Решить уравнение axx 3 xpx 2

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Решение матричных уравненийСкачать

Решение матричных уравнений

Калькулятор онлайн.
Решение показательных уравнений.

Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение

Видео:Срочно замени всё то, что не нравится ➜ Решите уравнение ➜ x^3+1=2∛(2x-1)Скачать

Срочно замени всё то, что не нравится ➜ Решите уравнение ➜ x^3+1=2∛(2x-1)

Немного теории.

Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Показательная функция, её свойства и график

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m

4) (ab) n = a n b n

7) a n > 1, если a > 1, n > 0

8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, ( a neq 1)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, ( a neq 1), не имеет корней, если ( b leqslant 0), и имеет корень при любом b > 0.

3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х

Видео:Решите уравнение ➜ 10^x=11^(3-x) ➜ 2 способаСкачать

Решите уравнение ➜ 10^x=11^(3-x) ➜ 2 способа

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, ( a neq 1), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, ( a neq 1) равны тогда и только тогда, когда равны их показатели.

Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2

Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2

Решить уравнение 3 х = 7 х
Так как ( 7^x neq 0 ) , то уравнение можно записать в виде ( frac = 1 ), откуда ( left( frac right) ^x = 1 ), х = 0
Ответ х = 0

Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
( left( frac right) ^ = 1 )
x — 2 = 0
Ответ х = 2

Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, ( 3 neq 1), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Решить уравнение axx 3 xpx 2

Школьный курс комбинаторики обычно имеет дело с задачами выбора и расположения элементов некоторого, обычно конечного, множества, согласно неких правил.

Для формулирования и решения задач по комбинаторике используют следующие конфигурации: перестановки, размещения, сочетания.

Множество называется упорядоченным, если каждому элементу этого множества поставлено в соответствие некоторое число (номер элемента) от 1 до n, где n — число элементов множества.

Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Перестановкой из n элементов называется такой набор элементов множества, которые отличаются от исходного лишь порядком элементов. Обычно перестановка обозначается как P n и рассчитывается по формуле:

Найти число перестановок множества, состоящего из трех элементов: A, B, C.

Согласно формуле, количество перестановок будет равно 3! = 6.

Действительно, это наборы (ABC),(ACB),(BAC),(BCA),(CAB),(CBA).

Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Размещением из n элементов по k будет называться упорядоченное подмножество из k не повторяющихся элементов выбранные из множества, состоящего изn элементов. Обычно перестановка обозначается как A n k и рассчитывается по формуле:

A n k =n!

Найти число размещений множества, состоящего из четырех элементов: A, B, C, D по два, т.е. сколько различных размещений по два элемента можно составить из указанного множества.

Согласно формуле, количество размещений будет равно 4! / (4-2)! = 24 / 2 = 12.

Действительно, это наборы (AB),(BA),(AC),(CA),(AD),(DA),(BC),(CB),(BD),(DB),(CD),(DC).

Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Сочетанием из n элементов по k будет называться подмножество из k не повторяющихся элементов выбранные из множества, состоящего из n элементов. Подмножества, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений. Обычно сочетание обозначается как С n k и рассчитывается по формуле:

С n k =n!

Найти число сочетаний множества, состоящего из четырех элементов: A, B, C, D по два.

Согласно формуле, количество сочетаний будет равно 4! / 2!(4-2)! = 24 / 4 = 6.

Действительно, это наборы (AB),(AC),(AD),(BC),(BD),(CD).

Сочетание играет важную роль в математике. В частности, он используется в биноме Ньютона.

Бином Ньютона — это отношение, позволяющая представить выражение (a + b) n (nZ + ) в виде многочлена, а именно:

С помощью следующей таблицы можно определить значения биномиальных коэффициентов для любой степени. Строится он следующим образом — любое число образуется суммой рядом стоящих чисел над ним. Именно потому эта таблица имеет название треугольник Паскаля.

Видео:Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

Решение уравнений онлайн

В общем виде, уравнение относительно некоторой переменной может быть записано следующим образом:

Решить, приведенное выше уравнение, означает найти все значения переменной при которых выражение обращается в верное тождество.

Графически, корни уравнения представляют собой абсциссы точек пересечения графика функции с осью :

Решить уравнение axx 3 xpx 2

Таким образом, из приведенного на рисунке графика некоторой функции , мы можем сразу сказать, что значения являются корнями уравнения .

В зависимости от конкретного вида функции существует бесконечное множество различных уравнений (линейные, квадратные, кубические, тригонометрические, уравнения с корнями, степенями и т.д.).

Наш онлайн калькулятор построен на основе системы Wolfram Alpha LLC и способен решить очень много различных типов уравнений с описанием подробного решения.

📽️ Видео

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

№5 Кубическое уравнение x^3-3x^2-4х+12=0 2 способа решения Разложить на множители Безу Как решить урСкачать

№5 Кубическое уравнение x^3-3x^2-4х+12=0 2 способа решения Разложить на множители Безу Как решить ур

Простое решение сложного уравнения ➜ Решите уравнение ➜ x⁴-2x³-13x²+14x-3=0Скачать

Простое решение сложного уравнения ➜ Решите уравнение ➜ x⁴-2x³-13x²+14x-3=0

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Решите уравнение ★ 3^x∙2^(3/x)=24Скачать

Решите уравнение ★ 3^x∙2^(3/x)=24

Решите уравнение ★ x^6-2x^5-x^4+3x^3+x^2-2x-1=0Скачать

Решите уравнение ★ x^6-2x^5-x^4+3x^3+x^2-2x-1=0

Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествахСкачать

Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествах

ДВА БЫСТРЫХ СПОСОБА решения уравнения |x-2|=|x+5| ★ Как решать?Скачать

ДВА БЫСТРЫХ СПОСОБА решения уравнения |x-2|=|x+5| ★ Как решать?

Система НЕЛИНЕЙНЫХ уравнений ★ Как решать ★ Быстрый способ ★ Решите систему x^3+y^3=65; yx^2+xy^2=20Скачать

Система НЕЛИНЕЙНЫХ уравнений ★ Как решать ★ Быстрый способ ★ Решите систему x^3+y^3=65; yx^2+xy^2=20

100 тренировочных задач #142 Решите уравнение (3^x)*8^(x/(x+1))=36Скачать

100 тренировочных задач #142 Решите уравнение (3^x)*8^(x/(x+1))=36

Метод неопределенных коэффициентовСкачать

Метод неопределенных коэффициентов

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решите уравнение ➜ x²-x³=12Скачать

Решите уравнение ➜ x²-x³=12
Поделиться или сохранить к себе: