Решите систему уравнений 2 x y 12 x y 3 ответ

2*x+y=12 x-y=3

Решение

Дана система ур-ний
$$2 x + y = 12$$
$$x — y = 3$$

Из 1-го ур-ния выразим y
$$2 x + y = 12$$
Перенесем слагаемое с переменной x из левой части в правую со сменой знака
$$y = 12 — 2 x$$
$$y = 12 — 2 x$$
Подставим найденное y в 2-е ур-ние
$$x — y = 3$$
Получим:
$$x — left(12 — 2 xright) = 3$$
$$3 x — 12 = 3$$
Перенесем свободное слагаемое -12 из левой части в правую со сменой знака
$$3 x = 3 + 12$$
$$3 x = 15$$
Разделим обе части ур-ния на множитель при x
$$frac = frac$$
$$x = 5$$
Т.к.
$$y = 12 — 2 x$$
то
$$y = 12 — 10$$
$$y = 2$$

$$2 x + y = 12$$
$$x — y = 3$$

Приведём систему ур-ний к каноническому виду
$$2 x + y = 12$$
$$x — y = 3$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin2 x_ + x_\x_ — x_endright] = left[begin12\3endright]$$
— это есть система уравнений, имеющая форму
A*x = B

Решение такого матричного ур-ния методом Крамера найдём так:

Т.к. определитель матрицы:
$$A = operatorname<left(left[begin2 & 1\1 & -1endright] right)> = -3$$
, то
Корень xi получается делением определителя матрицы Ai. на определитель матрицы A.
( Ai получаем заменой в матрице A i-го столбца на столбец B )
$$x_ = — frac<operatorname<left(left[begin12 & 1\3 & -1endright] right)>> = 5$$
$$x_ = — frac<operatorname<left(left[begin2 & 12\1 & 3endright] right)>> = 2$$

Дана система ур-ний
$$2 x + y = 12$$
$$x — y = 3$$

Приведём систему ур-ний к каноническому виду
$$2 x + y = 12$$
$$x — y = 3$$
Запишем систему линейных ур-ний в матричном виде
$$left[begin2 & 1 & 12\1 & -1 & 3endright]$$
В 1 ом столбце
$$left[begin2\1endright]$$
делаем так, чтобы все элементы, кроме
1 го элемента равнялись нулю.
— Для этого берём 1 ую строку
$$left[begin2 & 1 & 12endright]$$
,
и будем вычитать ее из других строк:
Из 2 ой строки вычитаем:
$$left[begin1 — frac & -1 + frac & 3 — fracendright] = left[begin0 & — frac & -3endright]$$
получаем
$$left[begin2 & 1 & 12\0 & — frac & -3endright]$$
Во 2 ом столбце
$$left[begin1\- fracendright]$$
делаем так, чтобы все элементы, кроме
2 го элемента равнялись нулю.
— Для этого берём 2 ую строку
$$left[begin0 & — frac & -3endright]$$
,
и будем вычитать ее из других строк:
Из 1 ой строки вычитаем:
$$left[begin2 — frac & 1 — — -1 & 12 — — -2endright] = left[begin2 & 0 & 10endright]$$
получаем
$$left[begin2 & 0 & 10\0 & — frac & -3endright]$$

Все почти готово — осталось только найти неизвестные, решая элементарные ур-ния:
$$2 x_ — 10 = 0$$
$$3 — frac<3 x_> = 0$$
Получаем ответ:
$$x_ = 5$$
$$x_ = 2$$

Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Решите систему уравнений 2x-y=1
3x+2y=12

Решите систему уравнений 2 x y 12 x y 3 ответ

Задание: Решите систему уравнений

Методом подстановки
Выразим у в первом уравнении и подставим его во второе уравнение.

Методом сложения

Умножим на 2 все члены первого уравнения, чтобы сократить у.

Решите систему уравнений 2 x y 12 x y 3 ответ

Если ответ по предмету Математика отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Системы уравнений по-шагам

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Результат

Примеры систем уравнений

  • Метод Гаусса
  • Метод Крамера
  • Прямой метод
  • Система нелинейных уравнений

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

📽️ Видео

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

На всё про всё 2 минуты ➜ Решите систему ➜ x⁵+y⁵=12, xy=2 ➜ Быстрый способ решенияСкачать

На всё про всё 2 минуты ➜ Решите систему ➜ x⁵+y⁵=12, xy=2 ➜ Быстрый способ решения

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Как решают уравнения в России и США!?Скачать

Как решают уравнения в России и США!?

Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

Самый короткий тест на интеллект Задача Массачусетского профессора

Подготовка к экзамену. Динамика.Скачать

Подготовка к экзамену. Динамика.

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Почти никто не решил ➜ Найдите сторону треугольникаСкачать

Почти никто не решил ➜ Найдите сторону треугольника

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Решите систему ➜ 3x+xy-3=y; x²+y²=5 ➜ Задача от подписчикаСкачать

Решите систему ➜ 3x+xy-3=y; x²+y²=5 ➜ Задача от подписчика

Задание 21 ОГЭ по математике #16Скачать

Задание 21 ОГЭ по математике #16
Поделиться или сохранить к себе: