильно экзотермический процесс. Тепловой эффект реакции гидрополимеризации СО составляет 165 кДж/моль СО, тепловой эффект прямого гидрирования еще выше — 215 кДж/моль. Отвод большого количества тепла в ходе синтеза представляет собой важнейшую проблему при проектировании промышленных установок синтеза ФТ. Катализаторами реакции являются металлы VIII группы. Наибольшую каталитическую активность проявляют Ru, Fe, Co, Ni. Рутений активен уже при 100 °С, в его присутствии при повышенном давлении образуются парафины очень высокой молекулярной массы (полиметилен). Однако этот металл слишком редок и дорог, чтобы рассматриваться в качестве промышленного катализатора. Никелевые контакты при атмосферном давлении обеспечивают в основном прямое гидрирование СО в метан. При повышенном же давлении легко образуется летучий Ni(CO)4, так что катализатор вымывается из реактора. В силу этих причин коммерчески использовались только железные и кобальтовые каталитические системы.
Кобальтовые катализаторы были первыми катализаторами, используемыми в промышленности (в Германии, а затем во Франции и Японии в 1930-1940-е годы) [8]. Типичными для их работы являются давление 1-50 атм и температура 180-250 °С. В этих условиях образуются, главным образом, линейные парафины. Кобальт обладает значительной гидрирующей активностью, поэтому часть СО неизбежно превращается в метан. Эта реакция резко ускоряется с повышением температуры, поэтому кобальтовые катализаторы не могут использоваться в высокотемпературном процессе ФТ. По последним данным, удельная активность кобальтовых катализаторов выше, чем железных [9].
Железные катализаторы с середины 1950-х годов используются на заводах синтеза ФТ в ЮАР [8, 10]. По сравнению с кобальтовыми они гораздо более дешевы, работают в более широком интервале температур (200-360 °С), и позволяют получать более широкий спектр продуктов: парафины, низшие α-олефины, спирты. В условиях синтеза ФТ железо катализирует реакцию водяного газа, что позволяет эффективно использовать получаемый из угля синтез-газ, в котором соотношение СО:Н2 ниже стехиометрического 1:2. Железные катализаторы имеют более низкое сродство к водороду по сравнению с кобальтовыми, поэтому метанирование не является для них большой проблемой. Однако в силу той же низкой гидрирующей активности поверхность железных контактов быстро зауглероживается, и срок их службы составляет несколько недель. Кобальтовые контакты, напротив, способны работать без регенерации год и более. Еще одним недостатком железных контактов является их ингибирование водой. Поскольку вода является продуктом синтеза, кинетика процесса для железных катализаторов неблагоприятна, конверсия СО за один проход невысока. Для достижения высокой степени превращения необходимо организовывать рецикл газа [3].
И железные, и кобальтовые катализаторы крайне чувствительны к отравлению серой. Поэтому синтез-газ должен быть предварительно очищен от серы, по крайней мере, до уровня 2 мг/м 3 [11]. Остаточная сера адсорбируется поверхностью катализатора, так что в итоге продукты синтеза ФТ практически ее не содержат. Это обстоятельство делает синтетическое дизтопливо, полученное по технологии ФТ, весьма привлекательным ввиду современных жестких экологических требований к транспорту.
В синтезе ФТ образуется широкая углеводородная фракция (рис. 1).
Распределение продуктов подчиняется кинетике полимеризации, и доля индивидуальных углеводородов удовлетворяет распределению Андерсона-Шульца-Флори (ASF):
pn = п-(1 — α)2- α n-1, где n — углеродный номер; α — параметр распределения, имеющий физический смысл соотношения между константами скорости роста и обрыва цепи или, иными словами, вероятности роста цепи (рис. 2). Величина α определяется природой катализатора, температурой и давлением процесса. Для каждого класса продуктов, одновременно образующихся на одном и том же контакте (парафины, олефины, спирты), величина а может быть различной. Иногда наблюдается
• включением низших олефинов в растущую цепь;
• крекингом высших парафинов;
— присутствием на поверхности двух и более видов центров полимеризации, каждый из которых обеспечивает свое значение α.
Распределение ASF накладывает ограничение на селективность процесса в отношении индивидуальных углеводородов и их узких фракций. Так, выход бензиновой фракции С5-С10 не может превысить 48%, дизельной фракции С11-С18 — 30%. Однако селективность в отношении твердых парафинов монотонно растет с повышением α и асимптотически приближается к 100 % (рис. 3). Если полученные парафины подвергнуть мягкому гидрокрекингу, выход фракции газойля можно довести до 60 % на прореагировавшее сырье [12].
🔍 Видео
ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО ТОПЛИВА. ПРОЦЕСС ФИШЕРА-ТРОПШАСкачать
65. Что такое реакция гидратации и реакция дегидратацииСкачать
Предельные углеводороды. Алканы. 10 класс.Скачать
Реакции присоединения | Химия 10 класс | УмскулСкачать
Номенклатура алканов. Учимся давать названия алканам.Скачать
Химия 9 класс — Как определять Степень Окисления?Скачать
Химические свойства алканов | Химия ЕГЭ для 10 класса | УмскулСкачать
7 ВАЖНЕЙШИХ РЕАКЦИЙ, которые тебе нужно знать (Алкины)Скачать
АСТРОПРОГНОЗ | ИТОГ ЭПОХИ И ЦИВИЛИЗАЦИИСкачать
Реакция этерификации ФишераСкачать