РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Объяснение и обоснование
- Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n ∈ Z (3)
2.Частые случаи решения уравнения sin x = a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравнения tg x = a и ctg x = a
Объяснение и обоснование
1.Корни уравнений tg x = a и ctg x = a
Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.
Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения tg x = a:
При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈ Z).
Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.
Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctg x = a:
таким образом, уравнение ctg x = 0 имеет корни
Примеры решения задач
Вопросы для контроля
- Какие уравнения называют простейшими тригонометрическими?
- Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
- Выведите формулы решения простейших тригонометрических уравнений.
- Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
Видео:Решите уравнение sin(πx/3) = 1/2 В ответе напишите наименьший положительный корень.Скачать
Тригонометрические уравнения
Решение простейших тригонометрических уравнений
Градусы и радианы
Знакомство с тригонометрической окружностью
Повороты на тригонометрической окружности
Как много боли связано со словом тригонометрия. Эта тема появляется в 9 классе и уже никуда не исчезает. Тяжело приходится тем, кто чего-то не понял сразу. Попробуем это исправить, чтобы осветить ваше лицо улыбкой при слове тригонометрия или хотя бы добиться «poker face».
Начнем с того, что как длину можно выразить в метрах или милях, так и угол можно выразить в радианах или градусах .
1 радиан = 180/π ≈ 57,3 градусов
Но проще запомнить целые числа: 3,14 радиан = 180 градусов. Это все одно и то же значение числа π.
Вспомним, что если нас просят развернуться, то нам нужно повернуться на 180 градусов, а теперь можно так же сказать: Повернись на π!
О графиках синуса, косинуса и тангеса поговорим в другой статье.
А сейчас начем с декартовой (прямоугольной) системы координат.
Раньше она помогала строить графики, а теперь поможет с синусом и косинусом.
На пересечении оси Х и оси Y построим единичную (радиус равен 1) окружность:
Тогда ось косинусов будет совпадать с х, ось синусов с y. Оси тангенсов и котангенсов также показаны на рисунке.
А теперь отметим основные значения градусов и радиан на окружности.
Давай договоримся с тобой, как взрослые люди: на окружности мы будем отмечать угол в радианах, то есть через Пи.
Достаточно запомнить, что π = 180° (тогда π/6 = 180/6 = 30°; π/3 = 180/3 = 60°; π/4 = 180/4 = 45°).
А теперь давай покрутимся на окружности! За начало отчета принято брать крайнюю правую точку окружности (где 0°):
От нее задаем дальнейший поворот. Вращаться можем как в положительную сторону (против часовой), так и в отрицательную сторону (по часовой стрелке).
Повернуться на 45° можно двумя спобами: через левое плечо на 45° в (+) сторону, либо через правое плечо на 315° в (-).
Главное — направление, куда мы будем смотреть, а не угол!
Нужно направить пунктир на 100 баллов, а сколько оборотов и в какую сторону вокруг себя мы сделаем — без разницы!
Получить 100 баллов можно поворотом на 135° или 360°+135°, или -225°, или -225°-360°.
А теперь у тебя есть два пути:
Выучить всю окружность (тригонометр). Неплохой вариант, если с памятью у тебя все отлично, и ничего не вылетит из головы в ответственный момент:
А можно запомнить несколько табличных углов и соответствующие им значения, а потом использовать их.
Находите равные углы (вертикальные, соответственные) на тригонометрической окружности. Попасть в любую точку можно с помощью суммы или разности двух табличных значений.
Сразу попробуем разобрать на примере:
1) Помним, что ось cos(x) — это горизонтальная ось. На ней отмечаем значение ½ и проводим перпендикулярную (фиолетовую) прямую до пересечений с окружностью.
2) Получили две точки пересечения с окружностью, значение этих углов и будет решением уравнения.
Дело за малым — найти эти углы.
Лучше обойтись «малой кровью» и выучить значение синуса и косинуса для углов от 30° до 60°.
Или запомнить такой прием:
Пронумеруй пальцы от 0 до 4 от мизинца до большого. Угол задается между мизинцем и любым другим пальцем (от 0 до 90).
Например, требуется найти sin(π/2) : π/2 — это большой палец, n = 4 подставляем в формулу для синуса: sin(π/2) = √4/2 = 1 => sin(π/2) = 1.
cos(π/4) — ? π/4 соответсвует среднему пальцу (n = 2) => cos(π/4) = √2/2.
При значении cos(x) = ½ из таблицы или с помощью мнемонического правила находим x = 60° (первая точка x = +π/3 из-за того, что поворот происходил против часовой стерелки (+), угол показан черной дугой).
Вторая же точка соответствует точно такому же углу, только поворот будет по часовой стрелке (−). x = −π/3 (угол показан нижней черной дугой).
И последнее, прежде чем тебе, наконец, откроются тайные знания тригонометрии:
Когда требуется попасть в «100 баллов», мы можем в них попасть с помощью поворота на . =-225°=135°=495°=.
То же самое и здесь! Разные углы могут отражать одно и то же направление.
Абсолютно точно можно сказать, что нужно повернуться на требуемый угол, а дальше можно поворачиваться на 360° = 2π (синим цветом) сколько угодно раз и в любом направлении.
Таким образом, попасть в первое направление 60° можно: . 60°-360°, 60°, 60°+360°.
И как записать остальные углы, не записывать же бесконечное количество точек? (Хотел бы я на это посмотреть☻)
Поэтому правильно записать ответ: x = 60 + 360n, где n — целое число (n∈Ζ) (поворачиваемся на 60 градусов, а после кружимся сколько угодно раз, главное, чтобы направление осталось тем же). Аналогично x = −60 + 360n.
Но мы же договорились, что на окружности все записывают через π, поэтому cos(x) = ½ при x = π/3 + 2πn, n∈Ζ и x = −π/3 + 2πk, k∈Ζ.
Ответ: x = π/3 + 2πn, x= − π/3 + 2πk, (n, k) ∈Ζ.
Пример №2. 2sinx = √2
Первое, что следует сделать, это перенести 2-ку вправо => sinx=√2/2
1) sin(x) совпадает с осью Y. На оси sin(x) отмечаем √2/2 и проводим ⊥ фиолетовую прямую до пересечений с окружностью.
2) Из таблицы sinx = √2/2 при х = π/4, а вторую точку будем искать с помощью поворота до π, а затем нужно вернуться обратно на π/4.
Поэтому вторая точка будет x = π − π/4 = 3π/4, в нее также можно попасть и с помощью красных стрелочек или как-то по-другому.
И еще не забудем добавить +2πn, n∈Ζ.
Ответ: 3π/4 + 2πn и π/4 + 2πk, k и n − любые целые числа.
Пример №3. tg(x + π/4) = √3
Вроде все верно, тангенс равняется числу, но смущает π/4 в тангенсе. Тогда сделаем замену: y = x + π/4.
tg(y) = √3 выглядит уже не так страшно. Вспомним, где ось тангенсов.
1) А теперь на оси тангенсов отметим значение √3, это выше чем 1.
2) Проведем фиолетовую прямую через значение √3 и начало координат. Опять на пересечении с окружностью получается 2 точки.
По мнемоническому правилу при тангенсе √3 первое значение — это π/3.
3) Чтобы попасть во вторую точку, можно к первой точке (π/3) прибавить π => y = π/3 + π = 4π/3.
4) Но мы нашли только y , вернемся к х. y = π/3 + 2πn и y = x + π/4, тогда x + π/4 = π/3 + 2πn => x = π/12 + 2πn, n∈Ζ.
Второй корень: y = 4π/3 + 2πk и y = x + π/4, тогда x + π/4 = 4π/3 + 2πk => x = 13π/12 + 2πk, k∈Ζ.
Теперь корни на окружности будут здесь:
Ответ: π/12 + 2πn и 13π/12 + 2πk, k и n — любые целые числа.
Конечно, эти два ответа можно объединить в один. От 0 поворот на π/12, а дальше каждый корень будет повторяться через каждый π (180°).
Ответ можно записать и так: π/12 + πn, n∈Ζ.
Пример №4: −10ctg(x) = 10
Перенесем (−10) в другую часть: ctg(x) = −1. Отметим значение -1 на оси котангенсов.
1) Проведем прямую через эту точку и начало координат.
2) Придется опять вспомнить, когда деление косинуса на синус даст еденицу (это получается при π/4). Но здесь −1, поэтому одна точка будет −π/4. А вторую найдем поворотом до π, а потом назад на π/4 (π − π/4).
Можно это сделать по-другому (красным цветом), но мой вам совет: всегда отсчитывайте от целых значений пи (π, 2π, 3π. ) так намного меньше шансов запутаться.
Не забываем добавить к каждой точке 2πk.
Ответ: 3π/4 + 2πn и −π/4 + 2πk, k и n — любые целые числа.
Алгоритм решения тригонометрических уравнений (на примере cos(x) = − √ 3/2) :
- Отмечаем значение (−√3/2) на оси тригонометрической функции (косинусов, это ось Х).
- Проводим перпендикулярную прямую оси (косинусов) до пересечений с окружностью.
- Точки пересечения с окружностью и будут являться корнями уравнения.
- Значение одной точки (без разницы, как в нее попадете) +2πk.
Азов достаточно, прежде чем идти дальше закрепите полученные знания.
Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
решение тригонометрических уравнений 10 класс
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 2 500 дидактических материалов для школьного и домашнего обучения
Содержание
Ι. Решение простейших тригонометрических уравнений
ΙΙ. Общие методы решения тригонометрических уравнений
1. Метод разложения на множители
2. Метод введения новой переменной
3. Функционально-графические методы
ΙΙΙ. Решение комбинированных уравнений
ΙV. Решение тригонометрических уравнений с параметром
V. Тесты для самостоятельного решения
Ι. Решение простейших тригонометрических уравнений
Все тригонометрические уравнения сводятся к простейшим. Поэтому особое внимание следует уделять решению простейших уравнений. Начинать нужно с самых простых.
К простейшим тригонометрическим уравнениям относятся уравнения вида:
Для каждого из простейших тригонометрических уравнений определены формулы, справедливость которых обосновывается с помощью тригонометрического круга и с учетом периодичности тригонометрических функций.
sinx =0, x= πn, nєZ
sinx =–1, x= –+2πn, nєZ;
sinx =1, x=+2πn, nєZ;
x= π– arcsin а +2πn, nєZ.
В последнем случае для сокращения записи используют формулу:
x=(–1) n arcsin а + πn, nєZ.
cos x=0, x= – + π n, n є Z;
cos x=–1, x= π +2 π n, n є Z;
cos x=1, x=2 π n, n є Z;
cos x= а , | а | а +2 π n, n є Z.
Решения уравнения tg x =а и ctg x =а записываются существенно проще:
x = arctg а +π n , n є Z и, соответственно, x = arc с tg а +π n , n є Z .
Пример 1. Решить уравнение sinx = .
Решение: так как n arcsin + πn, nєZ.
Ответ: (–1) n arcsin + πn, nєZ.
Пример 2. Решить уравнение cos x =.
Решение: так как >1, значит уравнение не имеет решения.
Ответ: нет решения.
Пример 3. Решить уравнение tg x + = 0.
tg x+ = 0
tg x = –
x = arctg (– ) + π n, n є Z
x = – arctg + π n, n є Z
x = – +2 π n, n є Z;
Ответ: –+2πn, nєZ.
Пример 4. Решить уравнение 2 cos x = –.
2cos x = –
cos x = –
x= ± arccos (– )+2 π n, n є Z
x= ±( π – arccos )+2 π n, n є Z
x= ±( π – )+2 π n, n є Z
x = ± + 2 π n, n є Z
Ответ : ± + 2 π n, n є Z.
Для отработки общих формул решения простейших уравнений можно предложить для устного решения задания такого вида.
Образуют ли арифметическую прогрессию расположенные в порядке возрастания положительные корни уравнения : sinx =0; cosx = 0,5; tg x =1.
На начальном этапе, пока не отработаны навыки использования общих формул решения простейших уравнений желательно прописывать эти формулы, чтобы учащиеся быстрее их запомнили.
Далее нужно переходить к решению более сложных уравнений, которые чаще всего встречаются в вариантах ЕГЭ в разделе А.
Пример 5. Решить уравнение cos = .
Решение: cos =
Это уравнение сводится к простейшему cos t = заменой t =, которую можно не прописывать.
= ± arccos +2π n , n є Z
= ± +2π n , n є Z
х = ± + 10π n , n є Z
Ответ: ± + 10π n , n є Z .
Пример 6. Решить уравнение: sin (2 x –) = .
Решение: sin (2 x –) =
2 x –= (–1) n arcsin + π n , n є Z
2 x – = (–1) n + π n , n є Z
2 x – = ++ 2π n , n є Z
2 x – = –+ (2m + 1)π,mєZ
2 x = + 2πn, n є Z
2 x =π + 2πm, mє Z
x = + πn, n є Z
x = + πm, mє Z
Ответ: + πn, + πm, n ,mє Z .
Так же нужно обратить внимание учащихся на то, что довольно часто исходное уравнение приводится к простейшему лишь после различных тождественных преобразований и применения формул тригонометрии.
Пример 7. Решить уравнение 4 sin 3 x cos 3 x =1.
Решение : 4 sin3x cos 3x =1
2(2sin3x cos 3x) =1
sin6x =
6x = (–1) n + π n, n є Z
x = (–1) n + n, n є Z
Ответ: (–1) n + n , n є Z .
Часто предлагается решить тригонометрическое уравнение на некотором промежутке. Целесообразно начинать решать такие уравнения до вывода общих формул решения простейших тригонометрических уравнений.
Пример 8. Найдите корни уравнения 2 cosx = –1, принадлежащие промежутку [0;2π].
cosx = –
Выбор значений x , которые принадлежат указанному промежутку можно выполнить различными способами.
Наиболее рационально это делать с помощью единичной окружности.
x1 = ; x2 = .
Ответ: ;.
В тестах часто требуется не просто найти корни, принадлежащие данному промежутку, а вычислить их сумму или разность; определить наибольший или наименьший корень; указать количество корней.
Пример 9. Найдите сумму корней уравнения ( cos 2 x –1)(2 sin – 1) = 0, принадлежащих промежутку [–; π ).
Решение: x1 = 0; x2 = , x1 + x2 =
Ответ: .
1. Найдите сумму корней уравнения 2 sinx = –1 на указанном промежутке
2. Найдите количество корней уравнения 4 cos 2 2х = 1 на указанном промежутке
3. Найдите сумму наименьшего положительного и наименьшего отрицательного корней уравнения sinx cos + sin cos х = на указанном промежутке
Уже при решение простейших тригонометрических уравнений полезно предлагать нестандартные уравнения.
Пример 10. Решить уравнение cos x 2 = 1.
Можно дать это уравнение для самостоятельного решения.
Найдутся ученики, которые решат его в одну строчку:
х = , kЄZ.
Целесообразно продемонстрировать это решение на доске и предложить ученикам найти допущенные ошибки.
В случае затруднений, чтобы внести полную ясность, решить для начала уравнение
Его решение имеет вид х = ± при а0.
Если а sinsinx = 1.
Решение: sinsinx = 1.
sinx = +2πn, nєZ
Выражение |+2πn | > 1 при любых значениях n , nєZ.
Поэтому исходное уравнение не имеет решений.
Ответ: нет решений.
ΙΙ. Общие методы решения тригонометрических уравнений
Метод разложения на множители.
Этот метод заключается в том , что исходное уравнение сводится к уравнению вида
f ( x ) g ( x ) h ( x ) = 0, которое можно заменить совокупностью уравнений, каждое из которых сводится к простейшему.
Решив уравнения совокупности нужно взять только те решения, которые принадлежат области определения исходного уравнения, а остальные корни отбросить.
Пример 1. Решить уравнение sin 4 x = 3 cos 2х.
sin 4 x = 3 cos 2х.
2 sin 2 x cos 2х = 3 cos 2х
Получив такое уравнение, ученики достаточно часто делают ошибку, «сократив» левую и правую части уравнения на cos 2х. Некоторые из них при этом оговаривают, что cos 2х 0,но одной оговорки здесь, увы, недостаточно. Необходимо ещё рассмотреть случай, когда cos 2х = 0, и проверить, не являются ли значения х, удовлетворяющие этому равенству, корнями исходного уравнения. Разумеется, лучше всего не делить левую и правую части уравнения на cos 2х, а разложить на множители
(2 sin 2 x – 3) cos 2х = 0.
Полученное уравнение равносиьно совокупности двух уравнений
х = , nЄZ.
Первое уравнение решения не имеет, так как функция синус не может принимать значений по модулю больших единицы. К сожалению, не все ученики это понимают, а из тех, кто понимает, не всякий вспоминает вовремя.
Ответ: , nЄZ.
Пример 2. Решить уравнение sin 2 x = sin 4 x
Решение: некоторые учащиеся, встретив такое уравнение, решительно записывают
2х = 4х или 2х = 4х + 2πn, nЄZ, что приводит к потере решений исходного уравнения.
Решение исходного уравнения состоит в переходе к уравнению sin 2 x – sin 4 x = 0
и последующем применении формулы для преобразования разности тригонометрических функций в произведение
2 cos = 0
Ответ:
Пример 3. (ЕГЭ 2009г. Вариант 1, С2.).
Найдите все значения , при каждом из которых выражения
принимают равные значения.
Ответ:
Пример 4. (ЕГЭ 2009г. Вариант 2, B 7.).
Найдите наименьший корень уравнения
Решение:
Ответ:
Метод замены переменной.
В школьном курсе в основном рассматриваются уравнения, которые после введения нового неизвестного t = f ( x ),где f ( x ) – одна из основных тригонометрических функций, превращаются в квадратные либо рациональные уравнения с неизвестным t.
Пример 5. Решить уравнение cos 2 π x + 4 sin π x + 4 =0
Решение: 1 – sin 2 π x + 4 sin π x + 4 =0
– sin 2 π x + 4 sin π x + 5 =0
Заменим sin πx = t , -1
t 2 не удовлетворяет условию -1
πx = –
х = –
Ответ: –
Решение однородных тригонометрических уравнений.
Уравнение вида а sinx + b cosx =0, где а и b –некоторые числа, называются однородными уравнениями первой степени относительно sinx и cosx .
Уравнение вида а sin 2 x + b cos 2 x + с =0, где а,b,с – некоторые числа, называются однородными уравнениями второй степени относительно sinx и cosx .
Пример 6. Решить уравнение sinx – cos х = 0.
Решение: легко убедиться, что cosx = 0 не является корнем исходного уравнения.
В самом деле, если cosx = 0, то, в силу исходного уравнения, и sinx = 0, что противоречит основному тригонометрическому тождеству. Этот факт позволяет разделить левую и правую части уравнения на cosx .
Получим уравнение tg x = 1, откуда х =
Ответ:
Пример 7. Решить уравнение sin 2 x – 3 sinx cos х + 2 cos 2 x = 0.
Решение: поскольку cosx = 0 не является корнем tg x данного уравнения,
разделим левую и правую части уравнения на cos 2 x . В результате приходим к квадратному уравнению относительно tg 2 x – 3 tg x + 2 = 0,
решив которое, получим
Ответ:
Введение вспомогательного аргумента.
Уравнение вида а cosx + b sinx = с, где а, b, с –некоторые числа, причем
называют линейными тригонометрическими уравнениями.
Для решения таких уравнений используют введение вспомогательного аргумента.
Так как а 2 + b 2 >0, то можно разделить обе части уравнения на , получим
Введём в рассмотрение угол такой, что
Угол , удовлетворяющий этим двум условиям, принято называть дополнительным (или вспомогательным) аргументом. Для любых значений а и b такой угол существует, так как
Вообще, полезно напомнить учащимся, что любые числа p и g такие, что
p 2 + g 2 = 1 можно рассматривать как косинус и синус некоторого угла.
Теперь исходное уравнение можно записывать в виде
cos cosx + sin sinx =
cos (x – ) =
Аналогично можно вводить вспомогательный угол такой, что:
Тогда исходное уравнение можно привести к виду
sin cosx + cos sinx =
sin (x + ) =
Полезно также обратить внимание учащихся, что умение преобразовывать выражения вида а cosx + b sinx может понадобиться не только при решении уравнений, но и для построения оценок, нахождения наибольших значений и т. д.
Пример 8. Решить уравнение 3 sinx – 4 cos х = 5.
Решение. 3 sinx – 4 cos х = 5
==5
, cosx = ,
cos ( x + ) = –1
x + = π + 2 πn , n Є Z
x = – + π + 2 πn , n Є Z
x = – arcsin + π + 2 πn , n Є Z
Ответ: – arcsin + π + 2 πn , n Є Z .
Пример 9. Решить уравнение 2 cos х = 1– 2 cos 2 х – sin 2 x .
Решение. Воспользуемся формулой 2 cos 2 х – 1 = cos 2 x ,
получим 2 cos х = – cos 2х – sin 2 x .
Применим к правой части процедуру введения вспомогательного аргумента.
=
2cos х = – 2( cos2 х + sin2x)
2cos х = – 2 ( с os cos2 х + sin sin2x), где
2 cos х = – 2( cos 2х – )
cos х + cos (2х – ) = 0
Последнее уравнение легко решить, преобразовав сумму косинусов в произведение:
2 cos cos
cos
Необходимо обратить внимание учащихся на то, что в тригонометрических системах и совокупностях при записи имеет смысл употреблять разные буквы, обозначающие целые числа.
Ответ: .
Универсальная тригонометрическая подстановка.
Универсальная тригонометрическая подстановка позволяет перейти от синуса и косинуса аргумента х к тангенсу половинного аргумента:
sin , cos
При таком переходе возможна потеря решений, следует помнить, что (в этих точках tg не существует). Поэтому всякий раз, когда приходится пользоваться универсальной подстановкой, значения х = π + 2πn, nЄZ необходимо проверять отдельно, подставляя в исходное уравнение.
Пример 10. Решить уравнение sinx + cos х = –1.
Решение: = –1, заменим tg , получим
2t +1 – t 2 = –1– t 2
tg
Подставим теперь в исходное уравнение значение и убедимся, что они действительно являются его решениями.
Ответ:
Уравнение вида
Уравнение вида где — многочлен, удобно решать при помощи введения новой переменной
Тогда можно получить выражение для произведения из формулы
Пример 11. Решить уравнение
Решение: введем новую переменную
Тогда
Следовательно, и исходное уравнение принимает вид
Для определения переменной получаем два уравнения
Для решения таких уравнений используют введение вспомогательного аргумента.
Ответ:
После завершения изучения рассмотренных методов, при наличии времени, рекомендуем провести урок-практикум – «Урок решения одного уравнения»
3. Функционально-графические методы
Использование свойств ограниченности функций, метод оценок.
Часто приходится иметь дело с уравнениями, имеющими вид f ( x ) = g ( x ), где f и g – некоторые функции, составленные с помощью тригонометрических выражений, такие, что можно исследовать области значений Е( f ) и Е( g ) и доказать, что эти области либо не пересекаются, либо имеют небольшое число общих точек. В таких случаях решения уравнения f ( x ) = g ( x ) следует искать среди таких x , которые удовлетворяют более простым уравнениям f ( x ) = a , g ( x ) = a , где а – такое действительное число, что
Пример 12. Решить уравнение .
Ответ: нет решения.
Пример13. Решить уравнение .
Ответ: нет решения.
Пример14. Решить уравнение .
Ответ: .
Пример15. Решить уравнение
Ответ:
Пример16. Решить уравнение
Заметим, что сумма в левой части полученного уравнения может принимать значение 2, только если одновременно, т.е. наше уравнение равносильно системе уравнений
И должно выполняться равенство Поскольку
Ответ:
Суть метода использования графиков для решения уравнения f ( x ) = g ( x ) проста: нужно построить графики функций y = f ( x ) и y = g ( x ) и найти все точки их пересечения, абсциссы которых и будут являться корнями нашего исходного уравнения.
Пример 17. Сколько корней имеет уравнение:
Решение: в данном примере для решения уравнений используются свойства графиков функций.
🌟 Видео
Отбор корней по окружностиСкачать
Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать
Найдите наименьший положительный корень уравнения sin pi x/3=-(корень из 3)/2 (проф. ЕГЭ задача №6)Скачать
sinπx/3=0,5 В ответе напишите наименьший положительный корень/ наибольший отрицательный кореньСкачать
🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Три способа отбора корней в задании 13 ЕГЭ профильСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
САМЫЕ СЛОЖНЫЕ Задания #6 ЕГЭ 2024 (Тригонометрические Уравнения) | Школа ПифагораСкачать
Выборка с помощью окружностиСкачать
ЕГЭ-2014 Задание В-7 Урок №112 Найти наименьший положительный корень тригонометрического уравненияСкачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Решите уравнение x^2+3x=54. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать
Решаем все типы задач № 12Скачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
tg pi(2x+5)/6=корень из 3. В ответе запишите наибольший отрицательный корень (проф. ЕГЭ, задача 6)Скачать
После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать
5 задание ЕГЭ по математике профильному.САМОЕ ПОНЯТНОЕ РЕШЕНИЕ. Решите уравнение sin ПX/3=0,5Скачать
Решите уравнение: tg пx/4 = -1 В ответе напишите наибольший отрицательный корень.Скачать